319
Views
1
CrossRef citations to date
0
Altmetric
Review

Bioaccessibility of Inorganic Arsenic in Rice: Probabilistic Estimation and Identification of Influencing Factors

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon

References

  • International Agency for Research on Cancer. 2012. Arsenic and Arsenic Compound. (Iarc Monographs On The Evaluation Of Carcinogenic Risks To Humans). Available. https://monographs.iarc.fr/wp-content/uploads/2018/06/mono100C-6.pdf
  • Tsuji, J. S.; Chang, E. T.; Gentry, P. R.; Clewell, H. J.; Boffetta, P.; Cohen, S. M. Dose-response for Assessing the Cancer Risk of Inorganic Arsenic in Drinking Water: The Scientific Basis for Use of a Threshold Approach. Critical Reviews in Toxicology. 2019, 491, 36–84. DOI:10.1080/10408444.2019.1573804.
  • Agency for Toxic Substances and Disease Registry. Toxicological Profile for Arsenic; Department of Health and Human Services, Public Health Service: Atlanta, GA:U.S, 2007. Available https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=22&tid=3.
  • Integrated Risk Information System. Arsenic, Inorganic; CASRN 7440-38-2. Chemical Assessment Summary 2002; Available from. https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=278
  • National Research Council. Critical Aspects of EPA&’s IRIS Assessment of Inorganic Arsenic: Interim Report; The National Academies Press: Washington, DC, 2013. 127.ISBN: 978-0-309-29706-6 Available from https://www.nap.edu/catalog/18594/critical-aspects-of-epas-iris-assessment-of-inorganic-arsenic-interim.
  • Mantha, M.; Yeary, E.; Trent, J.; Creed, P. A.; Kubachka, K.; Hanley, T.; Shockey, N.; Heitkemper, D.; Caruso, J.; Xue, J.; et al. Estimating Inorganic Arsenic Exposure from U.S. Rice and Total Water Intakes. Environ. Health Perspect. 2017, 125(5), 057005. DOI: 10.1289/ehp418.
  • Su, Y.-H.; McGrath, S. P.; Zhao, F.-J. Rice Is More Efficient in Arsenite Uptake and Translocation than Wheat and Barley. Plant & Soil. 2010, 3281/2, 27–34. DOI:10.1007/s11104-009-0074-2.
  • Xu, X. Y.; McGrath, S. P.; Meharg, A. A.; Zhao, F. J. Growing Rice Aerobically Markedly Decreases Arsenic Accumulation. Environ. Sci. Technol. 2008, 42(15), 5574–5579. DOI: 10.1021/es800324u.
  • Ma, J. F.; Yamaji, N.; Mitani, N.; Xu, X.-Y.; Su, Y.-H.; McGrath, S. P.; Zhao, F.-J. Transporters of Arsenite in Rice and Their Role in Arsenic Accumulation in Rice Grain. Proc. National Academy Sci. 2008, 105(29), 9931–9935. DOI: 10.1073/pnas.0802361105.
  • National Research Council. Arsenic in Drinking Water, Ed. Subcommittee on Arsenic in Drinking Water; National Academies Press (US): Washington (DC), 1999. ISBN: 978-0-309-18401-4 Available from https://www.nap.edu/catalog/6444/arsenic-in-drinking-water.
  • Ruby, M. V.; Davis, A.; Link, T. E.; Schoof, R.; Chaney, R. L.; Freeman, G. B.; Bergstrom, P. Development of an in Vitro Screening Test to Evaluate the in Vivo Bioaccessibility of Ingested Mine-waste Lead. Environ. Sci. Technol. 1993, 27(13), 2870–2877. DOI: 10.1021/es00049a030.
  • Paustenbach, D. J. The Practice of Exposure Assessment: A State-of-the-art Review. Journal of Toxicology and Environmental Health - Part B: Critical Reviews. 2000, 3(3), 179–291. . DOI:10.1080/10937400050045264.
  • Allen, B.; Shao, K.; Hobbie, K.; Jr W, M.; Lee, J. S.; Cote, I.; Druwe, I.; Gift, J.; Davis, J. A. Systematic Dose-response of Environmental Epidemiologic Studies: Dose and Response Pre-analysis. Environ. Int. 2020, 142(p), 105810. DOI: 10.1016/j.envint.2020.105810.
  • Allen, B.; Shao, K.; Hobbie, K.; Mendez, W.; Lee, J. S.; Cote, I.; Druwe, I.; Gift, J. S.; Davis, J. A. Bayesian Hierarchical Dose-response Meta-analysis of Epidemiological Studies: Modeling and Target Population Prediction Methods. Environ. Int. 2020, 145(p), 106111. DOI: 10.1016/j.envint.2020.106111.
