1,524
Views
11
CrossRef citations to date
0
Altmetric
Review

Enrichment of Cakes and Cookies with Pulse Flours. A Review

&

References

  • Hall, C.; Hillen, C.; Garden Robinson, J. Composition, Nutritional Value, and Health Benefits of Pulses. Cereal Chem. 2017, 94(1), 11–31. DOI: 10.1094/CCHEM-03-16-0069-FI.
  • Rosenfeld, D. L. The Psychology of Vegetarianism: Recent Advances and Future Directions. Appetite. 2018, 131, 125–138. DOI: 10.1016/j.appet.2018.09.011.
  • FAO. Pulses: Nutritious Seeds for a Sustainable Future. FAO. 2016. Accessed April 27, 2020. https://doi.org/10.4060/i5528e
  • Bechthold, A.; Boeing, H.; Tetens, I.; Schwingshackl, L.; Perspective, N. U. Food-based Dietary Guidelines in Europe-scientific Concepts, Current Status, and Perspectives. Adv. Nutr. 2018, 9(5), 544–560. DOI: 10.1093/advances/nmy033.
  • Meybeck, A.; Gitz, V. Sustainable Diets within Sustainable Food Systems. Proceedings of the Nutrition Society, 2017, 76( 1),1–11. 10.1017/S0029665116000653
  • Steenson, S.; Buttriss, J. L. The Challenges of Defining a Healthy and ‘Sustainable’ Diet. Nutr. Bull. 2020, 45(2), 206–222. DOI: 10.1111/nbu.12439.
  • Mathers, J. C. Pulses and Carcinogenesis: Potential for the Prevention of Colon, Breast and Other Cancers. Br. J. Nutr. 2002, 88(S3), 273–279. DOI: 10.1079/BJN2002717.
  • Anderson, J. W.; Major, A. W. Pulses and Lipaemia, Short-and Long-term Effect: Potential in the Prevention of Cardiovascular Disease. Br. J. Nutr. 2002, 88(S3), 263–271. DOI: 10.1079/BJN2002716.
  • Boye, J.; Zare, F.; Pletch, A. Pulse Proteins: Processing, Characterization, Functional Properties and Applications in Food and Feed. Food Res. Int. 2010, 43(2), 414–431. DOI: 10.1016/j.foodres.2009.09.003.
  • Singh, B.; Singh, J. P.; Shevkani, K.; Singh, N.; Kaur, A. Bioactive Constituents in Pulses and Their Health Benefits. J. Food Sci. Technol. 2017, 54(4), 858–870. DOI: 10.1007/s13197-016-2391-9.
  • Hoover, R.; Hughes, T.; Chung, H. J.; Liu, Q. Composition, Molecular Structure, Properties, and Modification of Pulse Starches: A Review. Food Res. Int. 2010, 43(2), 399–413. DOI: 10.1016/j.foodres.2009.09.001.
  • Singh, M.; Manickavasagan, A.; Shobana, S.; Mohan, V. Glycemic Index of Pulses and Pulse-based Products: A Review. Crit. Rev. Food Sci. Nutr. 2020, 1–22. DOI: 10.1080/10408398.2020.1762162.
  • Guillon, F.; Champ, M. J. Carbohydrate Fractions of Legumes: Uses in Human Nutrition and Potential for Health. Br. J. Nutr. 2002, 88(S3), 293–306. DOI: 10.1079/BJN2002720.
  • Rizkalla, S. W.; Bellisle, F.; Slama, G. Health Benefits of Low Glycaemic Index Foods, Such as Pulses, in Diabetic Patients and Healthy Individuals. Br. J. Nutr. 2002, 88(S3), 255–262. DOI: 10.1079/BJN2002715.
  • Champ, M. M. J. Non-nutrient Bioactive Substances of Pulses. Br. J. Nutr. 2002, 88(S3), 307–319. DOI: 10.1079/BJN2002721.
  • Roland, W. S.; Pouvreau, L.; Curran, J.; van de Velde, F.; de Kok, P. M. Flavor Aspects of Pulse Ingredients. Cereal Chem. 2017, 94(1), 58–65. DOI: 10.1094/CCHEM-06-16-0161-FI.
  • FAO. FAOSTAT. Accessed April 27, 2020. http://www.fao.org/faostat
  • Asif, M.; Rooney, L. W.; Ali, R.; Riaz, M. N. Application and Opportunities of Pulses in Food System: A Review. Critical Reviews in Food Science and Nutrition, 2013, 53(11), 1168–1179.
  • Shah, N. N.; Umesh, K. V.; Singhal, R. S. Hydrophobically Modified Pea Proteins: Synthesis, Characterization and Evaluation as Emulsifiers in Eggless Cake. J. Food Eng. 2019, 255, 15–23. DOI: 10.1016/j.jfoodeng.2019.03.005.
  • Sozer, N.; Holopainen‐Mantila, U.; Poutanen, K. Traditional and New Food Uses of Pulses. Cereal Chem. 2017, 94(1), 66–73. DOI: 10.1094/CCHEM-04-16-0082-FI.
  • Bresciani, A.; Marti, A. Using Pulses in Baked Products: Lights, Shadows, and Potential Solutions. Foods. 2019, 8(10), 451. DOI: 10.3390/foods8100451.
  • Melini, F.; Melini, V.; Luziatelli, F.; Ruzzi, M. Current and Forward‐looking Approaches to Technological and Nutritional Improvements of Gluten‐free Bread with Legume Flours: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2017, 16(5), 1101–1122. DOI: 10.1111/1541-4337.12279.
  • Foschia, M.; Horstmann, S. W.; Arendt, E. K.; Zannini, E. Legumes as Functional Ingredients in Gluten-free Bakery and Pasta Products. Ann. Rev. Food Sci. Technol. 2017, 8(1), 75–96. DOI: 10.1146/annurev-food-030216-030045.
  • Boukid, F.; Zannini, E.; Carini, E.; Vittadini, E. Pulses for Bread Fortification: A Necessity or A Choice? Trends Food Sci. Technol. 2019, 88, 416–428. DOI: 10.1016/j.tifs.2019.04.007.
  • Mercier, S.; Moresoli, C.; Mondor, M.; Villeneuve, S.; Marcos, B. A Meta‐analysis of Enriched Pasta: What are the Effects of Enrichment and Process Specifications on the Quality Attributes of Pasta? Compr. Rev. Food Sci. Food Saf. 2016, 15(4), 685–704. DOI: 10.1111/1541-4337.12207.
  • Monnet, A. F.; Laleg, K.; Michon, C.; Micard, V. Legume Enriched Cereal Products: A Generic Approach Derived from Material Science to Predict Their Structuring by the Process and Their Final Properties. Trends Food Sci. Technol. 2019, 86, 131–143. DOI: 10.1016/j.tifs.2019.02.027.
  • Rachwa-Rosiak, D.; Nebesny, E.; Budryn, G. Chickpeas—composition, Nutritional Value, Health Benefits, Application to Bread and Snacks: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55(8), 1137–1145. DOI: 10.1080/10408398.2012.687418.
  • Villarino, C. B. J.; Jayasena, V.; Coorey, R.; Chakrabarti-Bell, S.; Johnson, S. K. Nutritional, Health, and Technological Functionality of Lupin Flour Addition to Bread and Other Baked Products: Benefits and Challenges. Crit. Rev. Food Sci. Nutr. 2016, 56(5), 835–857. DOI: 10.1080/10408398.2013.814044.
  • Cauvain, S. P.; Young, L. S. Baked Products: Science, Technology and Practice; Blackwell Publishing. Oxford (UK), 2006.
  • Belorio, M.; Gómez, M. Gluten-free Muffins versus Gluten Containing Muffins: Ingredients and Nutritional Differences. Trends Food Sci. Technol. 2020, 102, 249–253. DOI: 10.1016/j.tifs.2020.03.015.
  • Roland, W. S.; Pouvreau, L.; Curran, J.; van de Velde, F.; de Kok, P. M. Flavor Aspects of Pulse Ingredients. Cereal Chem. 2017, 94(1), 58–65. DOI: 10.1094/CCHEM-06-16-0161-FI.
  • McWatters, K. H. Cookie Baking Properties of Defatted Peanut, Soybean, and Field Pea Flours. Cereal Chem. 1978, 55, 853–863.
  • Cady, N. D.; Carter, A. E.; Kayne, B. E.; Zabik, M. E.; Uebersax, M. A. Navy Bean Flour Substitution in a Master Mix Used for Muffins and Cookies. Cereal Chem. 1987, 64, 193–195.
  • De Penna, E. W.; Carreno, P.; Urrutia, X.; Lopez, L.; Ballester, D. Sensory Evaluation and Acceptability of Cookies Enriched with Sweet Lupine Flour (Lupinus-albus Cv Multolupa). J. Food Sci. 1987, 52(5), 1434–1435. DOI: 10.1111/j.1365-2621.1987.tb14102.x.
  • Hoojjat, P.; Zabik, M. E. Sugar-snap Cookies Prepared with Wheat-navy Bean-sesame Seed Flour Blends. Cereal Chem. 1984, 61, 41–44.
  • Hegazy, N. A.; Faheid, S. M. N. Rheological and Sensory Characteristics of Doughs and Cookies Based on Wheat, Soybean, Chickpea and Lupine Flour. Nahrung-Food. 1990, 34(9), 835–841. DOI: 10.1002/food.19900340917.
  • DeFouw, C.; Zabik, M. E.; ebersax, M. A.; Aguilera, J. M.; Lusas, E. Effects of Heat Treatment and Level of Navy Bean Hulls in Sugar-snap Cookies. Cereal Chem. 1982, 59(4), 245–248.
  • Dreher, M. L.; Patek, J. W. Effects of Supplementation of Short Bread Cookies with Roasted Whole Navy Bean Flour and High Protein Flour. J. Food Sci. 1984, 49(3), 922–924. DOI: 10.1111/j.1365-2621.1984.tb13242.x.
  • Patel, M. M.; Rao, G. V. Effect of Untreated, Roasted and Germinated Black Gram (Phaseolus Mungo) Flours on the Physico-chemical and Biscuit (Cookie) Making Characteristics of Soft Wheat Flour. J. Cereal Sci. 1995, 22(3), 285–291. DOI: 10.1006/jcrs.1995.0065.
  • Sathe, S. K.; Iyer, V.; Salunkhe, D. K. Functional-properties of the Great Northern Bean (Phaseolus Vulgaris L) Proteins, Amino Acid Composition, In-vitro Digestibility, and Application to Cookies. J. Food Sci. 1982, 47(8), 11–15. DOI: 10.1111/j.1365-2621.1982.tb11014.x.
  • Obeidat, B. A.; Abdul‐Hussain, S. S.; Al Omari, D. Z. Effect of Addition of Germinated Lupin Flour on the Physiochemical and Organoleptic Properties of Cookies. J. Food Process. Preserv. 2013, 37(5), 637–643. DOI: 10.1111/j.1745-4549.2012.00688.x.
  • Liu, S.; Chen, D.; Xu, J. The Effect of Partially Substituted Lupin, Soybean, and Navy Bean Flours on Wheat Bread Quality. Food Nutr. Sci. 2018, 9(7), 840. DOI: 10.4236/fns.2018.97063.
  • Jribi, S.; Sahagùn, M.; Debbabi, H.; Gomez, M. Evolution of Functional, Thermal and Pasting Properties of Sprouted Whole Durum Wheat Flour with Sprouting Time. Int. J. Food Sci. Technol. 2019, 54(9), 2718–2724. DOI: 10.1111/ijfs.14192.
  • Pareyt, B.; Delcour, J. A. The Role of Wheat Flour Constituents, Sugar, and Fat in Low Moisture Cereal Based Products: A Review on Sugar-snap Cookies. Crit. Rev. Food Sci. Nutr. 2008, 48(9), 824–839. DOI: 10.1080/10408390701719223.
  • Lemmens, E.; Moroni, A. V.; Pagand, J.; Heirbaut, P.; Ritala, A.; Karlen, Y.; Lê, K.-A.; Van den Broeck, H. C.; Brouns, F. J. P. H.; De Brier, N.; et al. Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2019, 18(1), 305–328. DOI: 10.1111/1541-4337.12414.
  • Rababah, T. M.; Al‐Mahasneh, M. A.; Ereifej, K. I. Effect of Chickpea, Broad Bean, or Isolated Soy Protein Additions on the Physicochemical and Sensory Properties of Biscuits. J. Food Sci. 2006, 71(6), S438–S442. DOI: 10.1111/j.1750-3841.2006.00077.x.
  • Ai, Y. F.; Jin, Y. N.; Kelly, J. D.; Ng, P. K. W. Composition, Functional Properties, Starch Digestibility, and Cookie-baking Performance of Dry Bean Powders from 25 Michigan-grown Varieties. Cereal Chem. 2017, 94(3), 400–408. DOI: 10.1094/CCHEM-04-16-0089-R.
  • Al-Rabadi, G. J.; Gilbert, R. G.; Gidley, M. J. Effect of Particle Size on Kinetics of Starch Digestion in Milled Barley and Sorghum Grains by Porcine Alpha-amylase. J. Cereal Sci. 2009, 50(2), 198–204. DOI: 10.1016/j.jcs.2009.05.001.
  • Roman, L.; Gomez, M.; Li, C.; Hamaker, B. R.; Martinez, M. M. Biophysical Features of Cereal Endosperm that Decrease Starch Digestibility. Carbohydr. Polym. 2017, 165, 180–188. DOI: 10.1016/j.carbpol.2017.02.055.
  • Scanlon, M. G.; Thakur, S.; Tyler, R. T.; Milani, A.; Der, T.; Paliwal, J. The Critical Role of Milling in Pulse Ingredient Functionality. Cereal Foods World. 2018, 63, 201–206.
  • Belorio, M.; Sahagun, M.; Gomez, M. Influence of Flour Particle Size Distribution on the Quality of Maize Gluten-free Cookies. Foods. 2019, 8(2), 83. DOI: 10.3390/foods8020083.
  • Mancebo, C. M.; Rodríguez, P.; Gómez, M. Assessing Rice Flour-starch-protein Mixtures to Produce Gluten Free Sugar-snap Cookies. LWT Food Sci. Technol. 2016, 67, 127–132. DOI: 10.1016/j.lwt.2015.11.045.
  • Cappa, C.; Kelly, J. D.; Ng, P. K. Baking Performance of 25 Edible Dry Bean Powders: Correlation between Cookie Quality and Rapid Test Indices. Food Chem. 2020, 302, 125338. DOI: 10.1016/j.foodchem.2019.125338.
  • Zucco, F.; Borsuk, Y.; Arntfield, S. D. Physical and Nutritional Evaluation of Wheat Cookies Supplemented with Pulse Flours of Different Particle Sizes. LWT Food Sci. Technol. 2011, 44(10), 2070–2076. DOI: 10.1016/j.lwt.2011.06.007.
  • Yamsaengsung, R.; Berghofer, E.; Schoenlechner, R. Physical Properties and Sensory Acceptability of Cookies Made from Chickpea Addition to White Wheat or Whole Wheat Flour Compared to Gluten‐free Amaranth or Buckwheat Flour. Int. J. Food Sci. Technol. 2012, 47(10), 2221–2227. DOI: 10.1111/j.1365-2621.2012.03092.x.
  • Bilgiçli, N.; Levent, H. Utilization of Lupin (Lupinus Albus L.) Flour and Bran with Xylanase Enzyme in Cookie Production. Legume Res Int J. 2014, 37(3), 264–271. DOI:10.5958/j.0976-0571.37.3.040.
  • Simons, C. W.; Hall III, C. Consumer Acceptability of Gluten‐free Cookies Containing Raw Cooked and Germinated Pinto Bean Flours. Food Sci. Nutr. 2018, 6(1), 77–84. DOI: 10.1002/fsn3.531.
  • Sarabhai, S.; Sudha, M. L.; Prabhasankar, P. Rheological Characterization and Biscuit Making Potential of Gluten Free Flours. J. Food Meas. Charact. 2017, 11(3), 1449–1461. DOI: 10.1007/s11694-017-9524-3.
  • Bassinello, P. Z.; Freitas, D. D. C.; Ascheri, J. L. R.; Takeiti, C. Y.; Carvalho, R. N.; Koakuzu, S. N.; Carvalho, A. V. Characterization of Cookies Formulated with Rice and Black Bean Extruded Flours. 11th International Congress on Engineering and Food (ICEF11). Procedia Food Sci. 2011, 1, 1645–1652. DOI: 10.1016/j.profoo.2011.09.243.
  • Siddiq, M.; Kelkar, S.; Harte, J. B.; Dolan, K. D.; Nyombaire, G. Functional Properties of Flour from Low-temperature Extruded Navy and Pinto Beans (Phaseolus Vulgaris L.). LWT Food Sci. Technol. 2013, 50(1), 215–219. DOI: 10.1016/j.lwt.2012.05.024.
  • De La Rosa‐millán, J.; Pérez‐Carrillo, E.; Guajardo‐Flores, S. Effect of Germinated Black Bean Cotyledons (Phaseolus Vulgaris L.) As an Extruded Flour Ingredient on Physicochemical Characteristics, in Vitro Digestibility Starch, and Protein of Nixtamalized Blue Maize Cookies. Starch‐Stärke. 2017, 69(3–4), 1600085. DOI: 10.1002/star.201600085.
  • Martínez, M. M.; Calviño, A.; Rosell, C. M.; Gómez, M. Effect of Different Extrusion Treatments and Particle Size Distribution on the Physicochemical Properties of Rice Flour. Food Bioprocess. Technol. 2014, 7(9), 2657–2665. DOI: 10.1007/s11947-014-1252-7.
  • Martínez, M. M.; Rosell, C. M.; Gómez, M. Modification of Wheat Flour Functionality and Digestibility through Different Extrusion Conditions. J. Food Eng. 2014, 143, 74–79. DOI: 10.1016/j.jfoodeng.2014.06.035.
  • Dovi, K. A.; Chiremba, C.; Taylor, J. R.; de Kock, H. L. Rapid Sensory Profiling and Hedonic Rating of Whole Grain Sorghum‐cowpea Composite Biscuits by Low Income Consumers. J. Sci. Food Agric. 2018, 98(3), 905–913. DOI: 10.1002/jsfa.8536.
  • Portman, D.; Maharjan, P.; McDonald, L.; Laskovska, S.; Walker, C.; Irvin, H.; Blanchard, C.; Naike, M.; Panozzo, J. F. Nutritional and Functional Properties of Cookies Made Using Down‐graded lentil–A Candidate for Novel Food Production and Crop Utilization. Cereal Chem. 2020, 97(1), 95–103. DOI: 10.1002/cche.10232.
  • Kweon, M.; Slade, L.; Levine, H.; Gannon, D. Cookie-versus Cracker-baking—what’s the Difference? Flour Functionality Requirements Explored by Src and Alveography. Crit. Rev. Food Sci. Nutr. 2014, 54(1), 115–138. DOI: 10.1080/10408398.2011.578469.
  • Millar, K. A.; Barry‐Ryan, C.; Burke, R.; Hussey, K.; McCarthy, S.; Gallagher, E. Effect of Pulse Flours on the Physiochemical Characteristics and Sensory Acceptance of Baked Crackers. Int. J. Food Sci. Technol. 2017, 52(5), 1155–1163. DOI: 10.1111/ijfs.13388.
  • Benkadri, S.; Salvador, A.; Zidoune, M. N.; Sanz, T. Gluten-free Biscuits Based on Composite Rice–chickpea Flour and Xanthan Gum. Food Sci. Technol. Int. 2018, 24(7), 607–616. DOI: 10.1177/1082013218779323.
  • Roman, L.; Belorio, M.; Gomez, M. Gluten‐free Breads: The Gap between Research and Commercial Reality. Compr. Rev. Food Sci. Food Saf. 2019, 18(3), 690–702. DOI: 10.1111/1541-4337.12437.
  • Pérez‐Ramírez, I. F.; Becerril‐Ocampo, L. J.; Reynoso‐Camacho, R.; Herrera, M. D.; Guzmán‐Maldonado, S. H.; Cruz‐Bravo, R. K. Cookies Elaborated with Oat and Common Bean Flours Improved Serum Markers in Diabetic Rats. J. Sci. Food Agric. 2018, 98(3), 998–1007. DOI: 10.1002/jsfa.8548.
  • Forker, A.; Zahn, S.; Rohm, H. A Combination of Fat Replacers Enables the Production of Fat-reduced Shortdough Biscuits with High-sensory Quality. Food Bioprocess. Technol. 2012, 5(6), 2497–2505. DOI: 10.1007/s11947-011-0536-4.
  • Morales-Polanco, E.; Campos-Vega, R.; Gaytán-Martínez, M.; Enriquez, L. G.; Loarca-Piña, G. Functional and Textural Properties of a Dehulled Oat (Avena Sativa L) and Pea (Pisum Sativum) Protein Isolate Cracker. LWT. 2017, 86, 418–423. DOI: 10.1016/j.lwt.2017.08.015.
  • Sahagún, M.; Gómez, M. Influence of Protein Source on Characteristics and Quality of Gluten-free Cookies. J. Food Sci. Technol. 2018, 55(10), 4131–4138. DOI: 10.1007/s13197-018-3339-z.
  • Mota, J.; Lima, A. B.; Ferreira, R.; Raymundo, A. Lupin Seed Protein Extract Can Efficiently Enrich the Physical Properties of Cookies Prepared with Alternative Flours. Foods. 2020, 9(8), 1064. DOI: 10.3390/foods9081064.
  • Chávez-Santoscoy, R. A.; Gutiérrez-Uribe, J. A.; Serna-Saldivar, S. O.; Perez-Carrillo, E. Production of Maize Tortillas and Cookies from Nixtamalized Flour Enriched with Anthocyanins, Flavonoids and Saponins Extracted from Black Bean (Phaseolus Vulgaris) Seed Coats. Food Chem. 2016, 192, 90–97. DOI: 10.1016/j.foodchem.2015.06.113.
  • Rankin, L. L.; Bingham, M. Acceptability of Oatmeal Chocolate Chip Cookies Prepared Using Pureed White Beans as a Fat Ingredient Substitute. J. Acad. Nutr. Diet. 2000, 100(7), 831.
  • Serventi, L.; Wang, S.; Zhu, J.; Liu, S.; Fei, F. Cooking Water of Yellow Soybeans as Emulsifier in Gluten-free Crackers. Eur. Food Res. Technol. 2018, 244(12), 2141–2148. DOI: 10.1007/s00217-018-3122-4.
  • Miśkiewicz, K.; Nebesny, E.; Oracz, J. Formation of Acrylamide during Baking of Shortcrust Cookies Derived from Various Flours. Czech J. Food Sci. 2012, 30(1), 53–56. DOI: 10.17221/287/2010-CJFS.
  • Palermo, M.; Fiore, A.; Fogliano, V. Okara Promoted Acrylamide and Carboxymethyl-lysine Formation in Bakery Products. J. Agric. Food Chem. 2012, 60(40), 10141–10146. DOI: 10.1021/jf302750q.
  • Li, B.; Qiao, M.; Lu, F. Composition, Nutrition, and Utilization of Okara (Soybean Residue). Food Rev. Int. 2012, 28(3), 231–252. DOI: 10.1080/87559129.2011.595023.
  • Godefroidt, T.; Ooms, N.; Pareyt, B.; Brijs, K.; Delcour, J. A. Ingredient Functionality during Foam-type Cake Making: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18(5), 1550–1562. DOI: 10.1111/1541-4337.12488.
  • Levent, H.; Bilgiçli, N. Enrichment of Gluten-free Cakes with Lupin (Lupinus Albus L.) Or Buckwheat (Fagopyrum Esculentum M.) Flours. Int. J. Food Sci. Nutr. 2011, 62(7), 725–728. DOI: 10.3109/09637486.2011.572546.
  • Gularte, M. A.; Gómez, M.; Rosell, C. M. Impact of Legume Flours on Quality and in Vitro Digestibility of Starch and Protein from Gluten-free Cakes. Food Bioprocess. Technol. 2012, 5(8), 3142–3150. DOI: 10.1007/s11947-011-0642-3.
  • Jeong, D.; Chung, H. J. Physical, Textural and Sensory Characteristics of Legume-based Gluten-free Muffin Enriched with Waxy Rice Flour. Food Sci. Biotechnol. 2019, 28(1), 87–97. DOI: 10.1007/s10068-018-0444-8.
  • Ozkahraman, B. C.; Sumnu, G.; Sahin, S. Effect of Different Flours on Quality of Legume Cakes to Be Baked in Microwave-infrared Combination Oven and Conventional Oven. J. Food Sci. Technol. 2016, 53(3), 1567–1575. DOI: 10.1007/s13197-015-2101-z.
  • Gómez, M.; Oliete, B.; Rosell, C. M.; Pando, V.; Fernández, E. Studies on Cake Quality Made of Wheat–chickpea Flour Blends. LWT Food Sci. Technol. 2008, 41(9), 1701–1709. DOI: 10.1016/j.lwt.2007.11.024.
  • Gaines, C. S. Associations among Soft Wheat-flour Particle-size, Protein-content, Chlorine Response, Kernel Hardness, Milling Quality, White Layer Cake Volume, and Sugar-snap Cookie Spread. Cereal Chem. 1985, 62, 290–292.
  • Yamazaki, W. T.; Donelson, D. H. Relationship between Flour Particle-size and Cake-volume Potential among Eastern Soft Wheats. Cereal Chem. 1972, 49, 649–653.
  • De La Hera, E.; Martinez, M.; Oliete, B.; Gómez, M. Influence of Flour Particle Size on Quality of Gluten-free Rice Cakes. Food Bioprocess. Technol. 2013, 6(9), 2280–2288. DOI: 10.1007/s11947-012-0922-6.
  • De La Hera, E.; Ruiz-París, E.; Oliete, B.; Gómez, M. Studies of the Quality of Cakes Made with Wheat-lentil Composite Flours. LWT. 2012, 49(1), 48–54. DOI: 10.1016/j.lwt.2012.05.009.
  • Gómez, M.; Ruiz, E.; Oliete, B. Effect of Batter Freezing Conditions and Resting Time on Cake Quality. LWT Food Sci. Technol. 2011, 44(4), 911–916. DOI: 10.1016/j.lwt.2010.11.037.
  • Gómez, M.; Doyagüe, M. J.; De La Hera, E. Addition of Pin-milled Pea Flour and Air-classified Fractions in Layer and Sponge Cakes. LWT Food Sci. Technol. 2012, 46(1), 142–147. DOI: 10.1016/j.lwt.2011.10.014.
  • Wilderjans, E.; Luyts, A.; Brijs, K.; Delcour, J. A. Ingredient Functionality in Batter Type Cake Making. Trends Food Sci. Technol. 2013, 30(1), 6–15. DOI: 10.1016/j.tifs.2013.01.001.
  • Schultz, M.; Hoppe, K.; Schmandke, H. Off-flavor Reduction in Vicia Faba Protein Isolate. Food Chem. 1988, 30,129–135.
  • Singh, M.; Byars, J. A.; Liu, S. X. Navy Bean Flour Particle Size and Protein Content Affect Cake Baking and Batter Quality. J. Food Sci. 2015, 80(6), E1229–E1234. DOI: 10.1111/1750-3841.12869.
  • Ruan, Z.; Zhang, C.; Sun-Waterhouse, D.; Li, B. S.; Li, D. D. Chiffon Cakes Made Using Wheat Flour With/without Substitution by Highland Barley Powder or Mung Bean Flour: Correlations among Ingredient Heat Absorption Enthalpy, Batter Rheology, and Cake Porosity. Food Bioprocess. Technol. 2019, 12(7), 1232–1243. DOI: 10.1007/s11947-019-02290-2.
  • Alvarez, M. D.; Herranz, B.; Fuentes, R.; Cuesta, F. J.; Canet, W. Replacement of Wheat Flour by Chickpea Flour in Muffin Batter: Effect on Rheological Properties. J. Food Process Eng. 2017, 40(2), e12372. DOI: 10.1111/jfpe.12372.
  • Alifakı, Y. Ö.; Şakıyan, Ö. Dielectric Properties, Optimum Formulation and Microwave Baking Conditions of Chickpea Cakes. J. Food Sci. Technol. 2017, 54(4), 944–953. DOI: 10.1007/s13197-016-2371-0.
  • English, M. M.; Viana, L.; McSweeney, M. B. Effects of Soaking on the Functional Properties of Yellow‐eyed Bean Flour and the Acceptability of Chocolate Brownies. J. Food Sci. 2019, 84(3), 623–628. DOI: 10.1111/1750-3841.14485.
  • Chompoorat, P.; Rayas-Duarte, P.; Hernández-Estrada, Z. J.; Phetcharat, C.; Khamsee, Y. Effect of Heat Treatment on Rheological Properties of Red Kidney Bean Gluten Free Cake Batter and Its Relationship with Cupcake Quality. J. Food Sci. Technol. 2018, 55(12), 4937–4944. DOI: 10.1007/s13197-018-3428-z.
  • Hagenimana, A.; Ding, X.; Fang, T. Evaluation of Rice Flour Modified by Extrusion Cooking. J. Cereal Sci. 2006, 43(1), 38–46. DOI: 10.1016/j.jcs.2005.09.003.
  • Gomes, L. D. O. F.; Santiago, R. D. A. C.; Carvalho, A. V.; Carvalho, R. N.; Oliveira, I. G. D.; Bassinello, P. Z. Application of Extruded Broken Bean Flour for Formulation of Gluten-free Cake Blends. Food Sci. Technol. 2015, 35(2), 307–313. DOI: 10.1590/1678-457X.6521.
  • Román, L.; Santos, I.; Martínez, M. M.; Gómez, M. Effect of Extruded Wheat Flour as a Fat Replacer on Batter Characteristics and Cake Quality. J. Food Sci. Technol. 2015, 52(12), 8188–8195. DOI: 10.1007/s13197-015-1909-x.
  • Rumiyati, R.; James, A. P.; Jayasena, V. Effects of Lupin Incorporation on the Physical Properties and Stability of Bioactive Constituents in Muffins. Int. J. Food Sci. Technol. 2015, 50(1), 103–110. DOI: 10.1111/ijfs.12688.
  • Kaczmarska, K. T.; Chandra-Hioe, M. V.; Frank, D.; Arcot, J. Enhancing Wheat Muffin Aroma through Addition of Germinated and Fermented Australian Sweet Lupin (Lupinus Angustifolius L.) And Soybean (Glycine Max L.) Flour. LWT Food Sci. Technol. 2018, 96, 205–214. DOI: 10.1016/j.lwt.2018.05.034.
  • Belorio, M.; Gómez, M. Gluten Free Muffins versus Gluten Containing Muffins: Ingredients and Nutritional Differences. Trends Food Sci. Technol. 2020, 102, 249–253. DOI: 10.1016/j.tifs.2020.03.015.
  • Preichardt, L. D.; Vendruscolo, C. T.; Gularte, M. A.; Moreira, A. D. S. The Role of Xanthan Gum in the Quality of Gluten Free Cakes: Improved Bakery Products for Coeliac Patients. Int. J. Food Sci. Technol. 2011, 46(12), 2591–2597. DOI: 10.1111/j.1365-2621.2011.02788.x.
  • Ronda, F.; Gómez, M.; Caballero, P. A.; Oliete, B.; Blanco, C. A. Improvement of Quality of Gluten-free Layer Cakes. Food Sci. Technol. Int. 2009, 15(2), 193–202. 10.1177/1082013208105170
  • Andrade, F. J. E. T.; Albuquerque, P. B. S.; Moraes, G. M. D.; Farias, M. D. P.; Teixeira-Sá, D. M. A.; Vicente, A. A.; Carneiro-da-Cunha, M. G. Influence of Hydrocolloids (Galactomannan and Xanthan Gum) on the Physicochemical and Sensory Characteristics of Gluten-free Cakes Based on Fava Beans (Phaseolus Lunatus). Food Funct. 2018, 9(12), 6369–6379. DOI: 10.1039/C8FO01448E.
  • Herranz, B.; Canet, W.; Jiménez, M. J.; Fuentes, R.; Alvarez, M. D. Characterisation of Chickpea Flour‐based Gluten‐free Batters and Muffins with Added Biopolymers: Rheological, Physical and Sensory Properties. Int. J. Food Sci. Technol. 2016, 51(5), 1087–1098. DOI: 10.1111/ijfs.13092.
  • Alvarez, M. D.; Herranz, B.; Jiménez, M. J.; Canet, W. End‐product Quality Characteristics and Consumer Response of Chickpea Flour‐based Gluten‐free Muffins Containing Corn Starch and Egg White. J. Texture Stud. 2017, 48(6), 550–561. DOI: 10.1111/jtxs.12263.
  • Herranz, B.; Canet, W.; Alvarez, M. D. Corn Starch and Egg White Enriched Gluten-free Chickpea Flour Batters: Rheological and Structural Properties. Int. J. Food Prop. 2017, 20(sup1), S489–S506. DOI: 10.1080/10942912.2017.1299760.
  • Sahagún, M.; Bravo-Núñez, Á.; Báscones, G.; Gómez, M. Influence of Protein Source on the Characteristics of Gluten-free Layer Cakes. LWT. 2018, 94, 50–56. DOI: 10.1016/j.lwt.2018.04.014.
  • Shaabani, S.; Yarmand, M. S.; Kiani, H.; Emam-Djomeh, Z. The Effect of Chickpea Protein Isolate in Combination with Transglutaminase and Xanthan on the Physical and Rheological Characteristics of Gluten Free Muffins and Batter Based on Millet Flour. LWT. 2018, 90, 362–372. DOI: 10.1016/j.lwt.2017.12.023.
  • Matos, M. E.; Sanz, T.; Rosell, C. M. Establishing the Function of Proteins on the Rheological and Quality Properties of Rice Based Gluten Free Muffins. Food Hydrocolloids. 2014, 35, 150–158. DOI: 10.1016/j.foodhyd.2013.05.007.
  • Bustillos, M. A.; Jonchère, C.; Garnier, C.; Réguerre, A. L.; Della Valle, G. Rheological and Microstructural Characterization of Batters and Sponge Cakes Fortified with Pea Proteins. Food Hydrocolloids. 2020, 101, 105553. DOI: 10.1016/j.foodhyd.2019.105553.
  • Bravo‐Núñez, Á.; Sahagún, M.; Bravo‐Núñez, A.; Gómez, M. Optimisation of Protein‐enriched Gluten‐free Layer Cakes Using a Mixture Design. Int. J. Food Sci. Technol. 2020, 55(5), 2171–2178. DOI: 10.1111/ijfs.14470.
  • Nosworthy, M. G.; Tulbek, M. C.; House, J. D. Does the Concentration, Isolation, or Deflavoring of Pea, Lentil, and Faba Bean Protein Alter Protein Quality? Cereal Foods World. 2017, 62(4), 139–142. DOI: 10.1094/CFW-62-4-0139.
  • Shevkani, K.; Singh, N. Influence of Kidney Bean, