411
Views
1
CrossRef citations to date
0
Altmetric
Review

Ultrasound-Assisted Extraction in Analytical Applications for Fish and Aquatic Living Resources, a Review

, &

References

  • Jinadasa, B. K. K. K.; Chathurika, G. S.; Jayaweera, C. D. Jayasinghe, G. D. T. M. Mercury and Cadmium in Swordfish and Yellowfin Tuna and Health Risk Assessment for Sri Lankan Consumers. Food Addit. Contam. B. 2018, 1–6. DOI: 10.1080/19393210.2018.1551247.
  • Fu, L.; Wang, C.; Zhu, Y.; Wang, Y. Seafood Allergy: Occurrence, Mechanisms and Measures. Trends Food Sci. Technol. 2019, 88, 80–92. DOI: 10.1016/j.tifs.2019.03.025.
  • FAO The State of World Fisheries and Aquaculture 2018‐Meeting the Sustainable Development Goals; Rome, Italy: Licence: CC BY-NC-SA 3.0 IGO, 2018.
  • Pal, G. K.; Suresh, P. V. Sustainable Valorisation of Seafood By-products: Recovery of Collagen and Development of Collagen-based Novel Functional Food Ingredients. Innovative Food Sci. Emerg. Technol. 2016, 37, 201–215. DOI: 10.1016/j.ifset.2016.03.015.
  • Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications . A Review. Ultrason. Sonochem. 2017, 34, 540–560. DOI: 10.1016/j.ultsonch.2016.06.035.
  • Wu, T. Y.; Guo, N.; Teh, C. Y.; Hay, J. X. W. Advances in Ultrasound Technology for Environmental Remediation. Springer Science & Business Media. 2012. DOI: 10.1007/978-94-007-5533-8.
  • Soria, A. C.; Villamiel, M. Effect of Ultrasound on the Technological Properties and Bioactivity of Food: A Review. Trends Food Sci. Technol. 2010, 21(7), 323–331. DOI: 10.1016/j.tifs.2010.04.003.
  • Santos, H. M.; Capelo, J. L. Trends in Ultrasonic-based Equipment for Analytical Sample Treatment. Talanta. 2007, 73, 795–802. DOI: 10.1016/j.talanta.2007.05.039.
  • Capelo-Martínez, J. L.;, Ultrasound in Chemistry: Analytical Applications, John Wiley & Sons, 2009.
  • Tadeo, J. L.; Sánchez-Brunete, C.; Albero, B.; García-Valcárcel, A. I. Application of Ultrasound-assisted Extraction to the Determination of Contaminants in Food and Soil Samples. J. Chromatogr. A. 2010, 1217, 2415–2440. DOI: 10.1016/j.chroma.2009.11.066.
  • Lorenzo, M.; Campo, J.; Morales Suárez-Varela, M.; Picó, Y. Occurrence, Distribution and Behavior of Emerging Persistent Organic Pollutants (Pops) in a Mediterranean Wetland Protected Area. Sci. Total Environ. 2019, 646, 1009–1020. DOI: 10.1016/j.scitotenv.2018.07.304.
  • Arain, M. B.; Kazi, T. G.; Jamali, M. K.; Jalbani, N.; Afridi, H. I.; Sarfraz, R. A.; Shah, A. Q. Determination of Toxic Elements in Muscle Tissues of Five Fish Species Using Ultrasound‐Assisted Pseudodigestion by Electrothermal Atomic Absorption Spectrophotometry: Optimization Study. Spectrosc. Lett. 2007, 40(6), 861–878. DOI: 10.1080/00387010701521868.
  • De La Calle, I.; Cabaleiro, N.; Lavilla, I.; Bendicho, C. Analytical Evaluation of a Cup-horn Sonoreactor Used for Ultrasound-assisted Extraction of Trace Metals from Troublesome Matrices. Spectrochim. Acta Part B. 2009, 64(9), 874–883. DOI: 10.1016/j.sab.2009.07.004.
  • Zabaleta, I.; Bizkarguenaga, E.; Iparragirre, A.; Navarro, P.; Prieto, A.; Fernández, L. Á.; Zuloaga, O. Focused Ultrasound Solid–liquid Extraction for the Determination of Perfluorinated Compounds in Fish, Vegetables and Amended Soil, J. Chromatogr. A. 2014, 1331, 27–37. DOI: 10.1016/j.chroma.2014.01.025.
  • Kazi, T. G.; Jamali, M. K.; Arain, M. B.; Afridi, H. I.; Jalbani, N.; Sarfraz, R. A.; Ansari, R. Evaluation of an Ultrasonic Acid Digestion Procedure for Total Heavy Metals Determination in Environmental and Biological Samples. J. Hazard. Mater. 2009, 161(2–3), 1391–1398. DOI: 10.1016/j.jhazmat.2008.04.103.
  • Silva, F.; Padilha, C.; Castro, G.; Roldan, P.; Nogueira, A. A.; Moraes, P.; Padilha, P. Selenium Determination in Tissue Samples of Nile Tilapia Using Ultrasound-assisted Extraction. Open Chem. 2011, 9(1), 119–125. DOI: 10.2478/s11532-010-0121-0.
  • Shah, A. Q.; Kazi, T. G.; Afridi, H. I.; Kandhro, G. A.; Khan, S.; Kolachi, N. F.; Wadhwa, S. K. Determination of Total Mercury in Muscle Tissues of Marine Fish Species by Ultrasonic Assisted Extraction Followed by Cold Vapor Atomic Absorption Spectrometry, Pak. Environ. Chem. J. Anal. 2010, 11, 6.
  • Gu, J.; Zhao, G. Determination of Cd, Cr, Cu, Ni, Zn in River Fish by Ultrasound Assisted Extraction-atomic Absorption Spectrometry. Asian J. Chem. 2013, 25(8), 4356–4360. DOI: 10.14233/ajchem.2013.13976.
  • Sanz-Landaluze, J.; Bartolome, L.; Zuloaga, O.; González, L.; Dietz, C.; Cámara, C. Accelerated Extraction for Determination of Polycyclic Aromatic Hydrocarbons in Marine Biota. Anal. Bioanal. Chem. 2006, 384(6), 1331–1340. DOI: 10.1007/s00216-005-0249-5.
  • dos Santos, D.; Silva, C. S.; dos Santos, C. S.; Pando, L. A.; Gomes, M. S.; Rocha Novaes, C. G.; dos Santos, W. N. L.; Bezerra, M. A. Bezerra, Doehlert Design in the Optimization of Ultrasound Assisted Dissolution of Fish Fillet Samples with Tetramethyl Ammonium Hydroxide for Metals Determination Using FAAS. Food Chem. 2019, 273, 71–76. DOI: 10.1016/j.foodchem.2018.02.049.
  • Fang, Y.; Nie, Z.; Yang, Y.; Die, Q.; Liu, F.; He, J.; Huang, Q. Human Health Risk Assessment of Pesticide Residues in Market-sold Vegetables and Fish in a Northern Metropolis of China. Environ. Sci. Pollut. Res. 2015, 22(8), 6135–6143. DOI: 10.1007/s11356-014-3822-7.
  • Manutsewee, N.; Aeungmaitrepirom, W.; Varanusupakul, P.; Imyim, A. Determination of Cd, Cu, and Zn in Fish and Mussel by AAS after Ultrasound-assisted Acid Leaching Extraction. Food Chem. 2007, 101(2), 817–824. DOI: 10.1016/j.foodchem.2005.12.033.
  • Lavilla, I.; Vilas, P.; Bendicho, C. Fast Determination of Arsenic, Selenium, Nickel and Vanadium in Fish and Shellfish by Electrothermal Atomic Absorption Spectrometry following Ultrasound-assisted Extraction. Food Chem. 2008, 106(1), 403–409. DOI: 10.1016/j.foodchem.2007.05.072.
  • Yebra-Biurrun, M. C.; Cancela-Pérez, S.; Moreno-Cid-Barinaga, A. Coupling Continuous Ultrasound-assisted Extraction, Preconcentration and Flame Atomic Absorption Spectrometric Detection for the Determination of Cadmium and Lead in Mussel Samples. Anal. Chim. Acta. 2005, 533(1), 51–56. DOI: 10.1016/j.aca.2004.11.006.
