515
Views
1
CrossRef citations to date
0
Altmetric
Review

The Global Amylase Research Trend in Food Science Technology: A Data-Driven Analysis

, , , , , & ORCID Icon show all

References

  • O’Connor, T. F.;. The Columbia Encyclopedia, 6th Edition. Ref. User Serv. Q 2001, 40(3), 297.
  • Muralikrishna, G.; Nirmala, M. Cereal Alpha-amylases - an Overview. Carbohyd. Polym. 2005, 60(2), 163–173. DOI: 10.1016/j.carbpol.2004.12.002.
  • Azzopardi, E.; Lloyd, C.; Teixeira, S. R.; Conlan, R. S.; Whitaker, I. S.;; et al. Clinical Applications of Amylase: Novel Perspectives. Surgery. 2016, 160(1), 26–37.
  • Gurung, N.;, et al. A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond. Biomed. Res. Int. 2013, 329121.
  • Gopinath, S. C. B.;, et al. Biotechnological Processes in Microbial Amylase Production. Biomed Res. Int. 2017, 1272193.
  • Singh, R.; Kumar, M.; Mittal, A.; Mehta, P. K.;, et al., Microbial Enzymes: Industrial Progress in 21st Century. 3 Biotech., 2016. 6. 2 10.1007/s13205-016-0485-8
  • Zeng, A.;; et al. The Science of Science: From the Perspective of Complex Systems. Phys. Rep. 2017, 714, 1–73.
  • Hu, K.; Liu, J.; Li, B.; Liu, L.; Gharibzahedi, S. M. T.; Su, Y.; Jiang, Y.; Tan, J.; Wang, Y.; Guo, Y.;; et al. Global Research Trends in Food Safety in Agriculture and Industry from 1991 to 2018: A Data-driven Analysis. Trends Food Sci. Tech. 2019, 85, 262–276. DOI: 10.1016/j.tifs.2019.01.011.
  • Fortunato, S.; Bergstrom, C. T.; Börner, K.; Evans, J. A.; Helbing, D.; Milojević, S.; Petersen, A. M.; Radicchi, F.; Sinatra, R.; Uzzi, B.;; et al. Science of Science. Science. 2018, 359(6379), eaao0185.
  • Matsuura, Y.; KUSUNOKI, M.; HARADA, W.; KAKUDO, M.;; et al. Structure and Possible Catalytic Residues of Taka-amylase A. J. Biochem. 1984, 95(3), 697–702.
  • Evans, D. E.; MacLeod, L. C.; Eglinton, J. K.; Gibson, C. E.; Zhang, X.; Wallace, W.; Skerritt, J. H.; Lance, R. C. M.;; et al. Measurement of Beta-amylase in Malting Barley (Hordeum Vulgare L.). I. Development of a Quantitative ELISA for Beta-amylase. J. Cereal Sci. 1997, 26(26), 229–239.
  • Martínez-Anaya, M. A.; Jiménez, T. Functionality of Enzymes that Hydrolyse Starch and Non-starch Polysaccharide in Breadmaking. Z. Lebensm. und -Forschung A. 1997, 205(3), 209–214. DOI: 10.1007/s002170050152.
  • Tamura, T.; Mizuno, Y.; Johnston, K. E.; Jacob, R. A.;; et al. Food Folate Assay with Protease, α-Amylase, and Folate Conjugase Treatments. J. Agric. Food. Chem. 1997, 45(1), 135–139.
  • Gerrard, J. A.; Every, D.; Sutton, K. H.; Gilpin, M. J.;; et al. The Role of Maltodextrins in the Staling of Bread. J. Cereal Sci. 1997, 26(2), 201–209.
  • Kwon, Y. I.; Apostolidis, E.; Kim, Y.-C.; Shetty, K.;; et al. Health Benefits of Traditional Corn, Beans, and Pumpkin: In Vitro Studies for Hyperglycemia and Hypertension Management. J. Med. Food. 2007, 10(2), 266–275.
  • He, Q.; Lv, Y.; Yao, K. Effects of Tea Polyphenols on the Activities of α-amylase, Pepsin, Trypsin and Lipase. Food Chem. 2007, 101(3), 1178–1182. DOI: 10.1016/j.foodchem.2006.03.020.
