1,236
Views
2
CrossRef citations to date
0
Altmetric
Review

Hydrolysis of Lactose in Milk: Current Status and Future Products

&

References

  • Suri, S.; Kumar, V.; Prasad, R.; Tanwar, B.; Goyal, A.; Kaur, S.; Gat, Y.; Kumar, A.; Kaur, J.; Singh, D. Considerations for Development of Lactose-free Food. Journal of Nutrition & Intermediary Metabolism. 2019, 15, 27–34. Doi:10.1016/j.jnim.2018.11.003.
  • Di Rienzo, T.; D’Angelo, G.; D’Aversa, F.; Campanale, M. C.; Cesario, V.; Montalto, M.; Gasbarrini, A.; Ojetti, V., . Lactose Intolerance: From Diagnosis to Correct Management. Eur. Rev. Med. Pharmacol. Sci. 2013, 17(Suppl. 2), 18–25.
  • Castanys-Muñoz, E.; Martin, M. J.; Vazquez, E. Building a Beneficial Microbiome from Birth. Adv. Nutr. 2016, 7(2), 323–330. DOI: 10.3945/an.115.010694.
  • Vázquez, E.; Barranco, A.; Ramírez, M.; Gruart, A.; Delgado-García, J. M.; Martínez-Lara, E.; Blanco, S.; Martín, M. J.; Castanys, E.; Buck, R.;; et al. Effects of a Human Milk Oligosaccharide, 2′-fucosyllactose, on Hippocampal Long-term Potentiation and Learning Capabilities in Rodents. J. Nutr. Biochem. 2015, 26(5), 455–465.
  • National Institutes of Health, 2010
  • Di Costanzo, M.; Canani, R. B. Lactose Intolerance: Common Misunderstandings. Ann. Nutr. Metab. 2018, 73(4), 30–37. DOI: 10.1159/000493669.
  • Paul, A. A.; Kumar, S.; Kumar, V.; Sharma, R. Milk Analog: Plant Based Alternatives to Conventional Milk, Production, Potential and Health Concerns. Crit. Rev. Food Sci. Nutr. 2020, 60(18), 3005–3023. DOI: 10.1080/10408398.2019.1674243.
  • Euromonitor Database (2017). Available Online: https://www.euromonitor.com
  • Gänzle, M. G.; Haase, G.; Jelen, P. Lactose: Crystallization, Hydrolysis and Value-added Derivatives. Int. Dairy J. 2008, 18(7), 685–694. DOI: 10.1016/j.idairyj.2008.03.003.
  • Ito, M.; Deguchi, Y.; Kikuchi, K.; Kikuchi, K.; Kobayashi, Y.; Kan, T.; Kan, T.; Kan, T. Effects of Administration of Galactooligosaccharides on the Human Faecal Microflora, Stool Weight and Abdominal Sensation. Microbial Ecology in Health and Disease. 1990, 3(6), 285–292. DOI: 10.3109/08910609009140251.
  • Harju, M.; Kallioinen, H.; Tossavainen, O. Lactose Hydrolysis and Other Conversions in Dairy Products: Technological Aspects. Int. Dairy J. 2012, 22(2), 104–109. DOI: 10.1016/j.idairyj.2011.09.011.
  • Freitas, F. F.; Marquez, L. D.; Ribeiro, G. P.; Brandão, G. C.; Cardoso, V. L.; Ribeiro, E. J. A comparison of the kinetic properties of free and immobilized Aspergillus oryzae β-galactosidase. Biochem. Eng. J. 2011, 58, 33–38. DOI: 10.1016/j.bej.2011.08.011.
  • Lima, A. F.; Cavalcante, K. F.; de Freitas, M. D. F. M.; Rodrigues, T. H. S.; Rocha, M. V. P.; Gonçalves, L. R. B. Comparative biochemical characterization of soluble and chitosan immobilized β-galactosidase from Kluyveromyces lactis NRRL Y1564. Process Biochem. 2013, 48(3), 443–452. DOI: 10.1016/j.procbio.2013.02.002.
  • Vera, C.; Guerrero, C.; Illanes, A. Determination of the Transgalactosylation Activity of Aspergillus Oryzae β-galactosidase: Effect of pH, Temperature, and Galactose and Glucose Concentrations. Carbohydrate Research. 2011, 346(6), 745–752. DOI: 10.1016/j.carres.2011.01.030.