  • Yebra-Biurrun, M. C.; Cancela-Perez, S. Continuous Approach for Ultrasound-assisted Acid Extraction-minicolumn Preconcentration of Chromium and Cobalt from Seafood Samples Prior to Flame Atomic Absorption Spectrometry. Anal. Sci. 2007, 23(8), 993–996. DOI: 10.2116/analsci.23.993.
  • da Wagna P.C., D. S.; Hatje, V.; Santil, D. S.; Fernandes, A. P.; Korn, M. G. A.; de Souza, M. M.; W.P.C. dos. Optimization of a Centrifugation and Ultrasound-assisted Procedure for the Determination of Trace and Major Elements in Marine Invertebrates by ICP OES. Microchem. J. 2010, 95(2), 169–173. DOI:10.1016/j.microc.2009.11.004.
  • Fuoco, R.; Giannarelli, S. Integrity of Aquatic Ecosystems: An Overview of a Message from the South Pole on the Level of Persistent Organic Pollutants (Pops). Microchem. J. 2019, 148, 230–239. DOI: 10.1016/j.microc.2019.04.076.
  • Ladra-Ramos, N.; Domínguez-González, R.; Moreda-Piñeiro, A.; Bermejo-Barrera, A.; Bermejo-Barrera, P. Determination of Major and Trace Elements in Edible Seaweeds by AAS after Ultrasound-assisted Acid Leaching. Atomic S Pectroscopy. 2005, 26, 59.
  • Dominguezgonzalez, R.; Moredapineiro, A.; Bermejobarreea, A.; Bermejobarreea, P. Application of Ultrasound-assisted Acid Leaching Procedures for Major and Trace Elements Determination in Edible Seaweed by Inductively Coupled Plasma-optical Emission Spectrometry. Talanta. 2005, 66(4), 937–942. DOI: 10.1016/j.talanta.2004.12.051.
  • Río-Segade, S.; Bendicho, C. Ultrasound-assisted Extraction for Mercury Speciation by the Flow Injection-cold Vapor Technique. J. Anal. At. Spectrom. 1999, 14(2), 263–268. DOI: 10.1039/A806154H.
  • Zhang, L.; Liu, S.; Cui, X.; Pan, C.; Zhang, A.; Chen, F. A Review of Sample Preparation Methods for the Pesticide Residue Analysis in Foods. Central European Journal of Chemistry. 2012, 10, 900–925. DOI: 10.2478/s11532-012-0034-1.
  • Cava-Montesinos, P.; Domínguez-Vidal, A.; Cervera, M. L.; Pastor, A.; de la Guardia, M. On-line Speciation of Mercury in Fish by Cold Vapour Atomic Fluorescence through Ultrasound-assisted Extraction. J. Anal. At. Spectrom. 2004, 19(10), 1386–1390. DOI: 10.1039/B406434H.
  • Krishna, M. B.; Karunasagar, D. Robust Ultrasound Assisted Extraction Approach Using Dilute TMAH Solutions for the Speciation of Mercury in Fish and Plant Materials by Cold Vapour Atomic Absorption Spectrometry (CVAAS). Anal. Methods. 2015, 7(5), 1997–2005. DOI: 10.1039/c4ay02114b.
  • Esteban-Fernández, D.; Mirat, M.; de la Hinojosa, M. I. M.; Alonso, J. I. G. Double Spike Isotope Dilution GC-ICP-MS for Evaluation of Mercury Species Transformation in Real Fish Samples Using Ultrasound-assisted Extraction. J. Agric. Food Chem. 2012, 60(34), 8333–8339. DOI: 10.1021/jf302070y.
  • Batista, B. L.; Rodrigues, J. L.; de Souza, S. S.; Oliveira Souza, V. C.; Barbosa, F. Mercury Speciation in Seafood Samples by LC–ICP-MS with a Rapid Ultrasound-assisted Extraction Procedure: Application to the Determination of Mercury in Brazilian Seafood Samples. Food Chem. 2011, 126(4), 2000–2004. DOI: 10.1016/j.foodchem.2010.12.068.
  • Yebra-Pimentel, I.; Martínez-Carballo, E.; Regueiro, J.; Simal-Gándara, J. The Potential of Solvent-minimized Extraction Methods in the Determination of Polycyclic Aromatic Hydrocarbons in Fish Oils. Food Chem. 2013, 139(1–4), 1036–1043. DOI: 10.1016/j.foodchem.2013.02.012.
  • Moreda-Piñeiro, A.; Moreda-Piñeiro, J.; Herbello-Hermelo, P.; Bermejo-Barrera, P.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. Application of Fast Ultrasound Water-bath Assisted Enzymatic Hydrolysis – High Performance Liquid Chromatography–inductively Coupled Plasma-mass Spectrometry Procedures for Arsenic Speciation in Seafood Materials. J. Chromatogr. A. 2011, 1218(39), 6970–6980. DOI: 10.1016/j.chroma.2011.07.101.
  • Zhang, W. B.; Xue, J. J.; Yang, X. A.; Wang, S. B. Determination of Inorganic and Total Mercury in Seafood Samples by a New Ultrasound-assisted Extraction System and Cold Vapor Atomic Fluorescence Spectrometry. J. Anal. At. Spectrom. 2023-2029 26(2011).
  • Bermejo-Barrera, P.; Muñiz-Naveiro, Ó.; Moreda-Piñeiro, A.; Bermejo-Barrera, A. The Multivariate Optimisation of Ultrasonic Bath-induced Acid Leaching for the Determination of Trace Elements in Seafood Products by Atomic Absorption Spectrometry. Anal. Chim. Acta. 2001, 439(2), 211–227. DOI: 10.1016/S0003-2670(01)01043-1.
  • Veiga, L. L. A.; Amorim, H.; Moraes, J.; Silva, M. C.; Raices, R. S. L.; Quiterio, S. L. Quantification of Polycyclic Aromatic Hydrocarbons in Toasted Guaraná (Paullinia Cupana) by High-performance Liquid Chromatography with a Fluorescence Detector. Food Chem. 2014, 152, 612–618. DOI: 10.1016/j.foodchem.2013.11.154.
  • Abdel-Shafy, H. I.; Mansour, M. S. M. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egypt. J. Pet. 2016, 25(1), 107–123. DOI: 10.1016/j.ejpe.2015.03.011.
  • Khan, A. H. A.; Ayaz, M.; Arshad, M.; Yousaf, S.; Khan, M. A.; Anees, M.; Sultan, A.; Nawaz, I.; Iqbal, M.; Cycle, B. Occurrence and Biological Treatments of Polycyclic Aromatic Hydrocarbons (Pahs) Iranian Journal of Science and Technology. Trans. A Sci. 2018. DOI: 10.1007/s40995-017-0393-8.
  • Jinadasa, B. K. K. K.; Monteau, F.; Morais, S. Critical Review of Micro-extraction Techniques Used in the Determination of Polycyclic Aromatic Hydrocarbons in Biological, Environmental and Food Samples. Food Addit. Contam. 2020, 1-23. DOI: 10.1080/19440049.2020.1733103.
  • João Ramalhosa, M.; Paíga, P.; Morais, S.; Delerue-Matos, C.; Prior Pinto, M. B. Oliveira, Analysis of Polycyclic Aromatic Hydrocarbons in Fish: Evaluation of a Quick, Easy, Cheap, Effective, Rugged, and Safe Extraction Method. J. Sep. Sci. 2009, 32(20), 3529–3538. DOI: 10.1039/C4AY02114B.
  • Soltani, N.; Moore, F.; Keshavarzi, B.; Sorooshian, A.; Javid, R. Potentially Toxic Elements (Ptes) and Polycyclic Aromatic Hydrocarbons (Pahs) in Fish and Prawn in the Persian Gulf, Iran. Ecotoxicol. Environ. Saf. 2019, 173, 251–265. DOI: 10.1016/j.ecoenv.2019.02.005.
  • Janska, M.; Tomaniova, M.; Hajšlová, J.; Kocourek, V. Optimization of the Procedure for the Determination of Polycyclic Aromatic Hydrocarbons and Their Derivatives in Fish Tissue: Estimation of Measurements Uncertainty. Food Addit. Contam. 2006, 23(3), 309–325. DOI: 10.1080/02652030500401207.
  • Cejpek, K.; Hajšová, J.; Jehllčková, Z.; Merhaut, J. Development of a focused ultrasonic-assisted extraction of polycyclic aromatic hydrocarbons in marine sediment and mussel samples. Int. J. Environ. Anal. Chem. 1995, 61(1), 65–80. DOI: 10.1080/03067319508026237.
