2,151
Views
11
CrossRef citations to date
0
Altmetric
Review

A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application

, & ORCID Icon

References

  • Centers for Disease Control and Prevention (CDC). Health, United States, 2016. ( accessed 5 March, 2020). https://www.cdc.gov/nchs/data/hus/hus16.pdf#019.
  • Aghajanpour, M.; Nazer, M. R.; Obeidavi, Z.; Akbari, M.; Ezati, P.; Kor, N. M. Functional Foods and Their Role in Cancer Prevention and Health Promotion: A Comprehensive Review. Am. J.Cancer Res. 2017, 7(4), 740.
  • Heffron, S. P.; Rockman, C. B.; Adelman, M. A.; Gianos, E.; Guo, Y.; Xu, J. F.; Berger, J. S. Greater Frequency of Fruit and Vegetable Consumption Is Associated with Lower Prevalence of Peripheral Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2017, 37(6), 1234–1240. DOI:10.1161/ATVBAHA.116.308474.
  • Lamb, M. J.; Griffin, S. J.; Sharp, S. J.; Cooper, A. J. Fruit and Vegetable Intake and Cardiovascular Risk Factors in People with Newly Diagnosed Type 2 Diabetes. Eur. J. Clin. Nutr. 2017, 71(1), 115–121. DOI: 10.1038/ejcn.2016.180.
  • Grosso, G.; Bella, F.; Godos, J.; Sciacca, S.; Del Rio, D.; Ray, S.; Galvano, F.; Giovannucci, E. L. Possible Role of Diet in Cancer: Systematic Review and Multiple Meta-Analyses of Dietary Patterns, Lifestyle Factors, and Cancer Risk. Nutr. Rev. 2017, 75(6), 405–419. DOI: 10.1093/nutrit/nux012.
  • Kim, C.; Kim, B. Anti-Cancer Natural Products and Their Bioactive Compounds Inducing ER Stress-Mediated Apoptosis: A Review. Nutrients. 2018, 10(8), 1021. DOI: 10.3390/nu10081021.
  • Đorđević, V.; Balanč, B.; Belščak-Cvitanović, A.; Lević, S.; Trifković, K.; Kalušević, A.; Kostić, I.; Komes, D.; Bugarski, B.; Nedović, V. Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Eng. Rev. 2015, 7(4), 452–490. DOI: 10.1007/s12393-014-9106-7.
  • Giaconia, M. A.; dos Passos Ramos, S.; Pereira, C. F.; Lemes, A. C.; De Rosso, V. V.; Braga, A. R. C. Overcoming Restrictions of Bioactive Compounds Biological Effects in Food Using Nanometer-Sized Structures. Food Hydrocoll. 2020, 107, 105939. DOI: 10.1016/j.foodhyd.2020.105939.
  • Paulo, F.; Santos, L. Design of Experiments for Microencapsulation Applications: A Review. Mater. Sci. Eng. C. 2017, 77, 1327–1340. DOI: 10.1016/j.msec.2017.03.219.
  • Sharif, N.; Khoshnoudi-Nia, S.; Jafari, S. M. Nano/Microencapsulation of Anthocyanins; A Systematic Review and Meta-Analysis. Food Res. Int. 2020, 132, 109077. DOI: 10.1016/j.foodres.2020.109077.
  • Assadpour, E.; Jafari, S. M. Advances in Spray-Drying Encapsulation of Food Bioactive Ingredients: From Microcapsules to Nanocapsules. Annu. Rev. Food Sci. Technol. 2019, 10(1), 103–131. DOI: 10.1146/annurev-food-032818-121641.
  • Eun, J.-B.; Maruf, A.; Das, P. R.; Nam, S.-H. A. Review of Encapsulation of Carotenoids Using Spray Drying and Freeze Drying. Crit. Rev. Food Sci. Nutr. 2020, 60(21), 3547–3572. DOI: 10.1080/10408398.2019.1698511.
  • Timilsena, Y. P.; Akanbi, T. O.; Khalid, N.; Adhikari, B.; Barrow, C. J. Complex Coacervation: Principles, Mechanisms and Applications in Microencapsulation. Int. J. Biol. Macromol. 2019, 121, 1276–1286. DOI: 10.1016/j.ijbiomac.2018.10.144.
  • Alemzadeh, I.; Hajiabbas, M.; Pakzad, H.; Sajadi Dehkordi, S.; Vossoughi, A. Encapsulation of Food Components and Bioactive Ingredients and Targeted Release. Int. J. Eng. 2020, 33(1), 1–11. DOI: 10.5829/ije.2020.33.01a.01.
  • Bamidele, O. P.; Emmambux, M. N. Encapsulation of Bioactive Compounds by “Extrusion” Technologies: A Review. Crit. Rev. Food Sci. Nutr. 2020, 1–19. DOI: 10.1080/10408398.2020.1793724.
  • Ozkan, G.; Franco, P.; De Marco, I.; Xiao, J.; Capanoglu, E. A. Review of Microencapsulation Methods for Food Antioxidants: Principles, Advantages, Drawbacks and Applications. Food Chem. 2019, 272, 494–506. DOI: 10.1016/j.foodchem.2018.07.205.
  • Huang, Y.; Zhou, W. Microencapsulation of Anthocyanins through Two-Step Emulsification and Release Characteristics during in Vitro Digestion. Food Chem. 2019, 278, 357–363. DOI: 10.1016/j.foodchem.2018.11.073.
  • Gaikwad, V. L.; Choudhari, P. B.; Bhatia, N. M.; Bhatia, M. S. Characterization of Pharmaceutical Nanocarriers: In Vitro and in Vivo Studies. In Nanomaterials for Drug Delivery and Therapy; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, 2019; pp. 33–58. DOI: 10.1016/B978-0-12-816505-8.00016-3.
  • Shamaei, S.; Seiiedlou, S. S.; Aghbashlo, M.; Tsotsas, E.; Kharaghani, A. Microencapsulation of Walnut Oil by Spray Drying: Effects of Wall Material and Drying Conditions on Physicochemical Properties of Microcapsules. Innov. Food Sci. Emerg. Technol. 2017, 39, 101–112. DOI: 10.1016/j.ifset.2016.11.011.
  • Flores, F. P.; Kong, F. In Vitro Release Kinetics of Microencapsulated Materials and the Effect of the Food Matrix. Annu. Rev. Food Sci. Technol. 2017, 8, 237–259. DOI: 10.1146/annurev-food-030216-025720.
  • Soh, S. H.; Lee, L. Y. Microencapsulation and Nanoencapsulation Using Supercritical Fluid (SCF) Techniques. Pharmaceutics. 2019, 11(1), 21. DOI: 10.3390/pharmaceutics11010021.
  • Al-Hashimi, N.; Begg, N.; Alany, R. G.; Hassanin, H.; Elshaer, A. Oral Modified Release Multiple-Unit Particulate Systems: Compressed Pellets, Microparticles and Nanoparticles. Pharmaceutics. 2018, 10(4), 176. DOI: 10.3390/pharmaceutics10040176.
  • Suganya, V.; Anuradha, V. Microencapsulation and Nanoencapsulation: A Review. Int. J.Pharm. Clin. Res. 2017, 9(3), 233–239. DOI:10.25258/ijpcr.v9i3.8324.
  • Kaushik, P.; Dowling, K.; Barrow, C. J.; Adhikari, B. Microencapsulation of Omega-3 Fatty Acids: A Review of Microencapsulation and Characterization Methods. J. Funct. Foods. 2015, 19, 868–881. DOI: 10.1016/j.jff.2014.06.029.
  • Wong, C. Y.; Al-Salami, H.; Dass, C. R. Microparticles, Microcapsules and Microspheres: A Review of Recent Developments and Prospects for Oral Delivery of Insulin. Int. J. Pharm. 2018, 537(1–2), 223–244. DOI: 10.1016/j.ijpharm.2017.12.036.
  • Giro-Paloma, J.; Martínez, M.; Cabeza, L. F.; Fernández, A. I. Types, Methods, Techniques, and Applications for Microencapsulated Phase Change Materials (MPCM): A Review. Renew. Sust. Energ. Rev. 2016, 53, 1059–1075. DOI: 10.1016/j.rser.2015.09.040.
  • Ye, Q.; Georges, N.; Selomulya, C. Microencapsulation of Active Ingredients in Functional Foods: From Research Stage to Commercial Food Products. Trends Food Sci. Technol. 2018, 78, 167–179. DOI: 10.1016/j.tifs.2018.05.025.
  • Vijeth, S.; Heggannavar, G. B.; Kariduraganavar, M. Y. Encapsulating Wall Materials for Micro-/ Nanocapsules. In Microencapsulation - Process, Technologies and Industrial Applications; Salaun, F., Ed.; IntechOpen: London, 2019; pp 3–12.
  • Bah, M. G.; Bilal, H. M.; Wang, J. Fabrication and Application of Complex Microcapsules: A Review. Soft Matter. 2020, 16(3), 570–590. DOI: 10.1039/C9SM01634A.
  • Yang, M.; Liang, Z.; Wang, L.; Qi, M.; Luo, Z.; Li, L. Microencapsulation Delivery System in Food Industry—Challenge and the Way Forward. Adv. Polym. Tech. 2020, 2020, 1–14. DOI: 10.1155/2020/7531810.
  • Pieczykolan, E.; Kurek, M. A. Use of Guar Gum, Gum Arabic, Pectin, Beta-Glucan and Inulin for Microencapsulation of Anthocyanins from Chokeberry. Int. J. Biol. Macromol. 2019, 129, 665–671. DOI: 10.1016/j.ijbiomac.2019.02.073.
  • Gutiérrez, T. J.; Álvarez, K. Biopolymers as Microencapsulation Materials in the Food Industry. In Advances in Physicochemical Properties of Biopolymers: Part 2; Masuelli, M., Renard, D., Eds.; Bentham Science: Sharjah, United Arab Emirates, 2017; pp 296–322. DOI: 10.2174/9781681085449117010009.