  • Albayrak, N.; Yang, S.-T. Production of Galacto-oligosaccharides from Lactose by Aspergillus Oryzae β-galactosidase Immobilized on Cotton Cloth. Biotechnol. Bioeng. 2002a, 77(1), 8. DOI: 10.1002/bit.1195.
  • Park, H.; Kim, H.; Lee, J.; Kim, D.; Oh, D. Galactooligosaccharide Production by a Thermostable β-galactosidase from Sulfolobus Solfataricus. World J. Microbiol. Biotechnol. 2008, 24(8), 1553–1558. DOI: 10.1007/s11274-007-9642-x.
  • Splechtna, B.; Nguyen, T.-H.; Steinböck, M.; Kulbe, K. D.; Lorenz, W.; Haltrich, D. Production of Prebiotic Galacto-oligosaccharides from Lactose Using β- Galactosidases from Lactobacillus Reuteri. J. Agric. Food Chem. 2006, 54(14), 4999–5006. DOI: 10.1021/jf053127m.
  • Vera, C.; Guerrero, C.; Conejeros, R.; Illanes, A. Synthesis of Galacto-oligosaccharides by β-galactosidase from Aspergillus Oryzae Using Partially Dissolved and Supersaturated Solution of Lactose. Enzyme Microb Tech. 2012, 50(3), 188–194. DOI: 10.1016/j.enzmictec.2011.12.003.
  • Shakeel-Ur-Rehman. Reduced Lactose and Lactose-free Dairy Products. McSweeney, P.L.H., Fox, P.F. Eds., Advanced Dairy Chemistry (3rd Ed.). Lactose, Water, Salts and Minor Constituents. 2009, Vol. 3 98e104. New York, NY, USA: Springer Science and Business Media.
  • Dekker, P. J.; Koenders, D.; Bruins, M. J. Lactose-free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients. 2019, 11(3), 551. DOI: 10.3390/nu11030551.
  • Dekker, P. J. T.;. Enzymes Exogenous to Milk in Dairy Technology: β-D-Galactosidase. In Reference Module in Food Sciences. 1st (Elsevier, Amsterdam, The Netherlands, 2016). 1–8.
  • Tossavainen, O.; Kallioinen, H. Effect of Lactose Hydrolysis on Furosine and Available Lysine in UHT Skim Milk. Milchwissenschaft. 2008, 63(1), 22–26.
  • Google Patents. (2019). Online Patent Search. Retrieved from https://patents.google.com/
  • Wolf, M.; Gasparin, B. C.; Paulino, A. T. Hydrolysis of Lactose Using β-d-galactosidase Immobilized in a Modified Arabic Gum-based Hydrogel for the Production of Lactose-free/low-lactose Milk. Int. J. Biol. Macromol. 2018, 115, 157–164. DOI: 10.1016/j.ijbiomac.2018.04.058.
  • Gennari, A.; Mobayed, F. H.; Catto, A. L.; Benvenutti, E. V.; Volpato, G.; de Souza, C. F. V. Kluyveromyces Lactis β-galactosidase Immobilized on Collagen: Catalytic Stability on Batch and Packed-bed Reactor Hydrolysis. React. Kinet., Mech. Catal. 2019, 127(2), 583–599. DOI: 10.1007/s11144-019-01598-6.
  • Trusek, A.; Dworakowska, D.; Czyzewska, K. 3D Enzymatic Preparations with Graphene Oxide Flakes and Hydrogel to Obtain Lactose-free Products. Food Bioprod. Process. 2020, 121, 224–229. DOI: 10.1016/j.fbp.2020.03.002.
  • Sirisha, V. L.; Jain, A.; Jain, A. Enzyme immobilization: an overview on methods, support material, and applications of immobilized enzymes. Adv. Food Nutr. Res. 2016, 79, 179–211.
  • Sheldon, R. A.;. Cross-Linked Enzyme Aggregates as Industrial Biocatalysts. Organic Process Research and Development. 2011, 15(1), 2694. DOI: 10.1021/op100289f.