  • Navarro, P.; Etxebarria, N.; Arana, G. Development of a Focused Ultrasonic-assisted Extraction of Polycyclic Aromatic Hydrocarbons in Marine Sediment and Mussel Samples. Anal. Chim. Acta. 2009, 6482, 178–182. DOI:10.1016/j.aca.2009.06.062.
  • Rodríguez-Sanmartín, P.; Moreda-Piñeiro, A.; Bermejo-Barrera, A.; Bermejo-Barrera, P. Ultrasound-assisted Solvent Extraction of Total Polycyclic Aromatic Hydrocarbons from Mussels Followed by Spectrofluorimetric Determination. Talanta. 2005, 66, 683–690. DOI: 10.1016/j.talanta.2004.12.014.
  • Martinez, E.; Gros, M.; Lacorte, S.; Barceló, D. Simplified Procedures for the Analysis of Polycyclic Aromatic Hydrocarbons in Water, Sediments and Mussels. J. Chromatogr. A. 2004, 1047, 181–188. DOI: 10.1016/j.chroma.2004.07.003.
  • Moazzen, M.; Ahmadkhaniha, R.; Gorji, M. E. H. G. M.; Yunesian, M.; Rastkari, N. Magnetic Solid-phase Extraction Based on Magnetic Multi-walled Carbon Nanotubes for the Determination of Polycyclic Aromatic Hydrocarbons in Grilled Meat Samples. Talanta. 2013, 115, 957–965. DOI: 10.1016/j.talanta.2013.07.005.
  • Viegas, O.; Novo, P.; Pinho, O. I.M.P.L.V.O. Ferreira, A Comparison of the Extraction Procedures and Quantification Methods for the Chromatographic Determination of Polycyclic Aromatic Hydrocarbons in Charcoal Grilled Meat and Fish. Talanta. 2012, 88, 677–683. DOI: 10.1016/j.talanta.2011.11.060.
  • Punín Crespo, M. O.; Cam, D.; Gagni, S.; Lombardi, N.; Lage Yusty, M. A. Extraction of Hydrocarbons from Seaweed Samples Using Sonication and Microwave-assisted Extraction: A Comparative Study. J. Chromatogr. Sci. 2006, 44(10), 615–618. DOI: 10.1093/chromsci/44.10.615.
  • De, A.; Bose, R.; Kumar, A.; Mozumdar, S. Worldwide Pesticide Use, Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles. Springer. 2014, 5–6. DOI: 10.1007/978-81-322-1689-6.
  • Hong, J.; Kim, H.-Y.; Kim, D.-G.; Seo, J.; Kim, K.-J. Rapid Determination of Chlorinated Pesticides in Fish by Freezing-lipid Filtration, Solid-phase Extraction and Gas Chromatography–mass Spectrometry. J. Chromatogr. A. 2004, 1038(1–2), 27–35. DOI: 10.1016/j.chroma.2004.03.003.
  • Rezaei, F.; Reza, M.; Hosseini, M. New Method Based on Combining Ultrasonic Assisted Miniaturized Matrix Solid-phase Dispersion and Homogeneous Liquid–liquid Extraction for the Determination of Some Organochlorinated Pesticides in Fish. Anal. Chim. Acta. 2011, 702(2), 274–279. DOI: 10.1016/j.aca.2011.06.008.
  • Shrivas, K.; Wu, H. F. Ultrasonication Followed by Single‐drop Microextraction Combined with GC/MS for Rapid Determination of Organochlorine Pesticides from Fish. J. Sep. Sci. 2008, 31(2), 380–386. DOI: 10.1002/jssc.200700380.
  • Chen, S.; Shi, L.; Shan, Z.; Hu, Q. Determination of Organochlorine Pesticide Residues in Rice and Human and Fish Fat by Simplified Two-dimensional Gas Chromatography. Food Chem. 2007, 104(3), 1315–1319. DOI: 10.1016/j.foodchem.2006.10.032.
  • Xu, L.; Miao, X.; Yang, Z.; Li, H.; Qiu, B. Solid-phase Extraction Combined with Dispersive Liquid-liquid Microextraction Based on Solidification of Floating Organic Droplet for Simultaneous Determination of Organochlorine Pesticides and Polychlorinated Biphenyls in Fish. Food Anal. Methods. 2019, 12(8), 1871–1885. DOI: 10.1007/s12161-019-01527-2.
  • Wang, X.-C.; Shu, B.; Li, S.; Yang, Z.-G.; Qiu, B. QuEChERS Followed by Dispersive Liquid–liquid Microextraction Based on Solidification of Floating Organic Droplet Method for Organochlorine Pesticides Analysis in Fish. Talanta. 2017, 162, 90–97. DOI: 10.1016/j.talanta.2016.09.069.
  • Asati, A.; Satyanarayana, G.; Srivastava, V. T.; Patel, D. K. Determination of Organochlorine Compounds in Fish Liver by Ultrasound-assisted Dispersive Liquid–liquid Microextraction Based on Solidification of Organic Droplet Coupled with Gas Chromatography-electron Capture Detection. J. Chromatogr. A. 2018, 1561, 20–27. DOI: 10.1016/j.chroma.2018.05.035.
  • Sun, X.; Hu, H.; Zhong, Z.; Jin, Y.; Zhang, X.; Guo, Y. Ultrasound‐assisted Extraction and Solid‐phase Extraction as a Cleanup Procedure for Organochlorinated Pesticides and Polychlorinated Biphenyls Determination in Aquatic Samples by Gas Chromatography with Electron Capture Detection. J. Sep. Sci. 2015, 38(4), 626–633. DOI: 10.1002/jssc.201400880.
  • Zhang, T.; Qu, Z.; Li, B.; Yang, Z. Simultaneous Determination of Atrazine, Pendimethalin, and Trifluralin in Fish Samples by QuEChERS Extraction Coupled with Gas Chromatography-Electron Capture Detection. Food Anal. Methods. 2019 , 12(5), 1179–1186. DOI: 10.1007/s12161-019-01449-z.
  • Qu, Z.; Bai, X.; Zhang, T.; Yang, Z. Ultrasound‐assisted Extraction and Solid‐phase Extraction for the Simultaneous Determination of Five Amide Herbicides in Fish Samples by Gas Chromatography with Electron Capture Detection. J. Sep. Sci. 2017, 40(5), 1142–1149. DOI: 10.1002/jssc.201601092.
  • Gonzalo-Lumbreras, R.; Sanz-Landaluze, J.; Cámara, C. Analytical Performance of Two Miniaturised Extraction Methods for Triclosan and Methyltriclosan, in Fish Roe and Surimi Samples. Food Chem. 2014, 146, 141–148. DOI: 10.1016/j.foodchem.2013.09.055.
  • Gonzalo-Lumbreras, R.; Sanz-Landaluze, J.; Guinea, J.; Cámara, C. Miniaturized Extraction Methods of Triclosan from Aqueous and Fish Roe Samples. Bioconcentration Studies in Zebrafish Larvae (Danio Rerio). Anal. Bioanal. Chem. 2012, 403(4), 927–937. DOI: 10.1007/s00216-012-5713-4.
  • UNEP The Stockholm Convention on Persistent Organic Pollutants, United Nations Environmental Programme, available at http://chm.pops.int/Home/tabid/2121/Default.aspx, 2020.
  • Lana, N. B.; Berton, P.; Covaci, A.; Ciocco, N. F.; Barrera-Oro, E.; Atencio, A.; Altamirano, J. C. Fingerprint of Persistent Organic Pollutants in Tissues of Antarctic Notothenioid Fish, Sci. Total Environ. 2014, 499, 89–98. DOI: 10.1016/j.scitotenv.2014.08.033.
  • Guigueno, M. F.; Fernie, K. J. Birds and Flame Retardants: A Review of the Toxic Effects on Birds of Historical and Novel Flame Retardants. Environ. Res. 2017, 154, 398–424. DOI:10.1016/j.envres.2016.12.033.
  • Speight, J. G. Chapter 4 - Sources and Types of Organic Pollutants. In Environmental Organic Chemistry for Engineers, Butterworth-Heinemann, Ed., Speight, J.G., 2017; pp. 153–201. Butterworth-Heinemann. DOI:10.1016/B978-0-12-804492-6.00004-6.