  • Lynch, H. N.; Zu, K.; Kennedy, E. M.; Lam, T.; Liu, X.; Pizzurro, D. M.; Loftus, C. T.; Rhomberg, L. R. Quantitative Assessment of Lung and Bladder Cancer Risk and Oral Exposure to Inorganic Arsenic: Meta-regression Analyses of Epidemiological Data. Environ. Int. 2017, 106(p), 178–206. DOI: 10.1016/j.envint.2017.04.008.
  • Shao, K.; Zhou, Z.; Xun, P.; Cohen, S. M. Bayesian Benchmark Dose Analysis for Inorganic Arsenic in Drinking Water Associated with Bladder and Lung Cancer Using Epidemiological Data. Toxicology. 2021, 455, 152752. DOI: 10.1016/j.tox.2021.152752.
  • Meliker, J. R.; Slotnick, M. J.; AvRuskin, G. A.; Schottenfeld, D.; Jacquez, G. M.; Wilson, M. L.; Goovaerts, P.; Franzblau, A.; Nriagu, J. O. Lifetime Exposure to Arsenic in Drinking Water and Bladder Cancer: A Population-based Case–control Study in Michigan, USA. Cancer Causes Control. 2010, 21(5), 745–757. DOI: 10.1007/s10552-010-9503-z.
  • Mostafa, M. G.; Cherry, N. Arsenic in Drinking Water, Transition Cell Cancer and Chronic Cystitis in Rural Bangladesh. Int. J. Environ. Res. Public Health. 2015, 12(11), 13739–13749. DOI: 10.3390/ijerph121113739.
  • Steinmaus, C. M.; Ferreccio, C.; Romo, J. A.; Yuan, Y.; Cortes, S.; Marshall, G.; Moore, L. E.; Balmes, J. R.; Liaw, J.; Golden, T.; et al.; Drinking Water Arsenic in Northern Chile: High Cancer Risks 40 Years after Exposure Cessation. Cancer Epidemiology Biomarkers & Prevention. 2013, 224, 623–630. DOI:10.1158/1055-9965.Epi-12-1190.
  • Zheng, Y.; Wu, J.; Ng, J.C.; Wang, G.; Lian, W. The absorption and excretion of fluoride and arsenic in humans. Toxicol. lett. 2002, 133, 77–82. doi: 10.1016/S0378-4274(02)00082-6.
  • Cardoso, C.; Afonso, C.; Lourenço, H.; Costa, S.; Nunes, M. L. Bioaccessibility Assessment Methodologies and Their Consequences for the Risk–benefit Evaluation of Food. Trends Food Sci. Technol. 2015, 41(1), 5–23. DOI: 10.1016/j.tifs.2014.08.008.
  • Yager, J. W.; Greene, T.; Schoof, R. A. Arsenic Relative Bioavailability from Diet and Airborne Exposures: Implications for Risk Assessment. Sci. Total Environ. 2015, 536(p), 368–381. DOI: 10.1016/j.scitotenv.2015.05.141.
  • Laparra, J. M.; Velez, D.; Barbera, R.; Farre, R.; Montoro, R. Bioavailability of Inorganic Arsenic in Cooked Rice: Practical Aspects for Human Health Risk Assessments. J. Agric Food Chemi. 2005, 53(22), 8829–33. DOI: 10.1021/jf051365b.
  • Alava, P.; Du Laing, G.; Tack, F.; De Ryck, T.; Van De Wiele, T. And Van De Wiele T, Westernized Diets Lower Arsenic Gastrointestinal Bioaccessibility but Increase Microbial Arsenic Speciation Changes in the Colon. Chemosphere. 2015, 119(p), 757–762. DOI: 10.1016/j.chemosphere.2014.08.010.
  • Du, F.; Yang, Z.; Liu, P.; Wang, L. Bioaccessibility and Variation of Arsenic Species in Polished Rice Grains by an in Vitro Physiologically Based Extraction Test Method. Food Chem. 2019, 293(p), 1–7. DOI: 10.1016/j.foodchem.2019.04.079.
  • Tokalioglu, S.; Clough, R.; Foulkes, M.; Worsfold, P. Stability of Arsenic Species during Bioaccessibility Assessment Using the in Vitro UBM and HPLC-ICP-MS Detection. Biol. Trace Elem. Res. 2020. DOI: 10.1007/s12011-020-02066-2.
  • Heitkemper, D. T.; Vela, N. P.; Stewart, K. R.; Westphal, C. S. Determination of Total and Speciated Arsenic in Rice by Ion Chromatography and Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 2001, 16(4), 299–306. DOI: 10.1039/B007241I.