  • Caballero, P. A.; Gómez, M.; Rosell, C. M. Improvement of Dough Rheology, Bread Quality and Bread Shelf-life by Enzymes Combination. J. Food Eng. 2007, 81(1), 42–53. DOI: 10.1016/j.jfoodeng.2006.10.007.
  • Soares, S.; Mateus, N.; Vd, F. Interaction of Different Polyphenols with Bovine Serum Albumin (BSA) and Human Salivary Alpha-amylase (HSA) by Fluorescence Quenching. J. Agric. Food. Chem. 2007, 55(16), 6726–6735.
  • Vansoest, P. J.; Robertson, J. B.; Lewis, B. A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74(10), 3583–3597. DOI: 10.3168/jds.S0022-0302(91)78551-2.
  • Theander, O.; Åman, P.; Westerlund, E.; Andersson, R.; Pettersson, D.;; et al. Total Dietary Fiber Determined as Neutral Sugar Residues, Uronic Acid Residues, and Klason Lignin (The Uppsala Method): Collaborative Study. J. AOAC Int. 1995, 78(4), 1030–1044.
  • Soares, S.; Mateus, N.; De Freitas, V. Interaction of Different Polyphenols with Bovine Serum Albumin (BSA) and Human Salivary Alpha-amylase (HSA) by Fluorescence Quenching. J. Agric. Food. Chem. 2007, 55(16), 6726–6735. DOI: 10.1021/jf070905x.
  • Mertens, D. R.;; et al. Gravimetric Determination of Amylase-treated Neutral Detergent Fiber in Feeds with Refluxing in Beakers or Crucibles: Collaborative Study. J. AOAC Int. 2002, 85(6), 1217–1240.
  • McDougall, G. J.; Shpiro, F.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D.;; et al. Different Polyphenolic Components of Soft Fruits Inhibit Alpha-amylase and Alpha-glucosidase. J. Agric. Food. Chem. 2005, 53(7), 2760–2766.
  • McCleary, B. V.; Solah, V.; Gibson, T. S. Quantitative Measurement of Total Starch in Cereal Flours and Products. J. Cereal Sci. 1994, 20(1), 51–58. DOI: 10.1006/jcrs.1994.1044.
  • McCleary, B. V.; Gibson, T. S.; Mugford, D. C.; Lukow, O.; Jackson, D. S.; Rabe, E.; Patel, N.; Williams, P. C.; Gelroth, J.; Camire, M. E. Measurement of Total Starch in Cereal Products by Amyloglucosidase-alpha-amylase Method: Collaborative Study. J. AOAC Int. 1997, 80(3), 571–579. DOI: 10.1093/jaoac/80.3.571.
  • Lee, S. C.; Prosky, L.; Devries, J. W. Determination of Total, Soluble, and Insoluble Dietary Fiber in Foods- Enzymatic Gravimetric Method, Mes-Tris Buffer-collaborative Study. J. AOAC Int. 1992, 75(3), 395–416. DOI: 10.1093/jaoac/75.3.395.
  • Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. J. Agric. Food. Chem. 2002, 50(14), 3912–3918. DOI: 10.1021/jf011652p.
  • Kim, J. S.; Kwon, C. S.; Son, K. H. Inhibition of Alpha-glucosidase and Amylase by Luteolin, a Flavonoid. Biosci., Biotechnol., Biochem. 2000, 64(11), 2458–2461. DOI: 10.1271/bbb.64.2458.
  • Hendrickx, M.; Ludikhuyze, L.; Van den Broeck, I.; Weemaes, C.;; et al. Effects of High Pressure on Enzymes Related to Food Quality. Trends Food Sci. Technol. 1998, 9(5), 197–203.
  • Goesaert, H.; Brijs, K.; Veraverbeke, W. S.; Courtin, C. M.; Gebruers, K.; Delcour, J. A.;; et al. Wheat Flour Constituents: How They Impact Bread Quality, and How to Impact Their Functionality. Trends Food Sci. Technol. 2005, 16(1–3), 12–30.