  • Aznar-Alemany, Ò., Eljarrat, E. Chapter Five - Food Contamination on Flame Retardants, In Oh, J.-E.Comprehensive Analytical Chemistry; Ed.; Amsterdam, Netherlands:Elsevier,2020;141–189. DOI: 10.1016/bs.coac.2019.11.005
  • Lin, S.; Gan, N.; Zhang, J.; Qiao, L.; Chen, Y.; Cao, Y. Aptamer-functionalized Stir Bar Sorptive Extraction Coupled with Gas Chromatography–mass Spectrometry for Selective Enrichment and Determination of Polychlorinated Biphenyls in Fish Samples. Talanta. 2016, 149, 266–274. DOI: 10.1016/j.talanta.2015.11.062.
  • Ros, O.; Vallejo, A.; Olivares, M.; Etxebarria, N.; Prieto, A. Determination of Endocrine Disrupting Compounds in Fish Liver, Brain, and Muscle Using Focused Ultrasound Solid–liquid Extraction and Dispersive Solid Phase Extraction as Clean-up Strategy. Anal. Bioanal. Chem. 2016, 408(21), 5689–5700. DOI: 10.1007/s00216-016-9697-3.
  • Lin, S.; Gan, N.; Qiao, L.; Zhang, J.; Cao, Y.; Chen, Y. Magnetic Metal-organic Frameworks Coated Stir Bar Sorptive Extraction Coupled with GC–MS for Determination of Polychlorinated Biphenyls in Fish Samples. Talanta. 2015, 144, 1139–1145. DOI: 10.1016/j.talanta.2015.07.084.
  • Santín, G.; Eljarrat, E.; Barceló, D. Simultaneous Determination of 16 Organophosphorus Flame Retardants and Plasticizers in Fish by Liquid Chromatography-tandem Mass Spectrometry. J. Chromatogr. A. 2016, 1441, 34–43. DOI: 10.1016/j.chroma.2016.02.058.
  • Lorenzo, M.; Campo, J.; Picó, Y. Determination of Organophosphate Flame Retardants in Soil and Fish Using Ultrasound-assisted Extraction, Solid-phase Clean-up, and Liquid Chromatography with Tandem Mass Spectrometry. J. Sep. Sci. 2018, 41(12), 2595–2603. DOI: 10.1002/jssc.201701461.
  • Berg, V.; Zerihun, M. A.; Jørgensen, A.; Lie, E.; Dale, O. B.; Skaare, J. U.; Lyche, J. L. High Prevalence of Infections and Pathological Changes in Burbot (Lota Lota) from a Polluted Lake (Lake Mjøsa, Norway). Chemosphere. 2013, 90, 1711–1718. DOI: 10.1016/j.chemosphere.2012.10.017.
  • Mas, S.; Jáuregui, O.; Rubio, F.; de Juan, A.; Tauler, R.; Lacorte, S. Comprehensive Liquid Chromatography–ion-spray Tandem Mass Spectrometry Method for the Identification and Quantification of Eight Hydroxylated Brominated Diphenyl Ethers in Environmental Matrices. J. Mass Spectrom. 2007, 42(7), 890–899. DOI: 10.1002/jms.1224.
  • Labadie, P.; Alliot, F.; Bourges, C.; Desportes, A.; Chevreuil, M. Determination of Polybrominated Diphenyl Ethers in Fish Tissues by Matrix Solid-phase Dispersion and Gas Chromatography Coupled to Triple Quadrupole Mass Spectrometry: Case Study on European Eel (Anguilla Anguilla) from Mediterranean Coastal Lagoons. Anal. Chim. Acta. 2010, 675(2), 97–105. DOI: 10.1016/j.aca.2010.07.010.
  • Fontana, A. R.; Camargo, A.; Martinez, L. D.; Altamirano, J. C. Dispersive Solid-phase Extraction as a Simplified Clean-up Technique for Biological Sample Extracts. Determination of Polybrominated Diphenyl Ethers by Gas Chromatography–tandem Mass Spectrometry. J. Chromatogr. A. 2011, 1218(18), 2490–2496. DOI: 10.1016/j.chroma.2011.02.058.
  • Chokwe, T. B.; Okonkwo, J. O.; Sibali, L. L.; Ncube, E. J. Alkylphenol Ethoxylates and Brominated Flame Retardants in Water, Fish (Carp) and Sediment Samples from the Vaal River, South Africa. Environ. Sci. Pollut. Res. 2015, 22(15), 11922–11929. DOI: 10.1007/s11356-015-4430-x.
  • Polder, A.; Müller, M. B.; Lyche, J. L.; Mdegela, R. H.; Nonga, H. E.; Mabiki, F. P.; Mbise, T. J.; Skaare, J. U.; Sandvik, M.; Skjerve, E.; et al. Levels and Patterns of Persistent Organic Pollutants (Pops) in Tilapia (Oreochromis Sp.) From Four Different Lakes in Tanzania: Geographical Differences and Implications for Human Health. Sci. Total Environ. 2014, 488-489, 252–260. DOI: 10.1016/j.scitotenv.2014.04.085.
  • Morrison, S. A.; Sieve, K. K.; Ratajczak, R. E.; Bringolf, R. B.; Belden, J. B. Simultaneous Extraction and Cleanup of High-lipid Organs from White Sturgeon (Acipenser Transmontanus) for Multiple Legacy and Emerging Organic Contaminants Using QuEChERS Sample Preparation. Talanta. 2016, 146, 16–22. DOI: 10.1016/j.talanta.2015.08.021.
  • Gómez, C.; Vicente, J.; Echavarri-Erasun, B.; Porte, C.; Lacorte, S. Occurrence of Perfluorinated Compounds in Water, Sediment and Mussels from the Cantabrian Sea (North Spain). Mar. Pollut. Bull. 2011, 62(5), 948–955. DOI: 10.1016/j.marpolbul.2011.02.049.
  • Zhou, Q.; Sang, Y.; Wang, L.; Ji, S.; Ye, J.; Wang, X. Determination of Polychlorinated Biphenyls by GC/MS with Ultrasound-assisted Extraction from Shellfish. Front Agric China. 2010, 4(4), 489–493. DOI: 10.1007/s11703-010-1032-8.
  • Fernández-González, R.; Yebra-Pimentel, I.; Martínez-Carballo, E.; Simal-Gándara, J. Decontamination Solutions for Polychlorinated Biphenyls (Pcbs) in Raw Fish Oils from Environmentally Contaminated Sea Fishes, Sci. Total Environ. 2014, 468-469, 1007–1013. DOI: 10.1016/j.scitotenv.2013.09.036.
  • Cui, Y.; Wang, Z.; Cong, J.; Wang, L.; Liu, Y.; Wang, X.; Xie, J. Determination of Polychlorinated Biphenyls in Fish Tissues from Shanghai Seafood Markets Using a Modified QuEChERS Method. Anal. Sci. 2017, 33(8), 973–977. DOI: 10.2116/analsci.33.973.
  • Huo, L.G.; Li, H.D.; Zhao, C.L.; Wang, W.B.; Chen, Z.L.; Ding, R.Y.; Dong, Z.; Wang, F.E.; Yang, G.S.; Lu, X.; et al. The Determination of PCBs in Meat and Sea Food by GC-QqQ-MS/MS. Food Anal. Methods. 2012, 5(6), 1481–1491. DOI: 10.1007/s12161-012-9391-9.
  • Novak, P.; Zuliani, T.; Milačič, R.; Ščančar, J. Development of an Analytical Method for the Determination of Polybrominated Diphenyl Ethers in Mussels and Fish by Gas chromatography—Inductively Coupled Plasma Mass Spectrometry. J. Chromatogr. A. 2017, 1524, 179–187. DOI: 10.1016/j.chroma.2017.09.059.
  • Sun, J.; Liu, J.; Liu, Q.; Qu, G.; Ruan, T.; Jiang, G. Sample Preparation Method for the Speciation of Polybrominated Diphenyl Ethers and Their Methoxylated and Hydroxylated Analogues in Diverse Environmental Matrices. Talanta. 2012, 88, 669–676. DOI: 10.1016/j.talanta.2011.11.059.
  • Tian, L.; Han, F.; Cai, Y.; Kong, C.; Shi, Y.; Wang, Y.; Yang, G.; Zhan, Q.; Huang, D. Determination of 7 Indictor Polychlorinated Biphenyls (Pcbs) Residues in Porphyra by Ultrasonic Extraction and Gas Chromatography (GC). J. Agri. Chem. Envir. 2016, 51, 1–5. DOI:10.4236/jacen.2016.51B001.