  • Meharg, A. A.; Williams, P. N.; Adomako, E.; Lawgali, Y. Y.; Deacon, C.; Villada, A.; Cambell, R. C. J.; Sun, G.; Zhu, Y.-G.; Feldmann, J. Geographical Variation in Total and Inorganic Arsenic Content of Polished (White) Rice. Environ. Sci. Technol. 2009, 43(5), 1612–1617. DOI: 10.1021/es802612a.
  • Schoof, R.; Yost, L.; Eickhoff, J.; Crecelius, E.; Cragin, D.; Meacher, D.; Menzel, D. A Market Basket Survey of Inorganic Arsenic in Food. Food Chem. Toxicol. 1999, 37(8), 839–846. DOI: 10.1016/S0278-6915(99)00073-3.
  • Ackerman, A. H.; Creed, P. A.; Parks, A. N.; Fricke, M. W.; Schwegel, C. A.; Creed, J. T.; Heitkemper, D. T.; Velal, N. P. Comparison of a Chemical and Enzymatic Extraction of Arsenic from Rice and an Assessment of the Arsenic Absorption from Contaminated Water by Cooked Rice. Environ. Sci. Technol. 2005, 39(14), 5241–6. DOI: 10.1021/es048150n.
  • Alava, P.; Laing, G. D.; Odhiambo, M.; Verliefde, A.; Tack, F.; Van de Wiele, T. R. And Van De Wiele TR, Arsenic Bioaccessibility upon Gastrointestinal Digestion Is Highly Determined by Its Speciation and Lipid-bile Salt Interactions. J. Environ. Sci. Health A. 2013, 48(6), 656–665. DOI: 10.1080/10934529.2013.732367.
  • Lee, S. G.; Kim, J.; Park, H.; Holzapfel, W.; Lee, K. W. Assessment of the Effect of Cooking on Speciation and Bioaccessibility/cellular Uptake of Arsenic in Rice, Using in Vitro Digestion and Caco-2 and PSI Cells as Model. Food Chem. Toxicol. 2018, 111, 597–604. DOI: 10.1016/j.fct.2017.11.052.
  • Glahn, R. P.; Cheng, Z.; Welch, R. M.; Gregorio, G. B. Comparison of Iron Bioavailability from 15 Rice Genotypes: Studies Using an in Vitro digestion/Caco-2 Cell Culture Model. J. Agric. Food Chem. 2002, 50(12), 3586–3591. DOI: 10.1021/jf0116496.
  • Glahn, R. P.; Lee, O. A.; Yeung, A.; Goldman, M. I.; Miller, D. D. Caco-2 Cell Ferritin Formation Predicts Nonradiolabeled Food Iron Availability in an in Vitro Digestion/Caco-2 Cell Culture Model. J. Nutr. 1998, 128(9), 1555–1561. DOI: 10.1093/jn/128.9.1555.
  • Rodriguez, R. R.; Basta, N. T.; Casteel, S. W.; Pace, L. W. An in Vitro Gastrointestinal Method to Estimate Bioavailable Arsenic in Contaminated Soils and Solid Media. Environ. Sci. Technol. 1999, 33(4), 642–649. DOI: 10.1021/es980631h.
  • Schroder, J.; Basta, N.; Casteel, S.; Evans, T.; Payton, M.; Si, J. Validation of the in Vitro Gastrointestinal (IVG) Method to Estimate Relative Bioavailable Lead in Contaminated Soils. J. Environ. Qual. 2004, 33(2), 513–521. DOI: 10.2134/jeq2004.5130.
  • Alava, P.; Tack, F.; Laing, G. D.; Van de Wiele, T. And Van De Wiele TR, Arsenic Undergoes Significant Speciation Changes upon Incubation of Contaminated Rice with Human Colon Micro Biota. J. Hazard. Mater. 2013, 262(p), 1237–1244. DOI: 10.1016/j.jhazmat.2012.05.042.
  • Ruby, M. V.; Davis, A.; Schoof, R.; Eberle, S.; Sellstone, C. M. Estimation of Lead and Arsenic Bioavailability Using a Physiologically Based Extraction Test. Environ. Sci. Technol. 1996, 30(2), 422–430. DOI: 10.1021/es950057z.
  • Laparra, J. M.; Velez, D.; Montoro, R.; Barbera, R.; Farre, R. Estimation of Arsenic Bioaccessibility in Edible Seaweed by an in Vitro Digestion Method. J. Agric Food Chemi. 2003, 51(20), 6080–5. DOI: 10.1021/jf034537i.