  • Nesterenko, A.; Alric, I.; Silvestre, F.; Durrieu, V. Vegetable Proteins in Microencapsulation: A Review of Recent Interventions and Their Effectiveness. Ind. Crop Prod. 2013, 42, 469–479. DOI: 10.1016/j.indcrop.2012.06.035.
  • Patil, J.;. Encapsulation Technology: Opportunity to Develop Novel Drug Delivery Systems. J.Pharmacovigil. 2016, 4, e157. DOI: 10.4172/2329-6887.1000e157.
  • Abulateefeh, S. R.; Al-Adhami, G. K.; Alkawareek, M. Y.; Alkilany, A. M. Controlling the Internal Morphology of Aqueous Core-PLGA Shell Microcapsules: Promoting the Internal Phase Separation via Alcohol Addition. Pharm. Dev. Technol. 2019, 24(6), 671–679. DOI:10.1080/10837450.2018.1558238.
  • Baek, J.-S.; Yeo, E. W.; Lee, Y. H.; Tan, N. S.; Loo, S. C. J. Controlled-Release Nanoencapsulating Microcapsules to Combat Inflammatory Diseases. Drug Des. Devel. Ther. 2017, 11, 1707. DOI: 10.2147/DDDT.S133344.
  • Corrêa-Filho, L. C.; Moldão-Martins, M.; Alves, V. D. Advances in the Application of Microcapsules as Carriers of Functional Compounds for Food Products. Appl. Sci. 2019, 9(3), 571. DOI: 10.3390/app9030571.
  • Chang, C.; Nickerson, M. T. Encapsulation of Omega 3-6-9 Fatty Acids-Rich Oils Using Protein-Based Emulsions with Spray Drying. J. Food Sci. Technol. 2018, 55(8), 2850–2861. DOI: 10.1007/s13197-018-3257-0.
  • Abdul Aziz, F. R.; Jai, J.; Raslan, R.; Subuki, I. Microencapsulation of Essential Oils Application in Textile: A Review. Adv. Mat. Res. 2015, 1113, 346–351. DOI: 10.4028/scientific.net/AMR.1113.346.
  • Peanparkdee, M.; Iwamoto, S.; Yamauchi, R. Microencapsulation: A Review of Applications in the Food and Pharmaceutical Industries. Rev. Agric. Sci. 2016, 4, 56–65. DOI: 10.7831/ras.4.56.
  • Leon, M.;. Si-Based Inorganic Microencapsulation. Phys. Sci. Rev. 2016, 1(3). DOI:10.1515/psr-2015-0008.
  • Bojana, B. P.; Marica, S. Microencapsulation Technology and Applications in Added-Value Functional Textiles. Phys. Sci. Rev. 2016, 1(1). DOI:10.1515/psr-2015-0003.
  • JordánSuárez, O.; Glorio-Paulet, P.; Vidal, L. Optimization of Processing Parameters for the Microencapsulation of Soursop (Annona Muricata L.) Leaves Extract: Morphology, Physicochemical and Antioxidant Properties. Sci. Agropecu. 2021, 12(2), 161–168. DOI:10.17268/sci.agropecu.2021.018.
  • Guo, J.; Li, P.; Kong, L.; Xu, B. Microencapsulation of Curcumin by Spray Drying and Freeze Drying. LWT. 2020, 132, 109892. DOI: 10.1016/j.lwt.2020.109892.
  • de Melo Ramos, F.; Júnior, V. S.; Prata, A. S. Assessing the Vacuum Spray Drying Effects on the Properties of Orange Essential Oil Microparticles. Food Bioprocess. Technol. 2019, 12(11), 1917–1927. DOI: 10.1007/s11947-019-02355-2.
  • Corrêa-Filho, L. C.; Lourenço, M. M.; Moldão-Martins, M.; Alves, V. D. Microencapsulation of β-Carotene by Spray Drying: Effect of Wall Material Concentration and Drying Inlet Temperature. Int. J. Food Sci. 2019, 2019. DOI: 10.1155/2019/8914852.
  • Ding, Z.; Tao, T.; Yin, X.; Prakash, S.; Wang, X.; Zhao, Y.; Han, J.; Wang, Z. Improved Encapsulation Efficiency and Storage Stability of Spray Dried Microencapsulated Lutein with Carbohydrates Combinations as Encapsulating Material. LWT. 2020, 124, 109139. DOI: 10.1016/j.lwt.2020.109139.
  • Huang, Y. Y.; Liang, M. H.; Sun, L. N.; Brennan, C. S.; Liu, D. M. Effect of Microencapsulation on Morphology, Physicochemical Properties and Flavour Profiles of Solid Yoghurt‐Flavoured Bases. Int. J. Food Sci. Technol. 2021, 56(5), 2565–2578. DOI: 10.1111/ijfs.14896.
  • Thakur, N.; Thakur, A. Microencapsulation of Wild Pomegranate Flavedo Phenolics by Lyophilization: Effect of Maltodextrin Concentration, Structural Morphology, Functional Properties, Elemental Composition and Ingredient for Development of Functional Beverage. LWT. 2020, 133, 110077. DOI: 10.1016/j.lwt.2020.110077.
  • da Costa Neto, J. J.; Gomes, T. L.; Justo, T. F.; Pereira, K. S.; Amaral, P. F.; Leão, M. H. R.; Sant’Ana, G. C. F. Microencapsulation of Tiger Nut Milk by Lyophilization: Morphological Characteristics, Shelf Life and Microbiological Stability. Food Chem. 2019, 284, 133–139. DOI: 10.1016/j.foodchem.2019.01.110.
  • Jeyakumari, A.; Zynudheen, A.; Parvathy, U. Microencapsulation of Bioactive Food Ingredients and Controlled Release-A Review. MOJ Food Process. Technol. 2016, 2(6), 214–224. DOI:10.15406/mojfpt.2016.02.00059.
  • Castro-Rosas, J.; Ferreira-Grosso, C. R.; Gómez-Aldapa, C. A.; Rangel-Vargas, E.; Rodríguez-Marín, M. L.; Guzmán-Ortiz, F. A.; Falfan-Cortes, R. N. Recent Advances in Microencapsulation of Natural Sources of Antimicrobial Compounds Used in Food-A Review. Food Res. Int. 2017, 102, 575–587. DOI: 10.1016/j.foodres.2017.09.054.
  • Rezvankhah, A.; Emam-Djomeh, Z.; Askari, G. Encapsulation and Delivery of Bioactive Compounds Using Spray and Freeze-Drying Techniques: A Review. Drying Technol. 2020, 38(1–2), 235–258. DOI: 10.1080/07373937.2019.1653906.
  • Kuang, S. S.; Oliveira, J. C.; Crean, A. M. Microencapsulation as a Tool for Incorporating Bioactive Ingredients into Food. Crit. Rev. Food Sci. Nutr. 2010, 50(10), 951–968. DOI: 10.1080/10408390903044222.
  • Ribeiro, J. S.; Veloso, C. M. Microencapsulation of Natural Dyes with Biopolymers for Application in Food: A Review. Food Hydrocoll. 2020, 106374. DOI: 10.1016/j.foodhyd.2020.106374.
  • Shang, X.; Zhan, B.; Li, J.; Zhong, R. Novel Microcapsules for Internal Curing of High-Performance Cementitious System. Sci. Rep. 2020, 10(1), 1–10. DOI: 10.1038/s41598-020-65285-6.
  • Laracuente, M.-L.; Marina, H. Y.; McHugh, K. J. Zero-Order Drug Delivery: State of the Art and Future Prospects. J. Control Release. 2020. DOI: 10.1016/j.jconrel.2020.09.020.
  • Dong, Z.; Ma, Y.; Hayat, K.; Jia, C.; Xia, S.; Zhang, X. Morphology and Release Profile of Microcapsules Encapsulating Peppermint Oil by Complex Coacervation. J. Food Eng. 2011, 104(3), 455–460. DOI: 10.1016/j.jfoodeng.2011.01.011.
  • Sharma, V.; Sundaramurthy, A. Multilayer Capsules Made of Weak Polyelectrolytes: A Review on the Preparation, Functionalization and Applications in Drug Delivery. Beilstein J. Nanotechnol. 2020, 11(1), 508–532. DOI: 10.3762/bjnano.11.41.
  • Bezerra, F. M.; Lis, M.; Carmona, Ó. G.; Carmona, C. G.; Moisés, M. P.; Zanin, G. M.; Moraes, F. F. Assessment of the Delivery of Citronella Oil from Microcapsules Supported on Wool Fabrics. Powder Technol. 2019, 343, 775–782. DOI: 10.1016/j.powtec.2018.11.001.
  • Sun, P.; Zeng, M.; He, Z.; Qin, F.; Chen, J. Controlled Release of Fluidized Bed-Coated Menthol Powder with a Gelatin Coating. Drying Technol. 2013, 31(13–14), 1619–1626. DOI: 10.1080/07373937.2013.798331.
  • Elmas, A.; Akyüz, G.; Bergal, A.; Andaç, M.; Andac, O. Mathematical Modelling of Drug Release. Res. Eng. Struct. Mater. 2020, 63–86. DOI: 10.17515/resm2020.178na0122.
  • Mircioiu, C.; Voicu, V.; Anuta, V.; Tudose, A.; Celia, C.; Paolino, D.; Fresta, M.; Sandulovici, R.; Mircioiu, I. Mathematical Modeling of Release Kinetics from Supramolecular Drug Delivery Systems. Pharmaceutics. 2019, 11(3), 140. DOI: 10.3390/pharmaceutics11030140.
  • Ina, M.; Zhushma, A. P.; Lebedeva, N. V.; Vatankhah-Varnoosfaderani, M.; Olson, S. D.; Sheiko, S. S. The Design of Wrinkled Microcapsules for Enhancement of Release Rate. J. Colloid Interface Sci. 2016, 478, 296–302. DOI: 10.1016/j.jcis.2016.06.022.
  • Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A. J.; Antal, I. Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Sci. Pharm. 2019, 87(3), 20. DOI: 10.3390/scipharm87030020.
  • Zhang, X.; Yang, L.; Zhang, C.; Liu, D.; Meng, S.; Zhang, W.; Meng, S. Effect of Polymer Permeability and Solvent Removal Rate on in Situ Forming Implants: Drug Burst Release and Microstructure. Pharmaceutics. 2019, 11(10), 520. DOI: 10.3390/pharmaceutics11100520.
  • Markl, D.; Yassin, S.; Wilson, D. I.; Goodwin, D. J.; Anderson, A.; Zeitler, J. A. Mathematical Modelling of Liquid Transport in Swelling Pharmaceutical Immediate Release Tablets.Int. J. Pharm. 2017, 526(1–2), 1–10. DOI: 10.1016/j.ijpharm.2017.04.015.
  • Feng, J.; Zhang, Y.; McManus, S. A.; Ristroph, K. D.; Lu, H. D.; Gong, K.; White, C. E.; Prud’homme, R. K. Rapid Recovery of Clofazimine-Loaded Nanoparticles with Long-Term Storage Stability as Anti-Cryptosporidium Therapy. ACS Appl. Nano Mater. 2018, 1(5), 2184–2194. DOI: 10.1021/acsanm.8b00234.
  • Da Cruz, M. C. R.; Dagostin, J. L. A.; Perussello, C. A.; Masson, M. L. Assessment of Physicochemical Characteristics, Thermal Stability and Release Profile of Ascorbic Acid Microcapsules Obtained by Complex Coacervation. Food Hydrocoll. 2019, 87, 71–82. DOI: 10.1016/j.foodhyd.2018.07.043.
  • Koroleva, M. Y.; Nagovitsina, T.; Bidanov, D.; Gorbachevski, O.; Yurtov, E. Nano-and Microcapsules as Drug-Delivery Systems. Resour.-Effic. Technol. 2016, 2(4), 233–239. DOI: 10.1016/j.reffit.2016.10.013.
  • Wei, X.-F.; Linde, E.; Hedenqvist, M. S. Plasticiser Loss from Plastic or Rubber Products through Diffusion and Evaporation. NPJ Mater. Degrad. 2019, 3(1), 1–8. DOI:10.1038/s41529-019-0080-7.
  • Kukkar, D.; Kaur, I.; Singh, J.; Bharadwaj, L. M. Encapsulation and Release of Doxorubicin from Plasticizer-Transformed Poly (ε-Caprolactone) Microcapsules. Polym. Plast. Technol. Eng. 2018, 57(11), 1110–1120. DOI: 10.1080/03602559.2017.1373395.
  • Meesorn, W.; Calvino, C.; Natterodt, J. C.; Zoppe, J. O.; Weder, C. Bio‐Inspired, Self‐Toughening Polymers Enabled by Plasticizer‐Releasing Microcapsules. Adv. Mater. 2019, 31(14), 1807212. DOI: 10.1002/adma.201807212.
  • Fong, R. J.; Robertson, A.; Mallon, P. E.; Thompson, R. L. The Impact of Plasticizer and Degree of Hydrolysis on Free Volume of Poly (Vinyl Alcohol) Films. Polymers. 2018, 10(9), 1036. DOI: 10.3390/polym10091036.
  • Shi, Q.; Moinuddin, S. M.; Cai, T. Advances in Coamorphous Drug Delivery Systems. Acta Pharm. Sin. B. 2019, 9(1), 19–35. DOI: 10.1016/j.apsb.2018.08.002.
  • Silva, B. S.; Santangelo, M.; Colbert, M.-J.; Fauteux-Lefebvre, C.; Bartlett, J. A.; Lapointe-Garant, -P.-P.; Gosselin, R. Building Process Understanding of Fluid Bed Taste Mask Coating of Microspheres. AAPS PharmSciTech. 2019, 20(5), 1–14. DOI: 10.1208/s12249-019-1384-1.
  • Werner, S. R.; Jones, J. R.; Paterson, A. H.; Archer, R. H.; Pearce, D. L. Air-Suspension Coating in the Food Industry: Part II—Micro-Level Process Approach. Powder Technol. 2007, 171(1), 34–45. DOI: 10.1016/j.powtec.2006.08.015.
  • Siepmann, F.; Muschert, S.; Flament, M.; Leterme, P.; Gayot, A.; Siepmann, J. Controlled Drug Release from Gelucire-Based Matrix Pellets: Experiment and Theory. Int. J. Pharm. 2006, 317(2), 136–143. DOI: 10.1016/j.ijpharm.2006.03.006.
  • Wazarkar, K.; Patil, D.; Rane, A.; Balgude, D.; Kathalewar, M.; Sabnis, A. Microencapsulation: An Emerging Technique in the Modern Coating Industry. RSC Adv. 2016, 6(108), 106964–106979. DOI: 10.1039/C6RA13237E.
  • Huang, B.; Chen, F.; Shen, Y.; Qian, K.; Wang, Y.; Sun, C.; Zhao, X.; Cui, B.; Gao, F.; Zeng, Z. Advances in Targeted Pesticides with Environmentally Responsive Controlled Release by Nanotechnology. Nanomater. 2018, 8(2), 102. DOI: 10.3390/nano8020102.
  • Rojas-Moreno, S.; Cárdenas-Bailón, F.; Osorio-Revilla, G.; Gallardo-Velázquez, T.; Proal-Nájera, J. Effects of Complex Coacervation-Spray Drying and Conventional Spray Drying on the Quality of Microencapsulated Orange Essential Oil. J. Food Meas. Charact. 2018, 12(1), 650–660. DOI: 10.1007/s11694-017-9678-z.
  • Detsi, A.; Kavetsou, E.; Kostopoulou, I.; Pitterou, I.; Pontillo, A. R. N.; Tzani, A.; Christodoulou, P.; Siliachli, A.; Zoumpoulakis, P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics. 2020, 12(7), 669. DOI: 10.3390/pharmaceutics12070669.
  • Călinoiu, L.-F.; Ştefănescu, B. E.; Pop, I. D.; Muntean, L.; Vodnar, D. C. Chitosan Coating Applications in Probiotic Microencapsulation. Coatings. 2019, 9(3), 194. DOI: 10.3390/coatings9030194.
  • Parthasarathi, S.; Anandharamakrishnan, C. Enhancement of Oral Bioavailability of Vitamin E by Spray-Freeze Drying of Whey Protein Microcapsules. Food Bioprod. Process. 2016, 100, 469–476. DOI: 10.1016/j.fbp.2016.09.004.
  • Verma, A.; Dubey, J.; Verma, N.; Kumar Nayak, A. Chitosan-Hydroxypropyl Methylcellulose Matrices as Carriers for Hydrodynamically Balanced Capsules of Moxifloxacin HCl. Curr. Drug Del. 2017, 14(1), 83–90. DOI:10.2174/1567201813666160504100842.
  • Gaspar, D. P.; Gaspar, M. M.; Eleuterio, C. V.; Grenha, A.; Blanco, M.; Gonçalves, L. M.; Taboada, P.; Almeida, A. J.; Remunan-Lopez, C. Microencapsulated Solid Lipid Nanoparticles as a Hybrid Platform for Pulmonary Antibiotic Delivery. Mol. Pharm. 2017, 14(9), 2977–2990. DOI:10.1021/acs.molpharmaceut.7b00169.
  • Riaz, T.; Iqbal, M. W.; Saeed, M.; Yasmin, I.; Hassanin, H. A.; Mahmood, S.; Rehman, A. In Vitro Survival of Bifidobacterium Bifidum Microencapsulated in Zein-Coated Alginate Hydrogel Microbeads. J. Microencapsul. 2019, 36(2), 192–203. DOI: 10.1080/02652048.2019.1618403.
  • Pourjafar, H.; Noori, N.; Gandomi, H.; Basti, A. A.; Ansari, F. Stability and Efficiency of Double-Coated Beads Containing Lactobacillus Acidophilus Obtained from the Calcium Alginate-Chitosan and Eudragit S100 Nanoparticles Microencapsulation. Int. J. Probiotics Prebiotics. 2018, 13, 77–83.
  • Unagolla, J. M.; Jayasuriya, A. C. Drug Transport Mechanisms and in Vitro Release Kinetics of Vancomycin Encapsulated Chitosan-Alginate Polyelectrolyte Microparticles as a Controlled Drug Delivery System. Eur. J. Pharm. Sci. 2018, 114, 199–209. DOI: 10.1016/j.ejps.2017.12.012.
  • Kalaydina, R.-V.; Bajwa, K.; Qorri, B.; Decarlo, A.; Szewczuk, M. R. Recent Advances in “Smart” Delivery Systems for Extended Drug Release in Cancer Therapy. Int. J. Nanomed. 2018, 13, 4727. DOI: 10.2147/IJN.S168053.
  • Silva, P. T. D.; Fries, L. L. M.; Menezes, C. R. D.; Holkem, A. T.; Schwan, C. L.; Wigmann, É. F.; Bastos, J. D. O.; Silva, C. D. B. D. Microencapsulation: Concepts, Mechanisms, Methods and Some Applications in Food Technology. Cienc. Rural. 2014, 44, 1304–1311. DOI: 10.1590/0103-8478cr20130971.
  • Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O. C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016, 116(4), 2602–2663. DOI: 10.1021/acs.chemrev.5b00346.
  • Niaz, T.; Imran, M. Diffusion Kinetics of Nisin from Composite Coatings Reinforced with Nano-Rhamnosomes. J. Food Eng. 2021, 288, 110143. DOI: 10.1016/j.jfoodeng.2020.110143.
  • Paarakh, M. P.; Jose, P. A.; Setty, C.; Peter, G. Release Kinetics–Concepts and Applications. Int. J.Pharm. Res. Technol. 2018, 8(1), 12–20.