  • Kelly, B. C.; Ikonomou, M. G.; Blair, J. D.; Gobas, F. A. P. C. Bioaccumulation Behaviour of Polybrominated Diphenyl Ethers (Pbdes) in a Canadian Arctic Marine Food Web. Sci. Total Environ. 2008, 401(1–3), 60–72. DOI: 10.1016/j.scitotenv.2008.03.045.
  • Xu, F.; García-Bermejo, Á.; Malarvannan, G.; Gómara, B.; Neels, H.; Covaci, A. Multi-contaminant Analysis of Organophosphate and Halogenated Flame Retardants in Food Matrices Using Ultrasonication and Vacuum Assisted Extraction, Multi-stage Cleanup and Gas Chromatography–mass Spectrometry, J. Chromatogr. A. 2015, 1401, 33–41. DOI: 10.1016/j.chroma.2015.05.001.
  • He, Z.; Cheng, X.; Kyzas, G. Z.; Fu, J. Pharmaceuticals Pollution of Aquaculture and Its Management in China. J. Mol. Liq. 2016, 223, 781–789. DOI: 10.1016/j.molliq.2016.09.005.
  • Binh, V. N.; Dang, N.; Anh, N. T. K.; Ky, L. X.; Thai, P. K. Antibiotics in the Aquatic Environment of Vietnam: Sources, Concentrations, Risk and Control Strategy. Chemosphere. 2018, 197, 438–450. DOI: 10.1016/j.chemosphere.2018.01.061.
  • Magiera, S.; Pardylla, A.; Baranowska, I. Effects of Various Factors of Ultrasonic Treatment on the Extraction Recovery of Drugs from Fish Tissues. Ultrason. Sonochem. 2015, 26, 388–398. DOI: 10.1016/j.ultsonch.2015.03.005.
  • Dasenaki, M. E.; Thomaidis, N. S. Multi-residue Determination of 115 Veterinary Drugs and Pharmaceutical Residues in Milk Powder, Butter, Fish Tissue and Eggs Using Liquid Chromatography–tandem Mass Spectrometry. Anal. Chim. Acta. 2015, 880, 103–121. DOI: 10.1016/j.aca.2015.04.013.
  • Hoff, R. B.; Pizzolato, T. M.; Peralba, M. D. C. R.; Díaz-Cruz, M. S.; Barceló, D. Determination of Sulfonamide Antibiotics and Metabolites in Liver, Muscle and Kidney Samples by Pressurized Liquid Extraction or Ultrasound-assisted Extraction Followed by Liquid Chromatography–quadrupole Linear Ion Trap-tandem Mass Spectrometry (Hplc–qqlit-ms/ms). Talanta. 2015, 134, 768–778. DOI: 10.1016/j.talanta.2014.10.045.
  • Chemello, G.; Randazzo, B.; Zarantoniello, M.; Fifi, A. P.; Aversa, S.; Ballarin, C.; Radaelli, G.; Magro, M.; Olivotto, I. Safety Assessment of Antibiotic Administration by Magnetic Nanoparticles in In Vitro Zebrafish Liver and Intestine Cultures. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019, 224, 108559. DOI: 10.1016/j.cbpc.2019.108559.
  • Tao, Y.; Yu, H.; Chen, D.; Liu, Z.-Y.; Yang, D.; Pan, Y.; Wang, Y.; Huang, L.; Yuan, Z. Determination of Sodium Nifurstyrenate and Nitrovin Residues in Edible Food by Liquid Chromatography–tandem Mass Spectrometry after Ultrasound-assisted Extraction. J. Chromatogr. B. 2010, 878(32), 3415–3420. DOI: 10.1016/j.jchromb.2010.10.028.
  • Jansomboon, W.; Boontanon, S. K.; Boontanon, N.; Polprasert, C.; Thi Da, C. Monitoring and Determination of Sulfonamide Antibiotics (Sulfamethoxydiazine, Sulfamethazine, Sulfamethoxazole and Sulfadiazine) in Imported Pangasius Catfish Products in Thailand Using Liquid Chromatography Coupled with Tandem Mass Spectrometry. Food Chem. 2016, 212, 635–640. DOI: 10.1016/j.foodchem.2016.06.026.
  • Zhai, H.; Liang, G.; Guo, X.; Chen, Z.; Yu, J.; Lin, H.; Zhou, Q. Novel Coordination Imprinted Polymer Monolithic Column Applied to the Solid-phase Extraction of Flumequine from Fish Samples. J. Chromatogr. B. 2019, 1118-1119, 55–62. DOI: 10.1016/j.jchromb.2019.04.023.
  • Evaggelopoulou, E. N.; Samanidou, V. F. Development and Validation of an HPLC Method for the Determination of Six Penicillin and Three Amphenicol Antibiotics in Gilthead Seabream (Sparus Aurata) Tissue according to the European Union Decision 2002/657/EC. Food Chem. 2013, 136(3–4), 1322–1329. DOI: 10.1016/j.foodchem.2012.09.044.
  • Ramirez, A. J.; Brain, R. A.; Usenko, S.; Mottaleb, M. A.; O’Donnell, J. G.; Stahl, L. L.; Wathen, J. B.; Snyder, B. D.; Pitt, J. L.; Perez-Hurtado, P.; et al. Occurrence of Pharmaceuticals and Personal Care Products in Fish: Results of a National Pilot Study in the United States. Environ. Toxicol. Chem. 2009, 28(12), 2587–2597. DOI: 10.1897/08-561.1.
  • Li, T.; Wang, C.; Xu, Z.; Chakraborty, A. A Coupled Method of On-line Solid Phase Extraction with the UHPLC‒MS/MS for Detection of Sulfonamides Antibiotics Residues in Aquaculture. Chemosphere. 2020, 254, 126765. DOI: 10.1016/j.chemosphere.2020.126765.
  • Zhong, Y.; Chen, Z.-F.; Dai, X.; Liu, -S.-S.; Zheng, G.; Zhu, X.; Liu, S.; Yin, Y.; Liu, G.; Cai, Z. Investigation of the Interaction between the Fate of Antibiotics in Aquafarms and Their Level in the Environment. J. Environ. Manage. 2018, 207, 219–229. DOI: 10.1016/j.jenvman.2017.11.030.
  • Tanoue, R.; Nomiyama, K.; Nakamura, H.; Hayashi, T.; Kim, J.-W.; Isobe, T.; Shinohara, R.; Tanabe, S. Simultaneous Determination of Polar Pharmaceuticals and Personal Care Products in Biological Organs and Tissues. J. Chromatogr. A. 2014, 1355, 193–205. DOI: 10.1016/j.chroma.2014.06.016.
  • Zhou, L.-J.; Wang, W.-X.; Lv, Y.-J.; Mao, Z.-G.; Chen, C.; Wu, Q. L. Tissue Concentrations, Trophic Transfer and Human Risks of Antibiotics in Freshwater Food Web in Lake Taihu, China. Ecotoxicol. Environ. Saf. 2020, 197, 110626. DOI: 10.1016/j.ecoenv.2020.110626.
  • Xie, H.; Hao, H.; Xu, N.; Liang, X.; Gao, D.; Xu, Y.; Gao, Y.; Tao, H.; Wong, M. Pharmaceuticals and Personal Care Products in Water, Sediments, Aquatic Organisms, and Fish Feeds in the Pearl River Delta: Occurrence, Distribution, Potential Sources, and Health Risk Assessment. Sci. Total Environ. 2019, 659, 230–239. DOI: 10.1016/j.scitotenv.2018.12.222.
  • Fernandez-Torres, R.; Lopez, M. A. B.; Consentino, M. O.; Mochon, M. C.; Perez-Bernal, J. L. Application of Enzymatic Probe Sonication Extraction for the Determination of Selected Veterinary Antibiotics and Their Main Metabolites in Fish and Mussel Samples. Anal. Chim. Acta. 2010, 675(2), 156–164. DOI: 10.1016/j.aca.2010.07.026.
  • Zhang, R.; Pei, J.; Zhang, R.; Wang, S.; Zeng, W.; Huang, D.; Wang, Y.; Zhang, Y.; Wang, Y.; Yu, K. Occurrence and Distribution of Antibiotics in Mariculture Farms, Estuaries and the Coast of the Beibu Gulf, China: Bioconcentration and Diet Safety of Seafood. Ecotoxicol. Environ. Saf. 2018, 154, 27–35. DOI: 10.1016/j.ecoenv.2018.02.006.