  • Versantvoort, C. H.; Oomen, A. G.; Van de Kamp, E.; Rompelberg, C. J.; Sips, A. J. Applicability of an in Vitro Digestion Model in Assessing the Bioaccessibility of Mycotoxins from Food. Food Chem. Toxicol. 2005, 43(1), 31–40. DOI: 10.1016/j.fct.2004.08.007.
  • Huang, J.-H.; Ilgen, G.; Fecher, P. Quantitative Chemical Extraction for Arsenic Speciation in Rice Grains. J. Anal. At. Spectrom. 2010, 25(6), 800–802. DOI: 10.1039/C002306J.
  • Takenaka, T.; Harada, N.; Kuze, J.; Chiba, M.; Iwao, T.; Matsunaga, T. Human Small Intestinal Epithelial Cells Differentiated from Adult Intestinal Stem Cells as a Novel System for Predicting Oral Drug Absorption in Humans. Drug Metab. Dispos. 2014, 42(11), 1947–1954. DOI: 10.1124/dmd.114.059493.
  • Wragg, J.; Cave, M.; Basta, N.; Brandon, E.; Casteel, S.; Denys, S.; Gron, C.; Oomen, A.; Reimer, K.; Tack, K. And Van De Wiele T, an Inter-laboratory Trial of the Unified BARGE Bioaccessibility Method for Arsenic, Cadmium and Lead in Soil. Sci. Total Environ. 2011, 409(19), 4016–4030. DOI: 10.1016/j.scitotenv.2011.05.019.
  • D'Agostino RB, Goodness-of-fit-techniques. Vol. 68. 1986. CRC press: Boca Raton, USA. ISBN: 0824774876.
  • Delignette-Muller, M. L.; Dutang, C. Fitdistrplus: An R Package for Fitting Distributions. Journal of statistical software. 2015, 64(4), 1–34. DOI: 10.18637/jss.v064.i04.
  • R Core Team. 2013. R: A language and environment for statistical computing., Part 3.6.2 (R Foundation for Statistical Computing, ed). Vienna, Austria.
  • FDA, U. S.;. 2016. Arsenic in Rice and Rice Products Risk Assessment Report. Silver Spring, MD:U.S. FDA, Available. http://www.fda.gov/Food/FoodborneIllnessContaminants/Metals/ucm367263.htm
  • He, Y.; Pedigo, C. E.; Lam, B.; Cheng, Z.; Zheng, Y. Bioaccessibility of Arsenic in Various Types of Rice in an in Vitro Gastrointestinal Fluid System. Journal of Environmental Science & Health, Part B – Pesticides, Food Contaminants, & Agricultural Wastes. 2012, 472, 74–80. DOI:10.1080/03601234.2012.611431.
  • Trenary, H. R.; Creed, P. A.; Young, A. R.; Mantha, M.; Schwegel, C. A.; Xue, J.; Kohan, M. J.; Herbin-Davis, K.; Thomas, D. J.; Caruso, J. A.; et al.; An in Vitro Assessment of Bioaccessibility of Arsenicals in Rice and the Use of This Estimate within a Probabilistic Exposure Model. Journal of Exposure Science and Environmental Epidemiology. 2012, 224, 369–75. DOI:10.1038/jes.2012.24.
  • Li HB, Li J, Zhao D, Li C, Wang XJ, Sun HJ, et al. 2017. Arsenic relative bioavailability in rice using a mouse arsenic urinary excretion bioassay and its application to assess human health risk. Environmental Science & Technology, 51, 4689–4696. doi: 10.1021/acs.est.7b00495.
  • Zhong F, Yokoyama W, Wang Q, Shoemaker CF. 2006. Rice starch, amylopectin, and amylose: Molecular weight and solubility in dimethyl sulfoxide-based solvents. Journal of Agricultural and Food Chemistry, 54, 2320–2326. doi: 10.1021/jf051918i.
  • Li H, Fitzgerald MA, Prakash S, Nicholson TM, Gilbert RG. 2017. The molecular structural features controlling stickiness in cooked rice, a major palatability determinant. Scientific Reports 7, 43713–43713. doi:10.1038/srep43713.
  • Panlasigui, L. N.; Thompson, L. U.; Juliano, B. O.; Perez, C. M.; Yiu, S. H.; Greenberg, G. R. Rice Varieties with Similar Amylose Content Differ in Starch Digestibility and Glycemic Response in Humans. Am. J. Clin. Nutr. 1991, 54(5), 871–877. DOI: 10.1016/j.foodchem.2012.08.053.