  • Selvarajan, E.; Mohanasrinivasan, V.; Devi, C. S.; Doss, C. G. P. Immobilization of β-galactosidase from Lactobacillus Plantarum HF571129 on ZnO Nanoparticles: Characterization and Lactose Hydrolysis. Bioprocess Biosyst. Eng. Springer Berlin Heidelberg. 2015, 38(9), 1655–1669. DOI: 10.1007/s00449-015-1407-6.
  • Katrolia, P.; Liu, X.; Li, G.; Kopparapu, N. K. Enhanced Properties and Lactose Hydrolysis Efficiencies of Food-Grade β-Galactosidases Immobilized on Various Supports: A Comparative Approach. Appl. Biochem. Biotechnol. 2019, 188(2), 410–423. DOI: 10.1007/s12010-018-2927-8.
  • Arsalan, A.; Alam, M. F.; Zofair, S. F. F.; Ahmad, S.; Younus, H. Immobilization of β-galactosidase on Tannic Acid Stabilized Silver Nanoparticles: A Safer Way Towards Its Industrial Application. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2020, 226, 117637. DOI: 10.1016/j.saa.2019.117637.
  • Talens-Perales, D.; Fabra, M. J.; Martínez-Argente, L.; Marín-Navarro, J.; Polaina, J. Recyclable Thermophilic Hybrid Protein-inorganic Nanoflowers for the Hydrolysis of Milk Lactose. Int. J. Biol. Macromol. 2020, 151, 602–608. DOI: 10.1016/j.ijbiomac.2020.02.115.
  • Ko, C. Y.; Liu, J. M.; Chen, K. I.; Hsieh, C. W.; Chu, Y. L.; Cheng, K. C. Lactose-free Milk Preparation by Immobilized Lactase in Glass Microsphere Bed Reactor. Food Biophys. 2018, 13(4), 353–361. DOI: 10.1007/s11483-018-9541-8.
  • Kirthiga, O. M.; Sivasankari, M.; Vellaiammal, R.; Rajendran, L. Theoretical Analysis of Concentration of Lactose Hydrolysis in a Packed Bed Reactor Using Immobilized β-galactosidase. Ain Shams Engineering Journal. 2018, 9(4), 1507–1512. DOI: 10.1016/j.asej.2016.10.007.
  • Maria-Hormigos, R.; Jurado-Sanchez, B.; Vazquez, L.; Escarpa, A. Carbon Allotrope Nanomaterials Based Catalytic Micromotors. Chem. Mater. 2016, 28(24), 8962–8970. DOI: 10.1021/acs.chemmater.6b03689.
  • Maria‐Hormigos, R.; Jurado‐Sánchez, B.; Escarpa, A. Surfactant-Free β-Galactosidase Micromotors for “On-the-move” Lactose Hydrolysis. Adv. Funct. Mater. 2018, 28(25), 1704256. DOI: 10.1002/adfm.201704256.
  • Ramsdell, G. A.; Webb, B. H. The Acid Hydrolysis of Lactose and the Preparation of Hydrolyzed Lactose Sirup. J. Dairy Sci. 1945, 28(9), 677–686. DOI: 10.3168/jds.S0022-0302(45)95222-2.
  • Gajendragadkar, C. N.; Gogate, P. R. Ultrasound Assisted Acid Catalyzed Lactose Hydrolysis: Understanding into Effect of Operating Parameters and Scale up Studies. Ultrason. Sonochem. 2017, 37, 9–15. DOI: 10.1016/j.ultsonch.2016.12.029.
  • Lindsay, M. J.; Walker, T. W.; Dumesic, J. A.; Rankin, S. A.; Huber, G. W. Production of Monosaccharides and Whey Protein from Acid Whey Waste Streams in the Dairy Industry. Green Chem. 2018, 20(8), 1824–1834. DOI: 10.1039/C8GC00517F.
  • Chockchaisawasdee, S.; Athanasopoulos, V. I.; Niranjan, K.; Rastall, R. A. Synthesis of Galacto-oligosaccharide from Lactose Using ?-galactosidase fromKluyveromyces Lactis: Studies on Batch and Continuous UF Membrane-fitted Bioreactors. Biotechnol. Bioeng. 2005, 89(4), 434–443. DOI: 10.1002/bit.20357.
  • Córdova, A.; Astudillo, C.; Vera, C.; Guerrero, C.; Illanes, A. Performance of an Ultrafiltration Membrane Bioreactor (UF-MBR) as a Processing Strategy for the Synthesis of Galacto-oligosaccharides at High Substrate Concentrations. J. Biotechnol. 2016, 223, 26–35. DOI: 10.1016/j.jbiotec.2016.02.028.