  • Wu, I. Y.; Bala, S.; Škalko-Basnet, N.; Di Cagno, M. P. Interpreting Non-Linear Drug Diffusion Data: Utilizing Korsmeyer-Peppas Model to Study Drug Release from Liposomes. Eur. J. Pharm. Sci. 2019, 138, 105026. DOI: 10.1016/j.ejps.2019.105026.
  • Kouzes, R. T.; Cho, H. M.; Cowles, C. C.; Dib, G.; Keller, P. E.; Smart, J. E.; Smith, P. J.; Tucker, B. J.; Feng, P. L.; Myllenbeck, N. R. Investigations of Degradation and Encapsulation of Plastic Scintillator. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 2020, 954, 161791. DOI: 10.1016/j.nima.2019.01.018.
  • Moore, T.; Mumford, K. A.; Stevens, G. W.; Webley, P. A. Enhancement in Specific Absorption Rate by Solvent Microencapsulation. AIChE J. 2018, 64(11), 4066–4079. DOI: 10.1002/aic.16366.
  • Bruschi, M. L.;. Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing: Cambridge, England, 2015; pp 122.
  • Sharipova, A. A.; Aidarova, S. B.; Mutaliyeva, B. Z.; Babayev, A. A.; Issakhov, M.; Issayeva, A. B.; Madybekova, G. M.; Grigoriev, D. O.; Miller, R. The Use of Polymer and Surfactants for the Microencapsulation and Emulsion Stabilization. Colloids Interfaces. 2017, 1(1), 3. DOI: 10.3390/colloids1010003.
  • Alhalmi, A.; Altowairi, M.; Saeed, O.; Alzubaidi, N.; Almoiliqy, M.; Abdulmalik, W. Sustained Release Matrix System: An Overview. World J.Pharm. Pharm. Sci. 2018, 7(6), 1470–1486. DOI:10.20959/wjpps20186-11835.
  • Arca, H. C.; Mosquera-Giraldo, L. I.; Bi, V.; Xu, D.; Taylor, L. S.; Edgar, K. J. Pharmaceutical Applications of Cellulose Ethers and Cellulose Ether Esters. Biomacromolecules. 2018, 19(7), 2351–2376. DOI: 10.1021/acs.biomac.8b00517.
  • Aditya, N.; Espinosa, Y. G.; Norton, I. T. Encapsulation Systems for the Delivery of Hydrophilic Nutraceuticals: Food Application. Biotechnol. Adv. 2017, 35(4), 450–457. DOI: 10.1016/j.biotechadv.2017.03.012.
  • Fan, J.; Wang, K.; Liu, M.; He, Z. In Vitro Evaluations of Konjac Glucomannan and Xanthan Gum Mixture as the Sustained Release Material of Matrix Tablet. Carbohydr. Polym. 2008, 73(2), 241–247. DOI: 10.1016/j.carbpol.2007.11.027.
  • Jiang, Y.; Reddy, C. K.; Huang, K.; Chen, L.; Xu, B. Hydrocolloidal Properties of Flaxseed Gum/Konjac Glucomannan Compound Gel. Int. J. Biol. Macromol. 2019, 133, 1156–1163. DOI: 10.1016/j.ijbiomac.2019.04.187.
  • Zhao, H.; Fei, X.; Cao, L.; Zhang, B.; Liu, X. Relation between the Particle Size and Release Characteristics of Aromatic Melamine Microcapsules in Functional Textile Applications. RSC Adv. 2019, 9(43), 25225–25231. DOI: 10.1039/C9RA05196A.
  • Foroughi, F.; Hassanzadeh-Tabrizi, S.; Bigham, A. In Situ Microemulsion Synthesis of Hydroxyapatite-MgFe2O4 Nanocomposite as a Magnetic Drug Delivery System. Mater. Sci. Eng. C. 2016, 68, 774–779. DOI: 10.1016/j.msec.2016.07.028.
  • Souza, J. M.; Caldas, A. L.; Tohidi, S. D.; Molina, J.; Souto, A. P.; Fangueiro, R.; Zille, A. Properties and Controlled Release of Chitosan Microencapsulated Limonene Oil. Rev. Bras. Farmacogn. 2014, 24, 691–698. DOI: 10.1016/j.bjp.2014.11.007.
  • Fan, R.; Sun, Y.; Li, B.; Yang, R.; Ma, W.; Sun, J. Preparation and Stability Investigation of Tamsulosin Hydrochloride Sustained Release Pellets Containing Acrylic Resin Polymers with Two Different Techniques. Asian J. Pharm. Sci. 2017, 12(2), 193–201. DOI: 10.1016/j.ajps.2016.09.003.
  • Dima, C.; Assadpour, E.; Dima, S.; Jafari, S. M. Bioavailability and Bioaccessibility of Food Bioactive Compounds; Overview and Assessment by in Vitro Methods. Compr. Rev. Food Sci. Food Saf. 2020, 19(6), 2862–2884. DOI: 10.1111/1541-4337.12623.
  • Chai, J.; Jiang, P.; Wang, P.; Jiang, Y.; Li, D.; Bao, W.; Liu, B.; Liu, B.; Zhao, L.; Norde, W. The Intelligent Delivery Systems for Bioactive Compounds in Foods: Physicochemical and Physiological Conditions, Absorption Mechanisms, Obstacles and Responsive Strategies. Trends Food Sci. Technol. 2018, 78, 144–154. DOI: 10.1016/j.tifs.2018.06.003.
  • Eratte, D.; Dowling, K.; Barrow, C. J.; Adhikari, B. Recent Advances in the Microencapsulation of Omega-3 Oil and Probiotic Bacteria through Complex Coacervation: A Review. Trends Food Sci. Technol. 2018, 71, 121–131. DOI: 10.1016/j.tifs.2017.10.014.
  • Gonçalves, A.; Estevinho, B. N.; Rocha, F. Methodologies for Simulation of Gastrointestinal Digestion of Different Controlled Delivery Systems and Further Uptake of Encapsulated Bioactive Compounds. Trends Food Sci. Technol. 2021. DOI: 10.1016/j.tifs.2021.06.007.
  • de Freitas Santos, P. D.; Rubio, F. T. V.; Da Silva, M. P.; Pinho, L. S.; Favaro-Trindade, C. S. Microencapsulation of Carotenoid-Rich Materials: A Review. Food Res. Int. 2021, 110571. DOI: 10.1016/j.foodres.2021.110571.
  • Santos, D. I.; Saraiva, J. M. A.; Vicente, A. A.; Moldão-Martins, M. Methods for Determining Bioavailability and Bioaccessibility of Bioactive Compounds and Nutrients. In Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds; Barba, F.J., Saraiva, J.M.A., Cravotto, G., Lorenzo, J.M., Eds.; Woodhead Publishing: Cambridge, England, 2019; pp. 23–54. DOI: 10.1016/B978-0-12-814174-8.00002-0.
  • Guo, Q.; Su, J.; Shu, X.; Yuan, F.; Mao, L.; Liu, J.; Gao, Y. Fabrication, Structural Characterization and Functional Attributes of Polysaccharide-Surfactant-Protein Ternary Complexes for Delivery of Curcumin. Food Chem. 2021, 337, 128019. DOI: 10.1016/j.foodchem.2020.128019.
  • Peanparkdee, M.; Yamauchi, R.; Iwamoto, S. Stability of Bioactive Compounds from Thai Riceberry Bran Extract Encapsulated within Gelatin Matrix during in Vitro Gastrointestinal Digestion. Colloids Surf. A. 2018, 546, 136–142. DOI: 10.1016/j.colsurfa.2018.03.021.
  • Wu, C.; Sun, J.; Jiang, H.; Li, Y.; Pang, J. Construction of Carboxymethyl Konjac Glucomannan/Chitosan Complex Nanogels as Potential Delivery Vehicles for Curcumin. Food Chem. 2021, 362, 130242. DOI: 10.1016/j.foodchem.2021.130242.
  • Jin, B.; Zhou, X.; Li, X.; Lin, W.; Chen, G.; Qiu, R. Self-Assembled Modified Soy Protein/Dextran Nanogel Induced by Ultrasonication as a Delivery Vehicle for Riboflavin. Molecules. 2016, 21(3), 282. DOI: 10.3390/molecules21030282.
  • Chew, S.-C.; Tan, C.-P.; Long, K.; Nyam, K.-L. In-Vitro Evaluation of Kenaf Seed Oil in Chitosan Coated-High Methoxyl Pectin-Alginate Microcapsules. Ind. Crop Prod. 2015, 76, 230–236. DOI: 10.1016/j.indcrop.2015.06.055.
  • Tan, C.; Feng, B.; Zhang, X.; Xia, W.; Xia, S. Biopolymer-Coated Liposomes by Electrostatic Adsorption of Chitosan (Chitosomes) as Novel Delivery Systems for Carotenoids. Food Hydrocoll. 2016, 52, 774–784. DOI: 10.1016/j.foodhyd.2015.08.016.
  • Li, X.-M.; Li, X.; Wu, Z.; Wang, Y.; Cheng, J.-S.; Wang, T.; Zhang, B. Chitosan Hydrochloride/ Carboxymethyl Starch Complex Nanogels Stabilized Pickering Emulsions for Oral Delivery of β-Carotene: Protection Effect and in Vitro Digestion Study. Food Chem. 2020, 315, 126288. DOI: 10.1016/j.foodchem.2020.126288.
  • Sebaaly, C.; Trifan, A.; Sieniawska, E.; Greige-Gerges, H. Chitosan-Coating Effect on the Characteristics of Liposomes: A Focus on Bioactive Compounds and Essential Oils: A Review. Processes. 2021, 9(3), 445. DOI: 10.3390/pr9030445.
  • Arpagaus, C.; Collenberg, A.; Rütti, D.; Assadpour, E.; Jafari, S. M. Nano Spray Drying for Encapsulation of Pharmaceuticals. Int. J. Pharm. 2018, 546(1–2), 194–214. DOI: 10.1016/j.ijpharm.2018.05.037.
  • Shishir, M. R. I.; Chen, W. Trends of Spray Drying: A Critical Review on Drying of Fruit and Vegetable Juices. Trends Food Sci. Technol. 2017, 65, 49–67. DOI: 10.1016/j.tifs.2017.05.006.
  • He, L.; Hu, J.; Deng, W. Preparation and Application of Flavor and Fragrance Capsules. Polym. Chem. 2018, 9(40), 4926–4946. DOI: 10.1039/C8PY00863A.
  • Chen, L.; Gnanaraj, C.; Arulselvan, P.; El-Seedi, H.; Teng, H. A. Review on Advanced Microencapsulation Technology to Enhance Bioavailability of Phenolic Compounds: Based on Its Activity in the Treatment of Type 2 Diabetes. Trends Food Sci. Technol. 2019, 85, 149–162. DOI: 10.1016/j.tifs.2018.11.026.
  • Pohlen, M.; Lavrič, Z.; Prestidge, C. Preparation, Physicochemical Characterisation and DoE Optimisation of a Spray-Dried Dry Emulsion Platform for Delivery of a Poorly Soluble Drug, Simvastatin. AAPS PharmSciTech. 2020, 21(4), 1–19. DOI: 10.1208/s12249-020-01651-x.
  • Kumar, C. G.; Sripada, S.; Poornachandra, Y. Status and Future Prospects of Fructooligosaccharides as Nutraceuticals. In Role of Materials Science in Food Bioengineering; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, Massachusetts, 2018; pp. 451–503. DOI: 10.1016/B978-0-12-811448-3.00014-0.
  • Bakry, A. M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M. Y.; Mousa, A.; Liang, L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Compr. Rev. Food Sci. Food Saf. 2016, 15(1), 143–182. DOI: 10.1111/1541-4337.12179.
  • Kumar, S. S.; Giridhar, P. Stabilization of Bioactive Betalain Pigment from Fruits of Basella Rubra L. Through Maltodextrin Encapsulation. Madridge J.Food. Tech. 2016, 1(1), 66–70. DOI:10.18689/mjft-1000111.
  • Zanoni, F.; Primiterra, M.; Angeli, N.; Zoccatelli, G. Microencapsulation by Spray-Drying of Polyphenols Extracted from Red Chicory and Red Cabbage: Effects on Stability and Color Properties. Food Chem. 2020, 307, 125535. DOI: 10.1016/j.foodchem.2019.125535.
  • Rajabi, H.; Ghorbani, M.; Jafari, S. M.; Mahoonak, A. S.; Rajabzadeh, G. Retention of Saffron Bioactive Components by Spray Drying Encapsulation Using Maltodextrin, Gum Arabic and Gelatin as Wall Materials. Food Hydrocoll. 2015, 51, 327–337. DOI: 10.1016/j.foodhyd.2015.05.033.
  • Souza, A. L.; Hidalgo-Chávez, D. W.; Pontes, S. M.; Gomes, F. S.; Cabral, L. M.; Tonon, R. V. Microencapsulation by Spray Drying of a Lycopene-Rich Tomato Concentrate: Characterization and Stability. LWT. 2018, 91, 286–292. DOI: 10.1016/j.lwt.2018.01.053.
  • Shen, Q.; Quek, S. Y. Microencapsulation of Astaxanthin with Blends of Milk Protein and Fiber by Spray Drying. J. Food Eng. 2014, 123, 165–171. DOI: 10.1016/j.jfoodeng.2013.09.002.
  • Ramakrishnan, Y.; Adzahan, N. M.; Yusof, Y. A.; Muhammad, K. Effect of Wall Materials on the Spray Drying Efficiency, Powder Properties and Stability of Bioactive Compounds in Tamarillo Juice Microencapsulation. Powder Technol. 2018, 328, 406–414. DOI: 10.1016/j.powtec.2017.12.018.
  • Nogueira, M. H.; Tavares, G. M.; Casanova, F.; Silva, C. R.; Rocha, J. C.; Stringheta, P. C.; Stephani, R.; Perrone, Í. T.; de Carvalho, A. F. Cross‐Linked Casein Micelle Used as Encapsulating Agent for Jaboticaba (Plinia Jaboticaba) Phenolic Compounds by Spray Drying. Int. J. Dairy Technol. 2020, 73(4), 765–770. DOI: 10.1111/1471-0307.12704.
  • Braber, N. V.; Vergara, L. D.; Rossi, Y. E.; Aminahuel, C. A.; Mauri, A. N.; Cavaglieri, L. R.; Montenegro, M. A. Effect of Microencapsulation in Whey Protein and Water-Soluble Chitosan Derivative on the Viability of the Probiotic Kluyveromyces Marxianus VM004 during Storage and in Simulated Gastrointestinal Conditions. LWT. 2020, 118, 108844. DOI: 10.1016/j.lwt.2019.108844.
  • Hewlings, S. J.; Kalman, D. S. Curcumin: A Review of Its Effects on Human Health. Foods. 2017, 6(10), 92. DOI: 10.3390/foods6100092.
  • Lacerda, E. C. Q.; de Araújo Calado, V. M.; Monteiro, M.; Finotelli, P. V.; Torres, A. G.; Perrone, D. Starch, Inulin and Maltodextrin as Encapsulating Agents Affect the Quality and Stability of Jussara Pulp Microparticles. Carbohydr. Polym. 2016, 151, 500–510. DOI: 10.1016/j.carbpol.2016.05.093.
  • Nayak, A. K.; Pal, D. Functionalization of Tamarind Gum for Drug Delivery. In Functional Biopolymers; Thakur, V., Thakur, M., Eds.; Springer International Publishing: Manhattan, New York City, 2018; pp 25–56. DOI: 10.1007/978-3-319-66417-0_2.
  • Esquivel, P.;. Betalains. In Handbook on Natural Pigments in Food and Beverages; Carle, R., Schweiggert, R.M., Eds.; Woodhead Publishing: Cambridge, England, 2016; pp. 81–99. DOI: 10.1016/B978-0-08-100371-8.00004-X
  • Rahimi, P.; Abedimanesh, S.; Mesbah-Namin, S. A.; Ostadrahimi, A. Betalains, the Nature-Inspired Pigments, in Health and Diseases. Crit. Rev. Food Sci. Nutr. 2019, 59(18), 2949–2978. DOI: 10.1080/10408398.2018.1479830.
  • Zhu, F.;. Anthocyanins in Cereals: Composition and Health Effects. Food Res. Int. 2018, 109, 232–249. DOI: 10.1016/j.foodres.2018.04.015.
  • Ge, L.; Zhu, M.; Xu, Y.; Li, X.; Li, D.; Mu, C. Development of Antimicrobial and Controlled Biodegradable Gelatin-Based Edible Films Containing Nisin and Amino-Functionalized Montmorillonite. Food Bioprocess. Technol. 2017, 10(9), 1727–1736. DOI: 10.1007/s11947-017-1941-0.
  • Mozos, I.; Stoian, D.; Caraba, A.; Malainer, C.; Horbańczuk, J. O.; Atanasov, A. G. Lycopene and Vascular Health. Front. Pharmacol. 2018, 9, 521. DOI: 10.3389/fphar.2018.00521.
  • Davinelli, S.; Nielsen, M. E.; Scapagnini, G. Astaxanthin in Skin Health, Repair, and Disease: A Comprehensive Review. Nutrients. 2018, 10(4), 522. DOI: 10.3390/nu10040522.
  • Yuri, T.; Yoshizawa, K.; Emoto, Y.; Kinoshita, Y.; Yuki, M.; Tsubura, A. Effects of Dietary Xanthophylls, Canthaxanthin and Astaxanthin on N-Methyl-N-Nitrosourea-Induced Rat Mammary Carcinogenesis. Vivo. 2016, 30(6), 795–800. DOI: 10.21873/invivo.10996.
  • Linke, A.; Linke, T.; Kohlus, R. Contribution of the Internal and External Oxygen to the Oxidation of Microencapsulated Fish Oil. Eur. J. Lipid Sci. Technol. 2020, 122(8), 1900381. DOI: 10.1002/ejlt.201900381.
  • Sebastião, I. B.; Bhatnagar, B.; Tchessalov, S.; Ohtake, S.; Plitzko, M.; Luy, B.; Alexeenko, A. Bulk Dynamic Spray Freeze-Drying Part 2: Model-Based Parametric Study for Spray-Freezing Process Characterization. J. Pharm. Sci. 2019, 108(6), 2075–2085. DOI: 10.1016/j.xphs.2019.01.011.
  • Cakrawati, D.; Handayani, M.; Noor, E.; Sunarti, T. Morfology and Stability of Microencapsulation of Limonin Using Maltodestrin: Morfology and Stability. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 180, 012295. DOI: 10.1088/1757-899X/180/1/012295.
  • Klettenhammer, S.; Ferrentino, G.; Morozova, K.; Scampicchio, M. Novel Technologies Based on Supercritical Fluids for the Encapsulation of Food Grade Bioactive Compounds. Foods. 2020, 9(10), 1395. DOI: 10.3390/foods9101395.
  • Sousdaleff, M.; Baesso, M. L.; Neto, A. M.; Nogueira, A. C.; Marcolino, V. A.; Matioli, G. Microencapsulation by Freeze-Drying of Potassium Norbixinate and Curcumin with Maltodextrin: Stability, Solubility, and Food Application. J. Agric. Food Chem. 2013, 61(4), 955–965. DOI: 10.1021/jf304047g.
  • Rezende, Y. R. R. S.; Nogueira, J. P.; Narain, N. Microencapsulation of Extracts of Bioactive Compounds Obtained from Acerola (Malpighia Emarginata DC) Pulp and Residue by Spray and Freeze Drying: Chemical, Morphological and Chemometric Characterization. Food Chem. 2018, 254, 281–291. DOI: 10.1016/j.foodchem.2018.02.026.
  • Jafari, S.-M.; Mahdavi-Khazaei, K.; Hemmati-Kakhki, A. Microencapsulation of Saffron Petal Anthocyanins with Cress Seed Gum Compared with Arabic Gum through Freeze Drying. Carbohydr. Polym. 2016, 140, 20–25. DOI: 10.1016/j.carbpol.2015.11.079.
  • González-Ortega, R.; Faieta, M.; Di Mattia, C. D.; Valbonetti, L.; Pittia, P. Microencapsulation of Olive Leaf Extract by Freeze-Drying: Effect of Carrier Composition on Process Efficiency and Technological Properties of the Powders. J. Food Eng. 2020, 285, 110089. DOI: 10.1016/j.jfoodeng.2020.110089.
  • Cakrawati, D.; Handayani, M. N.; Noor, E.; Sunarti, T. C. Microencapsulation by Freeze Drying of Limonin Using β-Cyclodextrin and Its Stability in Different pH Solution. J.Eng. Sci. Technol. 2018, 13, 2287–2298.
  • Gu, M.; Sun, J.; Qi, C.; Cai, X.; Goulette, T.; Song, M.; You, X.; Sela, D. A.; Xiao, H. The Gastrointestinal Fate of Limonin and Its Effect on Gut Microbiota in Mice. Food Funct. 2019, 10(9), 5521–5530. DOI: 10.1039/C9FO01274E.
  • Pellicer, J. A.; Fortea, M. I.; Trabal, J.; Rodríguez-López, M. I.; Gabaldón, J. A.; Núñez-Delicado, E. Stability of Microencapsulated Strawberry Flavour by Spray Drying, Freeze Drying and Fluid Bed. Powder Technol. 2019, 347, 179–185. DOI: 10.1016/j.powtec.2019.03.010.
  • Pech-Canul, A. D. L. C.; Ortega, D.; García-Triana, A.; González-Silva, N.; Solis-Oviedo, R. L. A Brief Review of Edible Coating Materials for the Microencapsulation of Probiotics. Coatings. 2020, 10(3), 197. DOI: 10.3390/coatings10030197.
  • Coronel-Aguilera, C. P.; San Martín-González, M. F. Encapsulation of Spray Dried β-Carotene Emulsion by Fluidized Bed Coating Technology. LWT. 2015, 62(1), 187–193. DOI: 10.1016/j.lwt.2014.12.036.
  • Gangurde, A. B.; Fule, R. A.; Javeer, S. D.; Patole, R. K.; Pawar, J. N.; Amin, P. D. Microencapsulation Using Aqueous Dispersion of Lipid Matrix by Fluidized Bed Processing Technique for Stabilization of Choline Salt. J.Pharm. Investig. 2015, 45(2), 209–221. DOI:10.1007/s40005-014-0167-7.
  • Bhutani, U.; Laha, A.; Mitra, K.; Majumdar, S. Sodium Alginate and Gelatin Hydrogels: Viscosity Effect on Hydrophobic Drug Release. Mater. Lett. 2016, 164, 76–79. DOI: 10.1016/j.matlet.2015.10.114.
  • Smolders, L.; De Wit, N. J.; Balvers, M. G.; Obeid, R.; Vissers, M. M.; Esser, D. Natural Choline from Egg Yolk Phospholipids Is More Efficiently Absorbed Compared with Choline Bitartrate; Outcomes of a Randomized Trial in Healthy Adults. Nutrients. 2019, 11(11), 2758. DOI: 10.3390/nu11112758.
  • Castro, N.; Durrieu, V.; Raynaud, C.; Rouilly, A.; Rigal, L.; Quellet, C. Melt Extrusion Encapsulation of Flavors: A Review. Polym. Rev. 2016, 56(1), 137–186. DOI: 10.1080/15583724.2015.1091776.
  • Trojanowska, A.; Nogalska, A.; Valls, R. G.; Giamberini, M.; Tylkowski, B. 6. Technological Solutions for Encapsulation. In Polymer Engineering. Tylkowski, B., Wieszczycka, K., Jastrzab, R., Eds.; Berlin, Boston: De Gruyter, 2017; pp 171–202. doi: 10.1515/9783110469745-006.
  • Chew, S.-C.; Nyam, K.-L. Microencapsulation of Kenaf Seed Oil by Co-Extrusion Technology. J. Food Eng. 2016, 175, 43–50. DOI: 10.1016/j.jfoodeng.2015.12.002.
  • Arriola, N. D. A.; de Medeiros, P. M.; Prudencio, E. S.; Müller, C. M. O.; Amboni, R. D. D. M. C. Encapsulation of Aqueous Leaf Extract of Stevia Rebaudiana Bertoni with Sodium Alginate and Its Impact on Phenolic Content. Food Biosci. 2016, 13, 32–40. DOI: 10.1016/j.fbio.2015.12.001.
  • Suzery, M.; Sutanto, H.; Soetrisnanto, D.; Majid, D.; Setyawan, D.; Azizah, N. The Improvement of Phycocyanin Stability Extracted from Spirulina Sp Using Extrusion Encapsulation Technique. In AIP Conference Proceedings, Semarang, Indonesia, September 29-30, 2015; Nur, H., Budiman, A., Iskandar, F., Ismadji, S, Eds.; AIP Publishing: College Park, Maryland, 2015; pp 030011. DOI: 10.1063/1.4938296.
  • Chang, D.; Hayat, K.; Abbas, S.; Zhang, X. Ascorbic Acid Encapsulation in a Glassy Carbohydrate Matrix via Hot Melt Extrusion: Preparation and Characterization. Food Sci. Technol. 2019, 39(3), 660–666. DOI: 10.1590/fst.02918.
  • Nami, Y.; Lornezhad, G.; Kiani, A.; Abdullah, N.; Haghshenas, B. Alginate-Persian Gum-Prebiotics Microencapsulation Impacts on the Survival Rate of Lactococcus Lactis ABRIINW-N19 in Orange Juice. LWT. 2020, 124, 109190. DOI: 10.1016/j.lwt.2020.109190.
  • Meena, P.; Gotyal, B.; Satpathy, S. Mesta Yellow Vein Mosaic Virus: Application of Loop-Mediated Isothermal Amplification Method to Study Efficiency of Acquisition, Retention and Transmission by Bemisia Tabaci (Hemiptera: Aleyrodidae) in Kenaf. Int. J.Trop. Insect Sci. 2021, 41(2), 1277–1284. DOI:10.1007/s42690-020-00319-0.
  • Chew, S.-C.; Tan, C.-P.; Tan, C.-H.; Nyam, K.-L. In-Vitro Bioaccessibility of Spray Dried Refined Kenaf (Hibiscus Cannabinus) Seed Oil Applied in Coffee Drink. J. Food Sci. Technol. 2020, 57(7), 2507–2515. DOI: 10.1007/s13197-020-04286-9.
  • Chew, S.-C.; Nyam, K.-L. Oxidative Stability of Microencapsulated Kenaf Seed Oil Using Co-Extrusion Technology. J. Am. Oil Chem. Soc. 2016, 93(4), 607–615. DOI: 10.1007/s11746-016-2794-9.
  • Pattnaik, M.; Pandey, P.; Martin, G. J.; Mishra, H. N.; Ashokkumar, M. Innovative Technologies for Extraction and Microencapsulation of Bioactives from Plant-Based Food Waste and Their Applications in Functional Food Development. Foods. 2021, 10(2), 279. DOI: 10.3390/foods10020279.
  • Gómez, B.; Barba, F. J.; Domínguez, R.; Putnik, P.; Kovačević, D. B.; Pateiro, M.; Toldrá, F.; Lorenzo, J. M. Microencapsulation of Antioxidant Compounds through Innovative Technologies and Its Specific Application in Meat Processing. Trends Food Sci. Technol. 2018, 82, 135–147. DOI: 10.1016/j.tifs.2018.10.006.
  • Klettenhammer, S.; Ferrentino, G.; Zendehbad, H. S.; Morozova, K.; Scampicchio, M. Microencapsulation of Linseed Oil Enriched with Carrot Pomace Extracts Using Particles from Gas Saturated Solutions (PGSS) Process. J. Food Eng. 2021, 110746. DOI: 10.1016/j.jfoodeng.2021.110746.
  • Prieto, C.; Calvo, L. The Encapsulation of Low Viscosity Omega-3 Rich Fish Oil in Polycaprolactone by Supercritical Fluid Extraction of Emulsions. J. Supercrit. Fluids. 2017, 128, 227–234. DOI: 10.1016/j.supflu.2017.06.003.
  • Lee, W. J.; Tan, C. P.; Sulaiman, R.; Hee, Y. Y.; Chong, G. H. Storage Stability and Degradation Kinetics of Bioactive Compounds in Red Palm Oil Microcapsules Produced with Solution-Enhanced Dispersion by Supercritical Carbon Dioxide: A Comparison with the Spray-Drying Method. Food Chem. 2020, 304, 125427. DOI: 10.1016/j.foodchem.2019.125427.
  • Andrade, K. S.; Aguiar, G. P. S.; Rebelatto, E. A.; Lanza, M.; Oliveira, J. V.; Ferreira, S. R. Encapsulation of Pink Pepper Extract by Seds Technique: Phase Behavior Data and Process Parameters. J. Supercrit. Fluids. 2020, 161, 104822. DOI: 10.1016/j.supflu.2020.104822.
  • Melgosa, R.; Benito-Román, Ó.; Sanz, M. T.; de Paz, E.; Beltrán, S. Omega–3 Encapsulation by Pgss-Drying and Conventional Drying Methods. Particle Characterization and Oxidative Stability. Food Chem. 2019, 270, 138–148. DOI: 10.1016/j.foodchem.2018.07.082.
  • Akolade, J. O.; Nasir-Naeem, K. O.; Swanepoel, A.; Yusuf, A. A.; Balogun, M.; Labuschagne, P. CO2-Assisted Production of Polyethylene Glycol/Lauric Acid Microparticles for Extended Release of Citrus Aurantifolia Essential Oil. J. CO2 Util. 2020, 38, 375–384. DOI: 10.1016/j.jcou.2020.02.014.
  • Prieto, C.; Calvo, L. Supercritical Fluid Extraction of Emulsions to Nanoencapsulate Vitamin E in Polycaprolactone. J. Supercrit. Fluids. 2017, 119, 274–282. DOI: 10.1016/j.supflu.2016.10.004.
  • Reis, P. M. L.; Mezzomo, N.; Aguiar, G. P. S.; Hotza,D.; Ribeiro, D. H. B.; Ferreira, S. R. S.; Hense, H. Formation, Stability and Antimicrobial Activity of Laurel Leaves Essential Oil (Laurus Nobilis L.) Particles in Suspension Obtained by SFEE. J. Supercrit. Fluids. 2020, 166, 105032. DOI: 10.1016/j.supflu.2020.105032.
  • Kankala, R. K.; Zhang, Y. S.; Wang, S. B.; Lee, C. H.; Chen, A. Z. Supercritical Fluid Technology: An Emphasis on Drug Delivery and Related Biomedical Applications. Adv. Healthc. Mater. 2017, 6(16), 1700433. DOI:10.1002/adhm.201700433.
  • Miao, H.; Chen, Z.; Xu, W.; Wang, W.; Song, Y.; Wang, Z. Preparation and Characterization of Naringenin Microparticles via a Supercritical Anti-Solvent Process. J. Supercrit. Fluids. 2018, 131, 19–25. DOI: 10.1016/j.supflu.2017.08.013.
  • Chafidz, A.; Jauhary, T.; Kaavessina, M.; Sumarno, S.; Latief, F. H. Formation of Fine Particles Using Supercritical Fluid (SCF) Process: Short Review. Commun. Sci. Technol. 2018, 3(2), 57–63. DOI:10.21924/cst.3.2.2018.101.
  • Lévai, G.; Albarelli, J. Q.; Santos, D. T.; Meireles, M. A. A.; Martín, Á.; Rodríguez-Rojo, S.; Cocero, M. J. Quercetin Loaded Particles Production by Means of Supercritical Fluid Extraction of Emulsions: Process Scale-Upstudy and Thermo-Economic Evaluation. Food Bioprod. Process. 2017, 103, 27–38. DOI: 10.1016/j.fbp.2017.02.008.
  • Klettenhammer, S.; Ferrentino, G.; Zendehbad, S. H.; Morozova, K.; Scampicchio, M. Bioactive Compounds from Carrot Pomace as Natural Antioxidants to Enhance the Oxidative Stability of Linseed Oil Encapsulated by Particles from Gas Saturated Solutions Technique. Chem. Eng. Trans. 2021, 87, 145–150. DOI: 10.3303/CET2187025.
  • Haq, M.; Chun, B.-S. Microencapsulation of Omega-3 Polyunsaturated Fatty Acids and Astaxanthin-Rich Salmon Oil Using Particles from Gas Saturated Solutions (PGSS) Process. LWT. 2018, 92, 523–530. DOI: 10.1016/j.lwt.2018.03.009.
  • Ndayishimiye, J.; Chun, B. S. Formation, Characterization and Release Behavior of Citrus Oil-Polymer Microparticles Using Particles from Gas Saturated Solutions (PGSS) Process. J. Ind. Eng. Chem. 2018, 63, 201–207. DOI: 10.1016/j.jiec.2018.02.016.
  • Getachew, A. T.; Chun, B.-S. Optimization of Coffee Oil Flavor Encapsulation Using Response Surface Methodology. LWT. 2016, 70, 126–134. DOI: 10.1016/j.lwt.2016.02.025.
  • Pehlivan, F. E.;. Vitamin C: An Antioxidant Agent. In Vitamin C; Hamza, A., Ed.; IntechOpen: London, 2017; pp 23–35. DOI: 10.5772/intechopen.69660.
  • Tirado, D. F.; Latini, A.; Calvo, L. The Encapsulation of Hydroxytyrosol-Rich Olive Oil in Eudraguard® Protect via Supercritical Fluid Extraction of Emulsions. J. Food Eng. 2021, 290, 110215. DOI: 10.1016/j.jfoodeng.2020.110215.
  • Karuppuswamy, P.; Venugopal, J. R.; Navaneethan, B.; Laiva, A. L.; Ramakrishna, S. Polycaprolactone Nanofibers for the Controlled Release of Tetracycline Hydrochloride. Mater. Lett. 2015, 141, 180–186. DOI: 10.1016/j.matlet.2014.11.044.
  • Cruz, P. N.; Reis, P. M. L.; Ferreira, S. R.; Masson, M. L.; Corazza, M. L. Encapsulation of Yacon (Smallanthus Sonchifolius) Leaf Extract by Supercritical Fluid Extraction of Emulsions. J. Supercrit. Fluids. 2020, 160, 104815. DOI: 10.1016/j.supflu.2020.104815.
  • Dong, C.; Li, Z.; Liu, F.; Wei, W.; Wang, X.; Liu, Z. Effects of Supercritical Fluid Parameters and Emulsion Formulation on the Production of Quercetin Nanocapsules by Supercritical Fluid Extraction of Emulsion. Chem. Eng. Sci. 2019, 205, 190–200. DOI: 10.1016/j.ces.2019.03.042.
  • Shekarforoush, E.; Mendes, A. C.; Baj, V.; Beeren, S. R.; Chronakis, I. S. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices. Molecules. 2017, 22(10), 1708. DOI: 10.3390/molecules22101708.
  • Manuel, C. B. J.; Jesús, V. G. L.; Aracely, S. M. Electrospinning for Drug Delivery Systems: Drug Incorporation Techniques. In Electrospinning-Material, Techniques, and Biomedical Applications; Haider, S., Haider, A., Eds.; IntechOpen: London, 2016; pp 14. DOI: 10.5772/65939.
  • Wen, P.; Zong, M.-H.; Linhardt, R. J.; Feng, K.; Wu, H. Electrospinning: A Novel Nano-Encapsulation Approach for Bioactive Compounds. Trends Food Sci. Technol. 2017, 70, 56–68. DOI: 10.1016/j.tifs.2017.10.009.
  • Chen, S.; Liu, B.; Carlson, M. A.; Gombart, A. F.; Reilly, D. A.; Xie, J. Recent Advances in Electrospun Nanofibers for Wound Healing. Nanomedicine. 2017, 12(11), 1335–1352. DOI: 10.2217/nnm-2017-0017.
  • Korycka, P.; Mirek, A.; Kramek-Romanowska, K.; Grzeczkowicz, M.; Lewińska, D. Effect of Electrospinning Process Variables on the Size of Polymer Fibers and Bead-on-String Structures Established with a 23 Factorial Design. Beilstein J. Nanotechnol. 2018, 9(1), 2466–2478. DOI: 10.3762/bjnano.9.231.
  • Lasprilla-Botero, J.; Álvarez-Láinez, M.; Lagaron, J. The Influence of Electrospinning Parameters and Solvent Selection on the Morphology and Diameter of Polyimide Nanofibers. Mater. Today Commun. 2018, 14, 1–9. DOI: 10.1016/j.mtcomm.2017.12.003.
  • Coelho, S. C.; Laget, S.; Benaut, P.; Rocha, F.; Estevinho, B. N. A New Approach to the Production of Zein Microstructures with Vitamin B12, by Electrospinning and Spray Drying Techniques. Powder Technol. 2021, 392, 47–57. DOI: 10.1016/j.powtec.2021.06.056.
  • Yang, H.; Wen, P.; Feng, K.; Zong, M. H.; Lou, W. Y.; Wu, H. Encapsulation of Fish Oil in a Coaxial Electrospun Nanofibrous Mat and Its Properties. RSC Adv. 2017, 7(24), 14939–14946. DOI: 10.1039/C7RA00051K.
  • Wang, P.; Li, Y.; Zhang, C.; Feng, F.; Zhang, H. Sequential Electrospinning of Multilayer Ethylcellulose/Gelatin/Ethylcellulose Nanofibrous Film for Sustained Release of Curcumin. Food Chem. 2020, 308, 125599. DOI: 10.1016/j.foodchem.2019.125599.
  • Tang, Y.; Zhou, Y.; Lan, X.; Huang, D.; Luo, T.; Ji, J.; Mafang, Z.; Miao, X.; Wang, H.; Wang, W. Electrospun Gelatin Nanofibers Encapsulated with Peppermint and Chamomile Essential Oils as Potential Edible Packaging. J. Agric. Food Chem. 2019, 67(8), 2227–2234. DOI: 10.1021/acs.jafc.8b06226.
  • López de Dicastillo, C.; López‐Carballo, G.; Gavara, R.; Muriel Galet, V.; Guarda, A.; Galotto, M. J. Improving Polyphenolic Thermal Stability of Aristotelia Chilensis Fruit Extract by Encapsulation within Electrospun Cyclodextrin Capsules. J. Food Process. Preserv. 2019, 43(8), e14044. DOI: 10.1111/jfpp.14044.
  • Ceylan, Z.; Yaman, M.; Sağdıç, O.; Karabulut, E.; Yilmaz, M. T. Effect of Electrospun Thymol-Loaded Nanofiber Coating on Vitamin B Profile of Gilthead Sea Bream Fillets (Sparus Aurata). LWT. 2018, 98, 162–169. DOI: 10.1016/j.lwt.2018.08.027.
  • Mahmud, M. M.; Zaman, S.; Perveen, A.; Jahan, R. A.; Islam, M. F.; Arafat, M. T. Controlled Release of Curcumin from Electrospun Fiber Mats with Antibacterial Activity. J. Drug Deliv. Sci. Technol. 2020, 55, 101386. DOI: 10.1016/j.jddst.2019.101386.
  • de Souza, E. J. D.; Kringel, D. H.; Dias, A. R. G.; Da Rosa Zavareze, E. Polysaccharides as Wall Material for the Encapsulation of Essential Oils by Electrospun Technique. Carbohydr. Polym. 2021, 265, 118068. DOI: 10.1016/j.carbpol.2021.118068.
  • El-Naggar, M. E.; El-Newehy, M. H.; Aldalbahi, A.; Salem, W. M.; Khattab, T. A. Immobilization of Anthocyanin Extract from Red-Cabbage into Electrospun Polyvinyl Alcohol Nanofibers for Colorimetric Selective Detection of Ferric Ions. J. Environ. Chem. Eng. 2021, 9(2), 105072. DOI: 10.1016/j.jece.2021.105072.
  • Aydogdu, A.; Sumnu, G.; Sahin, S. Fabrication of Gallic Acid Loaded Hydroxypropyl Methylcellulose Nanofibers by Electrospinning Technique as Active Packaging Material. Carbohydr. Polym. 2019, 208, 241–250. DOI: 10.1016/j.carbpol.2018.12.065.
  • Ma, J.; Xu, C.; Yu, H.; Feng, Z.; Yu, W.; Gu, L.; Liu, Z.; Chen, L.; Jiang, Z.; Hou, J. Electro-Encapsulation of Probiotics in Gum Arabic-Pullulan Blend Nanofibres Using Electrospinning Technology. Food Hydrocoll. 2021, 111, 106381. DOI: 10.1016/j.foodhyd.2020.106381.
  • Taktak, W.; Nasri, R.; López-Rubio, A.; Chentir, I.; Gómez-Mascaraque, L. G.; Boughriba, S.; Nasri, M.; Karra-Chaâbouni, M. Design and Characterization of Novel Ecofriendly European Fish Eel Gelatin-Based Electrospun Microfibers Applied for Fish Oil Encapsulation. Process Biochem. 2021, 106, 10–19. DOI: 10.1016/j.procbio.2021.03.031.
  • Duman, D.; Karadag, A. Inulin Added Electrospun Composite Nanofibres by Electrospinning for the Encapsulation of Probiotics: Characterisation and Assessment of Viability during Storage and Simulated Gastrointestinal Digestion. Int. J. Food Sci. 2021, 56(2), 927–935. DOI: 10.1111/ijfs.14744.
  • Sarabandi, K.; Mahoonak, A. S.; Hamishekar, H.; Ghorbani, M.; Jafari, S. M. Microencapsulation of Casein Hydrolysates: Physicochemical, Antioxidant and Microstructure Properties. J. Food Eng. 2018, 237, 86–95. DOI: 10.1016/j.jfoodeng.2018.05.036.
  • Moghadam, R. M.; Ariaii, P.; Ahmady, M. The Effect of Microencapsulated Extract of Pennyroyal (Mentha Pulegium. L) on the Physicochemical, Sensory, and Viability of Probiotic Bacteria in Yogurt. J. Food Meas. Charact. 2021, 15(3), 2625–2636. DOI: 10.1007/s11694-021-00849-2.
  • Narayanan, R.;. Incorporation of Microencapsulated Probiotic Lactic Acid Bacteria in Yoghurt. Asian J.Dairy Food Res. 2020, 9(3).
  • Hamza, A.; Mustafa, Ç. Ready to Drink Iced Teas from Microencapsulated Spearmint (Mentha Spicata L.) And Peppermint (Mentha Piperita L.) Extracts: Physicochemical, Bioactive and Sensory Characterization. J. Food Meas. Charact. 2020, 14(3), 1366–1375. DOI: 10.1007/s11694-020-00386-4.
  • Minh, N. P.; Nhan, N. P. T.; Han, K. T. N.; Ngan, N. X.; My, S. T. K.; Hien, T. M. Microencapsulation of Fallopia Multiflora for Spray Drying of Instant Herbal Tea. J.Pharm. Sci. Res. 2019, 11(4), 1406–1409.
  • Sharayei, P.; Azarpazhooh, E.; Ramaswamy, H. S. Effect of Microencapsulation on Antioxidant and Antifungal Properties of Aqueous Extract of Pomegranate Peel. J. Food Sci. Technol. 2020, 57(2), 723–733. DOI: 10.1007/s13197-019-04105-w.
  • Souza, M.; Mesquita, A.; Veríssimo, C.; Grosso, C.; Converti, A.; Maciel, M. I. Microencapsulation by Spray Drying of a Functional Product with Mixed Juice of Acerola and Ciriguela Fruits Containing Three Probiotic Lactobacilli. Drying Technol. 2020, 1–11. DOI: 10.1080/07373937.2020.1862182.
  • Zen, C. K.; Tiepo, C. B. V.; Da Silva, R. V.; Reinehr, C. O.; Gutkoski, L. C.; Oro, T.; Colla, L. M. Development of Functional Pasta with Microencapsulated Spirulina: Technological and Sensorial Effects. J. Sci. Food Agric. 2020, 100(5), 2018–2026. DOI: 10.1002/jsfa.10219.
  • Benucci, I.; Cecchi, T.; Lombardelli, C.; Maresca, D.; Mauriello, G.; Esti, M. Novel Microencapsulated Yeast for the Primary Fermentation of Green Beer: Kinetic Behavior, Volatiles and Sensory Profile. Food Chem. 2021, 340, 127900. DOI: 10.1016/j.foodchem.2020.127900.
  • De Prisco, A.; Maresca, D.; Ongeng, D.; Mauriello, G. Microencapsulation by Vibrating Technology of the Probiotic Strain Lactobacillus Reuteri DSM 17938 to Enhance Its Survival in Foods and in Gastrointestinal Environment. LWT. 2015, 61(2), 452–462. DOI: 10.1016/j.lwt.2014.12.011.
  • Ban, Z.; Zhang, J.; Li, L.; Luo, Z.; Wang, Y.; Yuan, Q.; Zhou, B.; Liu, H. Ginger Essential Oil-Based Microencapsulation as an Efficient Delivery System for the Improvement of Jujube (Ziziphus Jujuba Mill.) Fruit Quality. Food Chem. 2020, 306, 125628. DOI: 10.1016/j.foodchem.2019.125628.
  • Vargas-Ramella, M.; Pateiro, M.; Barba, F. J.; Franco, D.; Campagnol, P. C.; Munekata, P. E.; Tomasevic, I.; Domínguez, R.; Lorenzo, J. M. Microencapsulation of Healthier Oils to Enhance the Physicochemical and Nutritional Properties of Deer Pâté. LWT. 2020, 125, 109223. DOI: 10.1016/j.lwt.2020.109223.
  • Pérez‐Palacios, T.; Ruiz‐Carrascal, J.; Jiménez‐Martín, E.; Solomando, J. C.; Antequera, T. Improving the Lipid Profile of Ready‐to‐Cook Meat Products by Addition of Omega‐3 Microcapsules: Effect on Oxidation and Sensory Analysis. J. Sci. Food Agric. 2018, 98(14), 5302–5312. DOI: 10.1002/jsfa.9069.
  • Aquilani, C.; Pérez-Palacios, T.; Sirtori, F.; Jiménez-Martín, E.; Antequera, T.; Franci, O.; Acciaioli, A.; Bozzi, R.; Pugliese, C. Enrichment of Cinta Senese Burgers with Omega-3 Fatty Acids. Effect of Type of Addition and Storage Conditions on Quality Characteristics. Grasas Aceites. 2018, 69(1), e235–e235. DOI: 10.3989/gya.0671171.
  • Heck, R. T.; Lorenzo, J. M.; Dos Santos, B. A.; Cichoski, A. J.; de Menezes, C. R.; Campagnol, P. C. B. Microencapsulation of Healthier Oils: An Efficient Strategy to Improve the Lipid Profile of Meat Products. Curr. Opin. Food Sci. 2021, 40, 6–12. DOI: 10.1016/j.cofs.2020.04.010.
  • Solomando, J. C.; Antequera, T.; Perez-Palacios, T. Evaluating the Use of Fish Oil Microcapsules as Omega-3 Vehicle in Cooked and Dry-Cured Sausages as Affected by Their Processing, Storage and Cooking. Meat Sci. 2020, 162, 108031. DOI: 10.1016/j.meatsci.2019.108031.
  • Veršič, R. J.;. The Economics of Microencapsulation in the Food Industry. In Microencapsulation in the Food Industry; Gaonkar, A.G., Vasisht, N., Khare, A.R., Sobel, R., Eds.; Academic Press: Cambridge, Massachusetts, 2014; pp 409–417. DOI: 10.1016/B978-0-12-404568-2.00032-7.
  • Arenas-Jal, M.; Suñé-Negre, J.; García-Montoya, E. An Overview of Microencapsulation in the Food Industry: Opportunities, Challenges, and Innovations. Eur. Food Res. Technol. 2020, 246(7), 1371–1382. DOI: 10.1007/s00217-020-03496-x.
  • Strobel, S. A.; Knowles, L.; Nitin, N.; Scher, H. B.; Jeoh, T. Comparative Technoeconomic Process Analysis of Industrial-Scale Microencapsulation of Bioactives in Cross-Linked Alginate. J. Food Eng. 2020, 266, 109695. DOI: 10.1016/j.jfoodeng.2019.109695.
  • Labuschagne, P.;. Impact of Wall Material Physicochemical Characteristics on the Stability of Encapsulated Phytochemicals: A Review. Food Res. Int. 2018, 107, 227–247. DOI: 10.1016/j.foodres.2018.02.026.
  • Sakulnarmrat, K.; Wongsrikaew, D.; Konczak, I. Microencapsulation of Red Cabbage Anthocyanin-Rich Extract by Drum Drying Technique. LWT. 2021, 137, 110473. DOI: 10.1016/j.lwt.2020.110473.
  • Rokka, S.; Rantamäki, P. Protecting Probiotic Bacteria by Microencapsulation: Challenges for Industrial Applications. Eur. Food Res. Technol. 2010, 231(1), 1–12. DOI: 10.1007/s00217-010-1246-2.
  • Pudziuvelyte, L.; Marksa, M.; Sosnowska, K.; Winnicka, K.; Morkuniene, R.; Bernatoniene, J. Freeze-Drying Technique for Microencapsulation of Elsholtzia Ciliata Ethanolic Extract Using Different Coating Materials. Molecules. 2020, 25(9), 2237. DOI: 10.3390/molecules25092237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.