  • Zhang, H.; Bayen, S.; Kelly, B. C. Co-extraction and Simultaneous Determination of Multi-class Hydrophobic Organic Contaminants in Marine Sediments and Biota Using GC-EI-MS/MS and LC-ESI-MS/MS. Talanta. 2015, 143, 7–18. DOI: 10.1016/j.talanta.2015.04.084.
  • Chen, H.; Liu, S.; Xu, X.-R.; Liu, -S.-S.; Zhou, G.-J.; Sun, K.-F.; Zhao, J.-L.; Ying, -G.-G. Antibiotics in Typical Marine Aquaculture Farms Surrounding Hailing Island, South China: Occurrence, Bioaccumulation and Human Dietary Exposure. Mar. Pollut. Bull. 2015, 90(1–2), 181–187. DOI: 10.1016/j.marpolbul.2014.10.053.
  • Peng, X.; Jin, J.; Wang, C.; Ou, W.; Tang, C. Multi-target Determination of Organic Ultraviolet Absorbents in Organism Tissues by Ultrasonic Assisted Extraction and Ultra-high Performance Liquid Chromatography–tandem Mass Spectrometry. J. Chromatogr. A. 2015, 1384, 97–106. DOI: 10.1016/j.chroma.2015.01.051.
  • Cheng, L.; Chen, Y.; Zheng, Y. Y.; Zhan, Y.; Zhao, H.; Zhou, J. L. Bioaccumulation of Sulfadiazine and Subsequent Enzymatic Activities in Chinese Mitten Crab (Eriocheir Sinensis). Mar. Pollut. Bull. 2017, 121(1–2), 176–182. DOI: 10.1016/j.marpolbul.2017.06.006.
  • Gatidou, G.; Vassalou, E.; Thomaidis, N. S. Bioconcentration of Selected Endocrine Disrupting Compounds in the Mediterranean Mussel, Mytilus Galloprovincialis. Mar. Pollut. Bull. 2010, 60(11), 2111–2116. DOI: 10.1016/j.marpolbul.2010.07.003.
  • Alonso, M. B.; Feo, M. L.; Corcellas, C.; Gago-Ferrero, P.; Bertozzi, C. P.; Marigo, J.; Flach, L.; Meirelles, A. C. O.; Carvalho, V. L.; Azevedo, A. F.; et al. Toxic Heritage: Maternal Transfer of Pyrethroid Insecticides and Sunscreen Agents in Dolphins from Brazil. Environ. Pollut. 2015, 207, 391–402. DOI: 10.1016/j.envpol.2015.09.039.
  • Montesdeoca-Esponda, S.; Checchini, L.; Del Bubba, M.; Sosa-Ferrera, Z.; Santana-Rodriguez, J. J. Analytical Approaches for the Determination of Personal Care Products and Evaluation of Their Occurrence in Marine Organisms. Sci. Total Environ. 2018, 633, 405–425. DOI: 10.1016/j.scitotenv.2018.03.182.
  • Chen, C. L.; Löfstrand, K.; Adolfsson-Erici, M.; MacLeod, M. Determination of Fragrance Ingredients in Fish by Ultrasound-assisted Extraction Followed by Purge & Trap. Anal. Methods. 2017, 9(15), 2237–2245. DOI: 10.1039/c7ay00017k.
  • Al Khawli, F.; Pateiro, M.; Domínguez, R.; Lorenzo, J. M.; Gullón, P.; Kousoulaki, K.; Ferrer, E.; Berrada, H.; Barba, F. J. Innovative Green Technologies of Intensification for Valorization of Seafood and Their By-products. Mar. Drugs. 2019, 17(12), 689. DOI: 10.3390/md17120689.
  • Nhat, D. M. Effect of Ultrasound on Pretreatment of Tuna Skin for Gelatin Production. Vietnam Sci. Tech. 2018, 54(4A), 55–62. DOI: 10.15625/2525-2518/54/4A/11978.
  • Ali, A. M. M.; Kishimura, H.; Benjakul, S. Physicochemical and Molecular Properties of Gelatin from Skin of Golden Carp (Probarbus Jullieni) as Influenced by Acid Pretreatment and Prior-ultrasonication. Food Hydrocolloids. 2018, 82, 164–172. DOI: 10.1016/j.foodhyd.2018.03.052.
  • T, Huang, Z.C.; T, Wang X.m, H.; Shi, S. Y.; X.QHuang, Z.Z.; Man, D.J. L. Physico-chemical Properties of Gelatin from Bighead Carp (Hypophthalmichthys Nobilis) Scales by Ultrasound-assisted Extraction. J. Food Sci. Technol. 2015, 52(4), 2166–2174. DOI: 10.1007/s13197-013-1239-9.
  • Huang, T.; S.Xinchen, Z.C. T, Wang, H.; Zhang, L.; X.m, S. Rheological and Structural Properties of Fish Scales Gelatin: Effects of Conventional and Ultrasound-assisted Extraction. Int. J. Food Prop. 2017, 20, 1210–1220. DOI: 10.1080/10942912.2017.1295388.
  • Mirzapour‐Kouhdasht, A.; Sabzipour, F.; Taghizadeh, M. S.; Moosavi‐Nasab, M. Physicochemical, Rheological, and Molecular Characterization of Colloidal Gelatin Produced from Common Carp By-products Using Microwave and Ultrasound-assisted Extraction. J. Texture Stud. 2019, 50(5), 416–425. DOI: 10.1111/jtxs.12408.
  • Asih, I. D.; Kemala, T.; Nurilmala, M. Halal Gelatin Extraction from Patin Fish Bone (Pangasius Hypophthalmus) By-product with Ultrasound-assisted Extraction. IOP Conference Series: Earth and Environmental Science. 2019, 299, 012061. DOI: 10.1088/1755-1315/299/1/012061.
  • Zou, Y.; Xu, P.; Li, P.; Cai, P.; Zhang, M.; Sun, Z.; Sun, C.; Xu, W.; Wang, D. Effect of Ultrasound Pre-treatment on the Characterization and Properties of Collagen Extracted from Soft-shelled Turtle (Pelodiscus Sinensis). LWT - Food Sci. Technol. 2017, 82, 72–81. DOI: 10.1016/j.lwt.2017.04.024.
  • Kim, H. K.; Kim, Y. H.; Kim, Y. J.; Park, H. J.; Lee, N. H. Sonication-Assisted Extraction of Chitin from Shells of Fresh Water Prawns (Macrobrachium Rosenbergii). Journal of Agricultural and Food Chemistry. 2012, 78(2), 485–490. DOI: 10.1016/j.lwt.2017.04.024.
  • Kim, S. M.; Jung, Y.-J.; Kwon, O.-N.; Cha, K. H.; Um, B.-H.; Chung, D.; Pan, C.-H. A Potential Commercial Source of Fucoxanthin Extracted from the Microalga Phaeodactylum Tricornutum. Appl. Biochem. Biotechnol. 2012, 166(7), 1843–1855. DOI: 10.1007/s12010-012-9602-2.
  • Azis, M. A. Optimization of Temperature and Time in Carrageenan Extraction of Seaweed (Kappaphycus Alvarezii) Using Ultrasonic Wave Extraction Methods. IOP Conference Series: Earth and Environmental Science. 2019, 370, 012076. DOI: 10.1088/1755-1315/370/1/012076.
  • Azizi, R.; Farahnaky, A. Ultrasound Assisted Cold Gelation of Kappa Carrageenan Dispersions. Carbohydr. Polym. 2013, 95(1), 522–529. DOI: 10.1016/j.carbpol.2013.02.073.
  • Youssouf, L.; Lallemand, L.; Giraud, P.; Soulé, F.; Bhaw-Luximon, A.; Meilhac, O.; D’Hellencourt, C. L.; Jhurry, D.; Couprie, J. Ultrasound-assisted Extraction and Structural Characterization by NMR of Alginates and Carrageenans from Seaweeds. Carbohydr. Polym. 2017, 166, 55–63. DOI: 10.1016/j.carbpol.2017.01.041.
  • Khoo, K. S.; Chew, K. W.; Yew, G. Y.; Manickam, S.; Ooi, C. W.; Show, P. L. Integrated Ultrasound-assisted Liquid Biphasic Flotation for Efficient Extraction of Astaxanthin from Haematococcus Pluvialis. Ultrason. Sonochem. 2020, 67, 105052. DOI: 10.1016/j.ultsonch.2020.105052.
  • Kjartansson, G. T.; Zivanovic, S.; Kristbergsson, K.; Weiss, J. Sonication-Assisted Extraction Of Chitin From Shells Of Fresh Water Prawns (Macrobrachium rosenbergii). J. Agric. Food Chem. 2006, 54(9), 3317–3323. DOI: 10.1021/jf052184c.
  • Martínez-Sanz, M.; Gómez-Mascaraque, L. G.; Ballester, A. R.; Martínez-Abad, A.; Brodkorb, A.; López-Rubio, A. Production of Unpurified Agar-based Extracts from Red Seaweed Gelidium Sesquipedale by Means of Simplified Extraction Protocols. Algal Res. 2019, 38, 101420. DOI: 10.1016/j.algal.2019.101420.
  • Fidelis, G. P.; Camara, R. B. G.; Queiroz, M. F.; Costa, M. S. S. P.; Santos, P. C.; Rocha, H. A. O.; Costa, L. S. Proteolysis, NaOH and Ultrasound-Enhanced Extraction of Anticoagulant and Antioxidant Sulfated Polysaccharides from the Edible Seaweed, Gracilaria Birdiae. Gracilaria Birdiae, Molecules. 2014, 19(11), 18511–18526. DOI: 10.3390/molecules191118511.
  • Hmelkov, A. B.; Zvyagintseva, T. N.; Shevchenko, N. M.; Rasin, A. B.; Ermakova, S. P. Ultrasound-assisted Extraction of Polysaccharides from Brown Alga Fucus Evanescens. Structure and Biological Activity of the New Fucoidan Fractions. J. Appl. Phycol. 2018, 30(3), 2039–2046. DOI: 10.1007/s10811-017-1342-9.
  • Rahimi, F.; Tabarsa, M.; Rezaei, M. Ulvan from Green Algae Ulva Intestinalis: Optimization of Ultrasound-assisted Extraction and Antioxidant Activity. J. Appl. Phycol. 2016, 28(5), 2979–2990. DOI: 10.1007/s10811-016-0824-5.
  • Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; You, S. Bioactivities of Nizamuddinia Zanardinii Sulfated Polysaccharides Extracted by Enzyme, Ultrasound and Enzyme-ultrasound Methods. J. Food Sci. Technol. 2019, 56(3), 1212–1220. DOI: 10.1007/s13197-019-03584-1.
  • Flórez-Fernández, N.; López-García, M.; González-Muñoz, M. J.; Vilariño, J. M. L.; Domínguez, H. Ultrasound-assisted Extraction of Fucoidan from Sargassum Muticum. J. Appl. Phycol. 2017, 29(3), 1553–1561. DOI: 10.1007/s10811-016-1043-9.
  • Rodrigues, D.; Sousa, S.; Silva, A.; Amorim, M.; Pereira, L.; Rocha-Santos, T. A. P.; Gomes, A. M. P.; Duarte, A. C.; Freitas, A. C. Impact of Enzyme- and Ultrasound-assisted Extraction Methods on Biological Properties of Red, Brown, and Green Seaweeds from the Central West Coast of Portugal. J. Agric. Food Chem. 2015, 63(12), 3177–3188. DOI: 10.1021/jf504220e.
  • Dang, T. T.; Van Vuong, Q.; Schreider, M. J.; Bowyer, M. C.; Van Altena, I. A.; Scarlett, C. J. Optimisation of Ultrasound-assisted Extraction Conditions for Phenolic Content and Antioxidant Activities of the Alga Hormosira Banksii Using Response Surface Methodology. J. Appl. Phycol. 2017, 29(6), 3161–3173. DOI: 10.1007/s10811-017-1162-y.
  • Kadam, S. U.; Donnell, C. P.; Rai, D. K.; Hossain, M. B.; Burgess, C. M.; Walsh, D.; Tiwari, B. K. Laminarin from Irish Brown Seaweeds Ascophyllum Nodosum and Laminaria Hyperborea: Ultrasound Assisted Extraction, Characterization and Bioactivity. Mar. Drugs. 2015, 13(7), 4270–4280. DOI: 10.3390/md13074270.
  • Kadam, S. U.; Tiwari, B. K.; Smyth, T. J.; O’Donnell, C. P. Optimization of Ultrasound Assisted Extraction of Bioactive Components from Brown Seaweed Ascophyllum Nodosum Using Response Surface Methodology. Ultrason. Sonochem. 2015, 23, 308–316. DOI: 10.1016/j.ultsonch.2014.10.007.
  • Parniakov, O.; Apicella, E.; Koubaa, M.; Barba, F. J.; Grimi, N.; Lebovka, N.; Pataro, G.; Ferrari, G.; Vorobiev, E. Ultrasound-assisted Green Solvent Extraction of High-added Value Compounds from Microalgae Nannochloropsis Spp. Bioresour. Technol. 2015, 198, 262–267. DOI: 10.1016/j.biortech.2015.09.020.
  • Topuz, O. K.; Gokoglu, N.; Yerlikaya, P.; Ucak, I.; Gumus, B. Optimization of Antioxidant Activity and Phenolic Compound Extraction Conditions from Red Seaweed (Laurencia Obtuse). J. Aquat. Food Prod. Technol. 2016, 25(3), 414–422. DOI: 10.1080/10498850.2013.868844.
  • Wardhani, D. H.; Sari, D. K.; Prasetyaningrum, A. Ultrasonic-assisted Extraction of Antioxidant Phenolic Coumpounds From. Eucheuma cottonii Reaktor. 2014, 2014, 7. DOI: 10.14710/reaktor.14.4.291-297.
  • Zhang, R.; Grimi, N.; Marchal, L.; Lebovka, N.; Vorobiev, E. Effect of Ultrasonication, High Pressure Homogenization and Their Combination on Efficiency of Extraction of Bio-molecules from Microalgae Parachlorella Kessleri. Algal Res. 2019, 40, 101524. DOI: 10.1016/j.algal.2019.101524.
  • Gayathri, S.; Rajasree Radhika, S. R.; Suman, T. Y.; Aranganathan, L. Ultrasound-assisted Microextraction of β, ε-carotene-3, 3′-diol (Lutein) from Marine Microalgae Chlorella Salina: Effect of Different Extraction Parameters. Biomass Convers Biorefin. 2018, 8, 791–797. DOI: 10.1007/s13399-018-0331-9.
  • Kong, W.; Liu, N.; Zhang, J.; Yang, Q.; Hua, S.; Song, H.; Xia, C. Optimization of Ultrasound-assisted Extraction Parameters of Chlorophyll from Chlorella Vulgaris Residue after Lipid Separation Using Response Surface Methodology. J. Food Sci. Technol. 2014, 51(9), 2006–2013. DOI: 10.1007/s13197-012-0706-z.
  • Aubourg, S. P.; Torres-Arreola, W.; Trigo, M.; Ezquerra-Brauer, J. M. Partial Characterization of Jumbo Squid Skin Pigment Extract and Its Antioxidant Potential in a Marine Oil System. European Journal oLipid Sciencef and Technology. 2016, 1189, 1293–1304. DOI:10.1002/ejlt.201500356.
  • Tian, J.; Wang, Y.; Zhu, Z.; Zeng, Q.; Xin, M. Recovery of Tilapia (Oreochromis Niloticus) Protein Isolate by High-intensity Ultrasound-aided Alkaline Isoelectric Solubilization/precipitation Process. Food Bioprocess. Technol. 2015, 8(4), 758–769. DOI: 10.1007/s11947-014-1431-6.
  • Álvarez, C.; Lélu, P.; Lynch, S. A.; Tiwari, B. K. Halal Gelatin Extraction from Patin Fish bone(Pangasius Hypophthalmus)by-product with Ultrasound-assisted extraction. IOP Conference Series: Earth and Environmental Science. 2018, 88, 210–216. DOI: 10.1088/1755-1315/299/1/012061.
  • Higuera-Barraza, O. A.; Torres-Arreola, W.; Ezquerra-Brauer, J. M.; Cinco-Moroyoqui, F. J.; Rodríguez Figueroa, J. C.; Marquez-Ríos, E. Effect of Pulsed Ultrasound on the Physicochemical Characteristics and Emulsifying Properties of Squid (Dosidicus Gigas) Mantle Proteins. Ultrason. Sonochem. 2017, 38, 829–834. DOI: 10.1016/j.ultsonch.2017.01.008.
  • Phong, W. N.; Show, P. L.; Le, C. F.; Tao, Y.; Chang, J.S.; Ling, T. C. Improving Cell Disruption Efficiency to Facilitate Protein Release from Microalgae Using Chemical and Mechanical Integrated Method. Biochem. Eng. J. 2018, 135, 83–90. DOI: 10.1016/j.bej.2018.04.002.
  • Sankaran, R.; Manickam, S.; Yap, Y. J.; Ling, T. C.; Chang, J.S.; Show, P. L. Extraction of Proteins from Microalgae Using Integrated Method of Sugaring-out Assisted Liquid Biphasic Flotation (LBF) and Ultrasound. Ultrason. Sonochem. 2018, 48, 231–239. DOI: 10.1016/j.ultsonch.2018.06.002.
  • Vernès, L.; Abert-Vian, M.; El Maâtaoui, M.; Tao, Y.; Bornard, I.; Chemat, F. Application of Ultrasound for Green Extraction of Proteins from Spirulina. Mechanism, Optimization, Modeling, and Industrial Prospects. Ultrason. Sonochem. 2019, 54, 48–60. DOI: 10.1016/j.ultsonch.2019.02.016.
  • Mittal, R.; Tavanandi, H. A.; Mantri, V. A.; Raghavarao, K. S. M. S. Ultrasound Assisted Methods for Enhanced Extraction of Phycobiliproteins from Marine Macro-algae, Gelidium Pusillum (Rhodophyta). Ultrason. Sonochem. 2017, 38, 92–103. DOI: 10.1016/j.ultsonch.2017.02.030.
  • Wang, F.; Guo, X.Y.; Zhang, D.N.; Wu, Y.; Wu, T.; Chen, Z.G. Ultrasound-assisted Extraction and Purification of Taurine from the Red Algae Porphyra Yezoensis. Ultrason. Sonochem. 2015, 24, 36–42. DOI: 10.1016/j.ultsonch.2014.12.009.
  • Bruno, S. F.; Kudre, T. G.; Bhaskar, N. Impact of Pretreatment-assisted Enzymatic Extraction on Recovery, Physicochemical and Rheological Properties of Oil from Labeo Rohita Head. J. Food Process Eng. 2019, 42(3), e12990. DOI: 10.1111/jfpe.12990.
  • Ellison, C. R.; Overa, S.; Boldor, D. Central Composite Design Parameterization of Microalgae/cyanobacteria Co-culture Pretreatment for Enhanced Lipid Extraction Using an External Clamp-on Ultrasonic Transducer. Ultrason. Sonochem. 2019, 51, 496–503. DOI: 10.1016/j.ultsonch.2018.05.006.
  • Araujo, G. S.; Matos, L. J. B. L.; Fernandes, J. O.; Cartaxo, S. J. M.; Gonçalves, L. R. B.; Fernandes, F. A. N.; Farias, W. R. L. , Extraction of lipids from microalgae by ultrasound application: Prospection of the optimal extraction method. Ultrason. Sonochem. 2013, 20(1), 95–98. DOI: 10.1016/j.ultsonch.2012.07.027.
  • Kim, Y.H.; Park, S.; Kim, M. H.; Choi, Y.K.; Yang, Y.H.; Kim, H. J.; Kim, H.; Kim, H.S.; Song, K.G.; Lee, S. H. Ultrasound-assisted Extraction of Lipids from Chlorella Vulgaris Using [Bmim][meso4]. Biomass Bioenergy. 2013, 56, 99–103. DOI: 10.1016/j.biombioe.2013.04.022.
  • Adam, F.; Abert-Vian, M.; Peltier, G.; Chemat, F. Solvent-free” Ultrasound-assisted Extraction of Lipids from Fresh Microalgae Cells: A Green, Clean and Scalable Process. Bioresour. Technol. 2012, 114, 457–465. DOI: 10.1016/j.biortech.2012.02.096.
  • Natarajan, R.; Ang, W. M. R.; Chen, X.; Voigtmann, M.; Lau, R. Lipid Releasing Characteristics of Microalgae Species through Continuous Ultrasonication, Bioresour. Technol. 2014, 158, 7–11. DOI: 10.1016/j.biortech.2014.01.146.
  • Sinthusamran, S.; Benjakul, S.; Kijroongrojana, K.; Prodpran, T.; Agustini, T. W. Yield and Chemical Composition of Lipids Extracted from Solid Residues of Protein Hydrolysis of Pacific White Shrimp Cephalothorax Using Ultrasound-assisted Extraction. Food Biosci. 2018, 26, 169–176. DOI: 10.1016/j.fbio.2018.10.009.
  • Gulzar, S.; Benjakul, S. Ultrasound Waves Increase the Yield and Carotenoid Content of Lipid Extracted from Cephalothorax of Pacific White Shrimp (Litopenaeus Vannamei). Eur. J. Lipid Sci. Technol. 2018, 120(5), 1700495. DOI: 10.1002/ejlt.201700495.
  • Raguraman, V. S.A. L, M. D, N. G, T. R, K. R, T. N, Unraveling Rapid Extraction of Fucoxanthin from Padina Tetrastromatica: PurificatioN, Characterization and Biomedical Application. Process Biochem. 2018, 73(73), 211–219. DOI: 10.1016/j.procbio.2018.08.006.
  • Azizi, R.; Farahnaky, A. Ultrasound Assisted-viscosifying of Kappa Carrageenan without Heating. Food Hydrocolloids. 2016, 61, 85–91. DOI: 10.1016/j.foodhyd.2016.05.006.
  • Mirzajani, R.; Bagheban, M. Simultaneous Preconcentration and Determination of Malachite Green and Fuchsine Dyes in Seafood and Environmental Water Samples Using Nano-alumina-based Molecular Imprinted Polymer Solid-phase Extraction. Int. J. Environ. Anal. Chem. 2016, 96, 576–594. DOI: 10.1080/03067319.2016.1172215.
  • Eich, J.; Bohm, D. A.; Holzkamp, D.; Mankertz, J. Validation of a Method for the Determination of Triphenylmethane Dyes in Trout and Shrimp with Superior Extraction Efficiency. Food Addit. Contam. 2020, 37(1), 84–93. DOI: 10.1080/19440049.2019.1671611.
  • Li, Z. L.; Lin, Z.; Chen, X.M.; Zhang, H.Y.; Lin, Y.D.; Lai, Z.; Huang, Z.Y; Huang.; Molecularly Imprinted Polymers for Extraction of Malachite Green from Fish Samples Prior to Its Determination by HPLC. Microchim. Acta. 2015, 182(9–10), 1791–1796. DOI: 10.1007/s00604-015-1513-9.
  • Wang, Y.; Chen, L. Analysis of Malachite Green in Aquatic Products by Carbon Nanotube-based Molecularly Imprinted – Matrix Solid Phase Dispersion. J. Chromatogr. B. 2015, 1002, 98–106. DOI: 10.1016/j.jchromb.2015.08.002.
  • Bayat, M.; Shemirani, F.; Ghasemi, J. B. Simultaneous Determination of Binary Solution of Triphenylmethane Dyes in Complex Matrices onto Magnetic Amino-rich SWCNT Using Second-order Calibration Method. Environ. Monit. Assess. 2017, 189(11), 594. DOI: 10.1007/s10661-017-6325-4.
  • Lian, Z.; Wang, J. Molecularly Imprinted Polymer for Selective Extraction of Malachite Green from Seawater and Seafood Coupled with High-performance Liquid Chromatographic Determination. Mar. Pollut. Bull. 2012, 64(12), 2656–2662. DOI: 10.1016/j.marpolbul.2012.10.011.
  • Shalaby, A. R.; Emam, W. H.; Anwar, M. M. Mini-column Assay for Rapid Detection of Malachite Green in Fish. Food Chem. 2017, 226, 8–13. DOI: 10.1016/j.foodchem.2017.01.045.
  • Chen, J.; Wei, X.; y, Z, Cao, QuEChERS Pretreatment Combined with Ultra-performance Liquid Chromatography–Tandem Mass Spectrometry for the Determination of Four Veterinary Drug Residues in Marine Products. Food Anal. Methods. 2019, 12(5), 1055–1066. DOI: 10.1007/s12161-018-01431-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.