  • Ebrahimi, M.; Placido, L.; Engel, L.; Ashaghi, K. S.; Czermak, P. A Novel Ceramic Membrane Reactor System for the Continuous Enzymatic Synthesis of Oligosaccharides. Desalination. 2010, 250(3), 1105–1108. DOI: 10.1016/j.desal.2009.09.118.
  • Mei, X.; Quek, P. J.; Wang, Z.; Ng, H. Y. Alkali-assisted Membrane Cleaning for Fouling Control of Anaerobic Ceramic Membrane Bioreactor. Bioresour. Technol. 2017, 240, 25–32. DOI: 10.1016/j.biortech.2017.02.052.
  • Illanes, A.;. Whey Upgrading by Enzyme Biocatalysis. Electron. J. Biotechnol. 2011, 14(6), 1–28. DOI: 10.2225/vol14-issue6-fulltext-11.
  • Dills, W. L.;. Sugar Alcohols as Bulk Sweeteners. Annual Review of Nutrition. 1989, 9(1), 161–186. DOI: 10.1146/annurev.nu.09.070189.001113.
  • Martínez-Monteagudo, S. I.; Enteshari, M.; Metzger, L. Lactitol: Production, Properties, and Applications. Trends Food Sci. Technol. 2019, 83, 181–191. DOI: 10.1016/j.tifs.2018.11.020.
  • Aider, M.; De Halleux, D. Isomerization of Lactose and Lactulose Production: Review. Trends Food Sci. Technol. 2007, 18(7), 356–364. DOI: 10.1016/j.tifs.2007.03.005.
  • Panesar, P. S.; Kumari, S. Lactulose: Production, Purification and Potential Applications. Biotechnol. Adv. 2011, 29(6), 940–948. DOI: 10.1016/j.biotechadv.2011.08.008.
  • Schuster-Wolff-Bühring, R.; Fischer, L.; Hinrichs, J. Production and Physiological Action of the Disaccharide Lactulose. Int. Dairy J. 2010, 20(11), 731–741. DOI: 10.1016/j.idairyj.2010.05.004.
  • Aider, M.; Gimenez-Vidal, M. Lactulose Synthesis by Electro-isomerization of Lactose: Effect of Lactose Concentration and Electric Current Density. Innovative Food Sci. Emerg. Technol. 2012, 16, 163–170. DOI: 10.1016/j.ifset.2012.05.007.
  • Aissa, A. A.; Aïder, M. Lactose Isomerization into Lactulose in an Electro-activation Reactor and High-performance Liquid Chromatography (HPLC) Monitoring of the Process. J. Food Eng. 2013, 119(1), 115–124. DOI: 10.1016/j.jfoodeng.2013.05.011.
  • Kim, Y.-S.; Kim, J.-E.; Oh, D.-K. Borate Enhances the Production of Lactulose from Lactose by Cellobiose 2-epimerase from Caldicellulosiruptor Saccharolyticus. Bioresour. Technol. 2013, 128, 809–812. DOI: 10.1016/j.biortech.2012.10.060.
  • Shen, Q.; Zhang, Y.; Yang, R.; Pan, S.; Dong, J.; Fan, Y.; Han, L. Enhancement of Isomerization Activity and Lactulose Production of Cellobiose 2-epimerase from Caldicellulosiruptor Saccharolyticus. Food Chem. 2016, 207, 60–67. DOI: 10.1016/j.foodchem.2016.02.067.
  • Mayer, J.; Kranz, B.; Fischer, L. Continuous Production of Lactulose by Immobilized Thermostable β-glycosidase from Pyrococcus Furiosus. J. Biotechnol. 2010, 145(4), 387–393. DOI: 10.1016/j.jbiotec.2009.12.017.
  • Guerrero, C.; Valdivia, F.; Ubilla, C.; Ramírez, N.; Gómez, M.; Aburto, C.; Illanes, A.; Illanes, A. Continuous Enzymatic Synthesis of Lactulose in Packed-bed Reactor with Immobilized Aspergillus Oryzae β-galactosidase. Bioresour. Technol. 2019, 278, 296–302. DOI: 10.1016/j.biortech.2018.12.018.