  • Chen, Y.; Xie, M.-Y.; Nie, S.-P.; Li, C.; Wang, Y.-X.;; et al. Purification, Composition Analysis and Antioxidant Activity of a Polysaccharide from the Fruiting Bodies of Ganoderma Atrum. Food Chem. 2008, 107(1), 231–241.
  • Cai, Y. Z.; Corke, H. Production and Properties of Spray-dried Amaranthus Betacyanin Pigments. J. Food Sci. 2000, 65(7), 1248–1252. DOI: 10.1111/j.1365-2621.2000.tb10273.x.
  • Alonso, R.; Aguirre, A.; Marzo, F. Effects of Extrusion and Traditional Processing Methods on Antinutrients and in Vitro Digestibility of Protein and Starch in Faba and Kidney Beans. Food Chem. 2000, 68(2), 159–165. DOI: 10.1016/S0308-8146(99)00169-7.
  • YI, K.;; et al. Health Benefits of Traditional Corn, Beans, and Pumpkin: In Vitro Studies for Hyperglycemia and Hypertension Management. J. Med. Food. 2007, 23(2), 266–275.
  • Apostolidis, E.; Kwon, Y. I.; Shetty, K. Inhibitory Potential of Herb, Fruit, and Fungal-enriched Cheese against Key Enzymes Linked to Type 2 Diabetes and Hypertension. Innov. Food Sci. Emerg. Technol. 2007, 8(1), 46–54. DOI: 10.1016/j.ifset.2006.06.001.
  • Arends, A. M.; Fox, G. P.; Henry, R. J.; Marschke, R. J.; Symons, M. H.;; et al. Genetic and Environmental Variation in the Diastatic Power of Australian Barley. J. Cereal Sci. 1995, 21(1), 63–70.
  • Bhandari, M. R.; Jong-Anurakkun, N.; Hong, G.; Kawabata, J.;; et al. alpha-Glucosidase and Alpha-amylase Inhibitory Activities of Nepalese Medicinal Herb Pakhanbhed (Bergenia Ciliata, Haw.). Food Chem. 2008, 106(1), 247–252.
  • Evans, D. E.;; et al. Assessing the Impact of the Level of Diastatic Power Enzymes and Their Thermostability on the Hydrolysis of Starch during Wort Production to Predict Malt Fermentability. J. Am. Soc. Brew. Chem. 2005, 63(4), 185–198.
  • Martin, M. L.; Hoseney, R. C. A Mechanism of Bread Firming .2. Role of Starch Hydrolyzing Enzymes. Cereal Chem. 1991, 68(5), 503–507.
  • Matsui, T.; Ueda, T.; Oki, T.; Sugita, K.; Terahara, N.; Matsumoto, K.;; et al. Alpha-glucosidase Inhibitory Action of Natural Acylated Anthocyanins. 1. Survey of Natural Pigments with Potent Inhibitory Activity. J. Agric. Food. Chem. 2001, 49(4), 1948–1951.
  • McCue, P.; Kwon, Y. I.; Shetty, K. Anti-amylase, Anti-glucosidase and Anti-angiotensin I-converting Enzyme Potential of Selected Foods. J. Food Biochem. 2005, 29(3), 278–294. DOI: 10.1111/j.1745-4514.2005.00020.x.
  • Ou, S. Y.; Kwok, K.-C.; Li, Y.; Fu, L.;; et al. In Vitro Study of Possible Role of Dietary Fiber in Lowering Postprandial Serum Glucose. J. Agric. Food. Chem. 2001, 49(2), 1026–1029.
  • Shobana, S.; Sreerama, Y. N.; Malleshi, N. G. Composition and Enzyme Inhibitory Properties of Finger Millet (Eleusine Coracana L.) Seed Coat Phenolics: Mode of Inhibition of Alpha-glucosidase and Pancreatic Amylase. Food Chem. 2009, 115(4), 1268–1273. DOI: 10.1016/j.foodchem.2009.01.042.
  • Yilmazer-Musa, M.; Griffith, A. M.; Michels, A. J.; Schneider, E.; Frei, B.;; et al. Grape Seed and Tea Extracts and Catechin 3-gallates are Potent Inhibitors of Alpha-amylase and Alpha-glucosidase Activity. J. Agric. Food. Chem. 2012, 60(36), 8924–8929.