  • Chung, H.-J.; Liu, Q.; Lee, L.; Wei, D. Relationship between the Structure, Physicochemical Properties and in Vitro Digestibility of Rice Starches with Different Amylose Contents. Food Hydrocolloids. 2011, 25(5), 968–975. DOI: 10.1016/j.foodhyd.2010.09.011.
  • Hu, P.; Zhao, H.; Duan, Z.; Linlin, Z.; Wu, D. Starch Digestibility and the Estimated Glycemic Score of Different Types of Rice Differing in Amylose Contents. J. Cereal Sci. 2004, 40(3), 231–237. DOI: 10.1016/j.jcs.2004.06.001.
  • Kong, F.; Oztop, M. H.; Singh, R. P.; McCarthy, M. J. Physical Changes in White and Brown Rice during Simulated Gastric Digestion, 2011, 76(6), E450–E457. DOI:10.1111/j.1750-3841.2011.02271.x
  • Syahariza, Z. A.; Sar, S.; Hasjim, J.; Tizzotti, M. J.; Gilbert, R. G. The Importance of Amylose and Amylopectin Fine Structures for Starch Digestibility in Cooked Rice Grains. Food Chem. 2013, 136(2), 742–749. DOI: 10.1016/j.foodchem.2012.08.053.
  • Zhu, L.-J.; Liu, -Q.-Q.; Wilson, J. D.; Gu, M.-H.; Shi, Y.-C. Digestibility and Physicochemical Properties of Rice (Oryza Sativa L.) Flours and Starches Differing in Amylose Content. Carbohydr. Polym. 2011, 86(4), 1751–1759. DOI: 10.1016/j.carbpol.2011.07.017.
  • Juhasz, A. L.; Smith, E.; Weber, J.; Rees, M.; Rofe, A.; Kuchel, T.; Sansom, L.; Naidu, R. In Vivo Assessment of Arsenic Bioavailability in Rice and Its Significance for Human Health Risk Assessment. Environ. Health Perspect. 2006, 114(12), 1826–31. DOI: 10.1289/ehp.9322.
  • FDA, U. S.;. 2013. Analytical Results from Inorganic Arsenic in Rice and Rice Products Sampling. Available: https://www.fda.gov/Food/FoodborneIllnessContaminants/Metals/ucm367263.htm
  • Rahman, M. A.; Hasegawa, H. High Levels of Inorganic Arsenic in Rice in Areas Where Arsenic-contaminated Water Is Used for Irrigation and Cooking. Sci. Total Environ. 2011, 409(22), 4645–4655. DOI: 10.1016/j.scitotenv.2011.07.068.
  • Kumarathilaka, P.; Seneweera, S.; Ok, Y. S.; Meharg, A.; Bundschuh, J. Arsenic in Cooked Rice Foods: Assessing Health Risks and Mitigation Options. Environ. Int. 2019, 127(p), 584–591. DOI: 10.1016/j.envint.2019.04.004.
  • Signes-Pastor, A. J.; Al-Rmalli, S. W.; Jenkins, R. O.; Carbonell-Barrachina, A. A.; Haris, P. I. Arsenic Bioaccessibility in Cooked Rice as Affected by Arsenic in Cooking Water. J. Food Sci. 2012, 77(11), 201–6. DOI: 10.1111/j.1750-3841.2012.02948.x.
  • Sharafi, K.; Yunesian, M.; Mahvi, A. H.; Pirsaheb, M.; Nazmara, S.; Nabizadeh Nodehi, R. And Nabizadeh Nodehi R, Advantages and Disadvantages of Different Pre-cooking and Cooking Methods in Removal of Essential and Toxic Metals from Various Rice Types- Human Health Risk Assessment in Tehran Households, Iran. Ecotoxicol. Environ. Saf. 2019, 175(p), 128–137. DOI: 10.1016/j.ecoenv.2019.03.056.
  • Sharafi, K.; Nodehi, R. N.; Mahvi, A. H.; Pirsaheb, M.; Nazmara, S.; Mahmoudi, B.; Yunesian, M. Bioaccessibility Analysis of Toxic Metals in Consumed Rice through an in Vitro Human Digestion Model – Comparison of Calculated Human Health Risk from Raw, Cooked and Digested Rice. Food Chem. 2019, 299(p), 125126. DOI: 10.1016/j.foodchem.2019.125126.
  • Lombi, E.; Scheckel, K. G.; Pallon, J.; Carey, A. M.; Zhu, Y. G.; Meharg, A. A. Speciation and Distribution of Arsenic and Localization of Nutrients in Rice Grains. New Phytol. 2009, 184(1), 193–201. DOI: 10.1111/j.1469-8137.2009.02912.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.