  • Karim, A.; Aider, M. Sustainable Electroisomerization of Lactose into Lactulose and Comparison with the Chemical Isomerization at Equivalent Solution Alkalinity. ACS Omega. 2020, 5(5), 2318–2333. DOI: 10.1021/acsomega.9b03705.
  • Nooshkam, M.; Madadlou, A. Microwave-assisted Isomerisation of Lactose to Lactulose and Maillard Conjugation of Lactulose and Lactose with Whey Proteins and Peptides. Food Chem. 2016, 200, 1–9. DOI: 10.1016/j.foodchem.2015.12.094.
  • Als-Nielsen, B.; Gluud, L. L.; Gluud, C. Non-absorbable Disaccharides for Hepatic Encephalopathy: Systematic Review of randomised Trials. BMJ. 2004, 328(7447), 1046–1050. DOI: 10.1136/bmj.38048.506134.EE.
  • Tieking, M.; Ganzle, M. G. Exopolysaccharides from Cereal-associated Lactobacilli. Trends Food Sci. Technol. 2005, 16(1–3), 79–84. DOI: 10.1016/j.tifs.2004.02.015.
  • Duarte, L. S.; da Natividade Schöffer, J.; Lorenzoni, A. S. G.; Rodrigues, R. C.; Rodrigues, E.; Hertz, P. F. A New Bioprocess for the Production of Prebiotic Lactosucrose by an Immobilized β-galactosidase. Process Biochem. 2017, 55, 96–103. DOI: 10.1016/j.procbio.2017.01.015.
  • Ogata, Y.; Fujita, K.; Ishigami, H.; Hara, K.; Terada, A.; Hara, H.; Fujimori, I.; Misuoka, T. Effect of a Small Amount of 4G-beta-D-galactosylsucrose (Lactosucrose) on Fecal Flora and Fecal Properties. Journal of Japanese Society of Nutrition and Food Science. 1993, 46(4), 317–323. DOI: 10.4327/jsnfs.46.317.
  • Lu, Y.; Levin, G. V.; Donner, T. W. Tagatose, a New Antidiabetic and Obesity Control Drug. Diabetes, obesity and metabolism. 2008, 10(2), 109–134.
  • Beadle, J. R.; Saunders, J. P.; Wajda, T., Jr. J. Process for Manufacturing Tagatose. 1989, US5002612A.
  • Bober, J. R.; Nair, N. U. Galactose to Tagatose Isomerization at Moderate Temperatures with High Conversion and Productivity. Nat. Commun. 2019, 10(1), 1–10. DOI: 10.1038/s41467-019-12497-8.
  • Zheng, Z.; Xie, J.; Liu, P.; Li, X.; Ouyang, J. Elegant and Efficient Biotransformation for Dual Production of D-tagatose and Bioethanol from Cheese Whey Powder. J. Agric. Food Chem. 2019, 67(3), 829–835. DOI: 10.1021/acs.jafc.8b05150.
  • Fisher, E.; Meyer, J. Oxydation des milchzuckers. Berichte der Deutschen Chemischen Gesellschaft. 1889, 22(1), 361–364. DOI: 10.1002/cber.18890220182.
  • Gerling, K. G.; (1998). Large-scale Production of Lactobionic Acid-use and New Applications. In International Whey Conference, Chicago (USA), 27-29 Oct 1997. International Dairy Federation.
  • Chen, H.; Zhong, Q. Lactobionic Acid Enhances the Synergistic Effect of Nisin and Thymol against Listeria Monocytogenes Scott A in Tryptic Soy Broth and Milk. Int. J. Food Microbiol. 2017, 260(1), 36–41. DOI: 10.1016/j.ijfoodmicro.2017.08.013.
  • Cardoso, T.; Marques, C.; Dagostin, J. L. A.; Masson, M. L. Lactobionic Acid as a Potential Food Ingredient: Recent Studies and Applications. J. Food Sci. 2019, 84(7), 1672–1681.
  • Alonso, S.; Rendueles, M.; Dıaz, M. Bio-production of Lactobionic Acid: Current Status, Applications and Future Prospects. Biotechnol. Adv. 2013, 31(8), 1275–1291. DOI: 10.1016/j.biotechadv.2013.04.010.
  • Gupta, V. K.; Treichel, H.; Shapaval, V.; Tuohy, M. G.; Oliveira, L. A. Microbial Functional Foods and Nutraceuticals, 1st ed.; Wiley-Blackwell: Chichester, UK, 2017.
  • De Giorgi, S.; Raddadi, N.; Fabbri, A.; Toschi, T. G.; Fava, F. Potential Use of Ricotta Cheese Whey for the Production of Lactobionic Acid by Pseudomonas Taetrolens Strains. New Biotechnol. 2018, 42, 71–76. DOI: 10.1016/j.nbt.2018.02.010.
  • Alvarez-Martin, P.; Florez, A. B.; Hernández-Barranco, A.; Mayo, B. Interaction between Dairy Yeasts and Lactic Acid Bacteria Strains during Milk Fermentation. Food Control. 2008, 19(1), 62–70. DOI: 10.1016/j.foodcont.2007.02.003.
  • Yang, Y. B.; Montgomery, R. Alkaline Degradation of Glucose: Effect of Initial Concentration of Reactants. Carbohydr. Res. 1996, 280(1), 27–45. DOI: 10.1016/0008-6215(95)00294-4.
  • Biella, S.; Prati, L.; Rossi, M. Selective Oxidation of D-glucose on Gold Catalyst. J. Catal. 2002, 206(2), 242–247. DOI: 10.1006/jcat.2001.3497.
  • Mirescu, A.; Prüsse, A. Preparation of Gold Catalysts for Glucose Oxidation by Incipient Wetness. Catal. Commun. 2006, 7(1), 11–17. DOI: 10.1016/j.catcom.2005.07.019.
  • Martinez, F. A. C.; Balciunas, E. M.; Salgado, J. M.; Gonzalez, J. M. D.; Converti, A.; de Souza Oliveira, R. P. Lactic Acid Properties, Applications and Production: A Review. Trends Food Sci. Technol. 2013, 30(1), 70–83. DOI: 10.1016/j.tifs.2012.11.007.
  • Gao, C.; Ma, C.; Xu, P. Biotechnological Routes Based on Lactic Acid Production from Biomass. Biotechnol. Adv. 2011, 29(6), 930–939. DOI: 10.1016/j.biotechadv.2011.07.022.
  • Sinclair, R. G.;. The Case for Polylactic Acid as a Commodity Packaging Plastic. J. Macromol. Sci., Part A: Pure Appl. Chem. 1996, 33(5), 585–597. DOI: 10.1080/10601329608010880.
  • Auras, R.; Harte, B.; Selke, S. An Overview of Polylactides as Packaging Materials. Macromol. Biosci. 2004, 4(9), 835–864. DOI: 10.1002/mabi.200400043.
  • Gupta, B.; Revagade, N.; Hilborn, J. Poly(lactic Acid) Fiber: An Overview. Prog. Polym. Sci. 2007, 32(4), 455–482. DOI: 10.1016/j.progpolymsci.2007.01.005.
  • Levitt, A.; Beck, M. Market Outlook 2017-19. US Dairy Export Council. 2019
  • Nielsen. Product Insider, https://www.nielsen.com/us/en/insights/report/2019/total-consumer-report-2019/ ( accessed August 11, 2019)
  • Torres, J. K. F.; Stephani, R.; Tavares, G. M.; de Carvalho, A. F.; Costa, R. G. B.; de Almeida, C. E. R.; Almeida, M. R.; de Oliveira, L. F. C.; Schuck, P.; Perrone, Í. T.;; et al. Technological Aspects of Lactose-hydrolyzed Milk Powder. Food Res. Int. 2017, 101, 45–53. DOI: 10.1016/j.foodres.2017.08.043.
  • Jouppila, K.; Roos, Y. H. Glass Transitions and Crystallization in Milk Powders. J. Dairy Sci. Elsevier. 1994, 77(10), 2907–2915. DOI: 10.3168/jds.S0022-0302(94)77231-3.
  • Zhang, W.; Ray, C.; Poojary, M. M.; Jansson, T.; Olsen, K.; Lund, M. N. Inhibition of Maillard Reactions by Replacing Galactose with Galacto-oligosaccharides in Casein Model Systems. J. Agric. Food Chem. 2018, 67(3), 875–886. DOI: 10.1021/acs.jafc.8b05565.
  • Ruiz-Aceituno, L.; Hernandez-Hernandez, O.; Kolida, S.; Moreno, F. J.; Methven, L. Sweetness and Sensory Properties of Commercial and Novel Oligosaccharides of Prebiotic Potential. Lwt. 2018, 97, 476–482. doi: 10.1016/j.lwt.2018.07.038.
  • Torres, D. P.; Gonçalves, M. D. P. F.; Teixeira, J. A.; Rodrigues, L. R. Galacto‐oligosaccharides: production, properties, applications, and significance as prebiotics. Compr. Rev. Food Sci. Food Saf. 2010,9(5), 438–454. doi:10.1111/j.1541-4337.2010.00119.x.
  • Dumortier, V.; Brassart, C.; Bouquelet, S. Purification and Properties of β-D-galactosidase from Bifidobacterium Bifidum Exhibiting a Transgalactosylation Reaction. Biotechnol. Appl. Biochem. 1994, 19(3), 341–354.
  • Kang, S.; Kong, F.; Shi, X.; Han, H.; Li, M.; Guan, B.; Yue, X.; Cao, X.; Tao, D.; Zheng, Y. Antibacterial Activity and Mechanism of Lactobionic Acid against Pseudomonas Fluorescens and Methicillin-resistant Staphylococcus Aureus and Its Application on Whole Milk. Food Control. 2020, 108, 106876. doi: 10.1016/j.foodcont.2019.106876.
  • Carminati, D.; Bonvini, B.; Rossetti, L.; Zago, M.; Tidona, F.; Giraffa, G. Investigation on the Presence of Blue Pigment-producing Pseudomonas Strains along a Production Line of Fresh Mozzarella Cheese. Food Control. 2019, 100, 321–328. DOI: 10.1016/j.foodcont.2019.02.009.
  • Tyagi, A. K.; Malik, A. Antimicrobial Action of Essential Oil Vapours and Negative Air Ions against Pseudomonas Fluorescens. Int. J. Food Microbiol. 2010, 143(3), 205–210. DOI: 10.1016/j.ijfoodmicro.2010.08.023.
  • Wang, H.; Cai, L.; Li, Y.; Xu, X.; Zhou, G. Biofilm Formation by Meat-borne Pseudomonas Fluorescens on Stainless Steel and Its Resistance to Disinfectants. Food Control. 2018, 91, 397–403. DOI: 10.1016/j.foodcont.2018.04.035.
  • Jaspe, A.; Palacios, P.; Fernandez, L.; Sanjose, C. Effect of Extra Aeration on Extracellular Enzyme Activities and ATP Concentration of Dairy Pseudomonas Fluorescens. Lett Appl. Microbiol. 2000, 30(3), 244–248. DOI: 10.1046/j.1472-765x.2000.00705.x.
  • Yao, X.; Zhu, X.; Pan, S.; Fang, Y.; Jiang, F.; Phillips, G. O.; Xu, X. Antimicrobial Activity of Nobiletin and Tangeretin against Pseudomonas. Food Chem. 2012, 132(4), 1883–1890. DOI: 10.1016/j.foodchem.2011.12.021.
  • Othman, B. R.; Kuan, C. H.; Mohammed, A. S.; Cheah, Y. K.; Tan, C. W.; New, C. Y.; Nishibuchi, M.; San Chang, W.; Loo, Y. Y.; Nakaguchi, Y. Occurrence of Methicillin-resistant Staphylococcus Aureus in Raw Shellfish at Retail Markets in Malaysia and Antibacterial Efficacies of Black Seed (Nigella Sativa) Oil against MRSA. Food Control. 2018, 90, 324–331. DOI: 10.1016/j.foodcont.2018.02.045.
  • Unlu, A.; Sar, T.; Seker, G.; Erman, A. G.; Kalpar, E.; Akbas, M. Y. Biofilm Formation by Staphylococcus Aureus Strains and Their Control by Selected Phytochemicals. Int. J. Dairy Technol. 2018, 71(3), 637–646. DOI: 10.1111/1471-0307.12520.
  • García, C.; Bautista, L.; Rendueles, M.; Díaz, M. A New Synbiotic Dairy Food Containing Lactobionic Acid and Lactobacillus Casei. Int. J. Dairy Technol. 2019, 72(1), 47–56. DOI: 10.1111/1471-0307.12558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.