  • Kleinberg, J.;. Bursty and Hierarchical Structure in Streams. Data Min. Knowl. Disc. 2003, 7(4), 373–397. DOI: 10.1023/A:1024940629314.
  • Beaver, D.; Rosen, R. Studies in Scientific Collaboration: Part I. The Professional Origins of Scientific Co-authorship. Scim. 1978, 1(1), 65–84.
  • Chen, C.; Morris, S. Visualizing Evolving Networks: Minimum Spanning Trees versus Pathfinder Networks. in Information Visualization, 2003. INFOVIS 2003. IEEE Symposium on. 2003. IEEE.
  • Miao, M.; Jiang, H.; Jiang, B.; Zhang, T.; Cui, S. W.; Jin, Z.;; et al. Phytonutrients for Controlling Starch Digestion: Evaluation of Grape Skin Extract. Food Chem. 2014, 145(4), 205–211.
  • Xu, J.; Fan, X.; Ning, Y.; Wang, P.; Jin, Z.; Lv, H.; Xu, B.; Xu, X.;; et al. Effect of Spring Dextrin on Retrogradation of Wheat and Corn Starch Gels. Food Hydrocolloid. 2013, 33(2), 361–367.
  • Zhao, J.; Schols, H. A.; Chen, Z.; Jin, Z.; Buwalda, P.; Gruppen, H.;; et al. Substituent Distribution within Cross-linked and Hydroxypropylated Sweet Potato Starch and Potato Starch. Food Chem. 2012, 133(4), 1333–1340.
  • Min, B. C.; Yoon, S.-H.; Kim, J.-W.; Lee, Y.-W.; Kim, Y.-B.; Park, K. H.;; et al. Cloning of Novel Maltooligosaccharide-producing Amylases as Antistaling Agents for Bread. J. Agric. Food. Chem. 1998, 46(2), 779–782.
  • Kweon, M. R.; Park, C. S.; AUH, J. H.; CHO, B. M.; YANG, N. S.; Park, K. H.;; et al. Phospholid Hydrolysate and Antistaling Amylase Effects on Retrogradation of Starch in Bread. J. Food Sci. 2010, 59(5), 1072–1076.
  • Decordt, S.;; et al. Immobilized Alpha-amylase from Bacillus-licheniformis - a Potential Enzymatic Time Temperature Integrator for Thermal-processing. Int. J. Food Sci. Technol. 1992, 27(6), 661–673.
  • Avan, L.; LUDIKHUYZE, L.; HENDRICKX, M.; DE CORDT, S.; TOBBACK, P.;; et al. Theoretical Consideration on the Influence of the Z-value of a Single Component Time/temperature Integrator on Thermal Process Impact Evaluation. J. Food Prot. 1995, 58(1), 39–48.
  • Maesmans, G.; Hendrickx, M.; De Cordt, S.; Van Loey, A.; Noronha, J.; Tobback, P.;; et al. Evaluation of Process Value Distribution with Time Temperature Integrators. Food Res. Int. 1994, 27(5), 413–423.
  • Kato, M.; Sekine, K.; Tsukagoshi, N. Sequence-specific Binding Sites in the Taka-amylase A G2 Promoter for the CreA Repressor Mediating Carbon Catabolite Repression. Biosci. Biotechnol. Biochem. 1996, 60(11), 1776–1779. DOI: 10.1271/bbb.60.1776.
  • Tani, S.; ITOH, T.; KATO, M.; KOBAYASHI, T.; TSUKAGOSHI, N.;; et al. In Vivo and in Vitro Analyses of the amyR Binding Site of the Aspergillus Nidulans agdA Promoter; Requirement of the CGG Direct Repeat for Induction and High Affinity Binding of amyR. Biosci. Biotechnol. Biochem. 2001, 65(7), 1568–1574.
  • Kato, M.; Miura, Y.; Kettoku, M.; Shindo, K.; Iwamatsu, A.; Kobayashi, K.;; et al. Purification and Characterization of New Trehalose-producing Enzymes Isolated from the Hyperthermophilic Archae, Sulfolobus Solfataricus KM1. Biosci. Biotechnol. Biochem. 1996, 60(3), 546–550.
  • Chen, C.; Leydesdorff, L. Patterns of Connections and Movements in Dual‐map Overlays: A New Method of Publication Portfolio Analysis. J. Assoc. Inf. Sci. Technol. 2013, 65(2), 334–351. DOI: 10.1002/asi.22968.
  • Blondel, V. D.;; et al. Fast Unfolding of Communities in Large Networks. JSMTE. 2008, 2008(10).
  • Ring, S. G.; Gee, J.; WHITTAM, M.; Orford, P.; Johnson, I.;; et al. Resistant Starch: Its Chemical Form in Foodstuffs and Effect on Digestibility in Vitro. Food Chem. 1988, 28(2), 97–109.
  • Russell, P.; Moreno, S.; Reed, S. I. Conservation of Mitotic Controls in Fission and Budding Yeasts. Cell. 1989, 57(2), 295–303. DOI: 10.1016/0092-8674(89)90967-7.
  • Sievert, D.; Pomeranz, Y. Enzyme-resistant Starch. I. Characterization and Evaluation by Enzymatic, Thermoanalytical, and Microscopic Methods. 1989.
  • Morgan, K. R.; Gainsford, G. J.; Milestone, N. B. A New Type of Layered Aluminium Phosphate [Nh4]3[co(nh3)6]3[al2(po4)4]2 Assembled about Acobalt(iii) Hexammine Complex. Chem. Commun. 1997, 1, 61–62. DOI: 10.1039/a606006d.
  • Kwon, Y.; Vattem, D.; Shetty, K. Evaluation of Clonal Herb of Lamiaceae Species for Management of Diabetes and Hypertension. Asia Pac. J. Clin. Nutr. 2006, 15(1), 107–118.
  • Mcdougall, G. J.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D.;; et al. Assessing Potential Bioavailability of Raspberry Anthocyanins Using an in Vitro Digestion System. J. Agric. Food. Chem. 2005, 53(15), 5896–5904.
  • Mccue, P.; Kwon, Y. I.; Shetty, K. Anti-diabetic and Anti-hypertensive Potential of Sprouted and Solid-state Bioprocessed Soybean. Asia Pac. J. Clin. Nutr. 2005, 14(2), 145–152.
  • Der Maarel, M. J. E. C. V.; van der Veen, B.; Uitdehaag, J. C. M.; Leemhuis, H.; Dijkhuizen, L.;; et al. Properties and Applications of Starch-converting Enzymes of the α-amylase Family. J. Biotechnol. 2002, 94(2), 137–155.
  • Tester, R. F.; Karkalas, J.; Qi, X. Starch-composition, Fine Structure and Architecture. J. Cereal Sci. 2004, 39(2), 151–165. DOI: 10.1016/j.jcs.2003.12.001.
  • Koh, L. W.; Wong, L. L.; Loo, Y. Y.; Kasapis, S.; Huang, D.;; et al. Evaluation of Different Teas against Starch Digestibility by Mammalian Glycosidases. J. Agric. Food. Chem. 2010, 58(1), 148–154.
  • Tadera, K.; MINAMI, Y.; Takamatsu, K.; MATSUOKA, T.;; et al. Inhibition of Alpha-glucosidase and Alpha-amylase by Flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52(2), 149.
  • Yilmazermusa, M.; Griffith, A. M.; Michels, A. J.; Schneider, E.; Frei, B.;; et al. Grape Seed and Tea Extracts and Catechin 3-gallates are Potent Inhibitors of α-amylase and α-glucosidase Activity. J. Agric. Food. Chem. 2012, 60(36), 8924–8929.
  • Dhital, S.; Gidley, M. J.; Warren, F. J. Inhibition of Alpha-amylase Activity by Cellulose: Kinetic Analysis and Nutritional Implications. Carbohydr. Polym. 2015, 123, 305–312. DOI: 10.1016/j.carbpol.2015.01.039.
  • Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.;; et al. A Standardised Static in Vitro Digestion Method Suitable for Food – An International Consensus. Food Funct. 2014, 5(6), 1113–1124.
  • Copeland, L.; Blazek, J.; Salman, H.; Tang, M. C.;; et al. Form and Functionality of Starch. Food Hydrocolloid. 2009, 23(6), 1527–1534.
  • Pantidos, N.; Boath, A.; Lund, V.; Conner, S.; McDougall, G. J.;; et al. Phenolic-rich Extracts from the Edible Seaweed, Ascophyllum Nodosum, Inhibit Alpha-amylase and Alpha-glucosidase: Potential Anti-hyperglycemic Effects. J. Funct. Foods. 2014, 10, 201–209. DOI: 10.1016/j.jff.2014.06.018.
  • Podsedek, A.; Majewska, I.; Redzynia, M.; Sosnowska, D.; Koziołkiewicz, M.;; et al. In Vitro Inhibitory Effect on Digestive Enzymes and Antioxidant Potential of Commonly Consumed Fruits. J. Agric. Food. Chem. 2014, 62(20), 4610–4617.
  • Gondoin, A.; Grussu, D.; Stewart, D.; McDougall, G. J.et al. White and Green Tea Polyphenols Inhibit Pancreatic Lipase in Vitro. Food Res. Int. 2010, 43(5), 1537–1544.
  • Bordenave, N.; Hamaker, B. R.; Ferruzzi, M. G. Nature and Consequences of Non-covalent Interactions between Flavonoids and Macronutrients in Foods. Food Funct. 2014, 5(1), 18–34. DOI: 10.1039/C3FO60263J.
  • Johnson, M. H.; Lucius, A.; Meyer, T.; Gonzalez De Mejia, E.;; et al. Cultivar Evaluation and Effect of Fermentation on Antioxidant Capacity and in Vitro Inhibition of α-Amylase and α-Glucosidase by Highbush Blueberry (Vaccinium Corombosum). J. Agric. Food. Chem. 2011, 59(16), 8923–8930.
  • Fei, Q. Q.; Gao, Y.; Zhang, X.; Sun, Y.; Hu, B.; Zhou, L.; Jabbar, S.; Zeng, X.;; et al. Effects Of Oolong Tea Polyphenols, Egcg, And EGCG3 “ Me on pancreatic alpha-amylase activity in vitro. J. Agric. Food. Chem. 2014, 62(39), 9507–9514.
  • Aludatt, M. H.;; et al. Variations of Physical and Chemical Properties and Mineral and Vitamin Composition of Camel Milk from Eight Locations in Jordan. J. Food Agric. Environ. 2010, 8(3–4), 16–20.
  • Nyambe-Silavwe, H.; Villa-Rodriguez, J. A.; Ifie, I.; Holmes, M.; Aydin, E.; Jensen, J. M.; Williamson, G.;; et al. Inhibition of Human Alpha-amylase by Dietary Polyphenols. J. Funct. Foods. 2015, 19, 723–732. DOI: 10.1016/j.jff.2015.10.003.
  • Xiao, J. B.; Hogger, P. Dietary Polyphenols and Type 2 Diabetes: Current Insights and Future Perspectives. Curr. Med. Chem. 2015, 22(1), 23–38. DOI: 10.2174/0929867321666140706130807.
  • Mocan, A.; Zengin, G.; Uysal, A.; Gunes, E.; Mollica, A.; Degirmenci, N. S.; Alpsoy, L.; Aktumsek, A.;; et al. Biological and Chemical Insights of Morina Persica L.: A Source of Bioactive Compounds with Multifunctional Properties. J. Funct. Foods. 2016, 25, 94–109. DOI: 10.1016/j.jff.2016.05.010.
  • Mocan, A.; Zengin, G.; Simirgiotis, M.; Schafberg, M.; Mollica, A.; Vodnar, D. C.; Crişan, G.; Rohn, S.;; et al. Functional Constituents of Wild and Cultivated Goji (L. Barbarum L.) Leaves: Phytochemical Characterization, Biological Profile, and Computational Studies. J. Enzyme Inhib. Med. Chem. 2017, 32(1), 153–168.
  • Telagari, M.; Hullatti, K. In-vitro Alpha-amylase and Alpha-glucosidase Inhibitory Activity of Adiantum Caudatum Linn. And Celosia Argentea Linn. Extracts and Fractions. Indian J. Pharmacol. 2015, 47(4), 425–429. DOI: 10.4103/0253-7613.161270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.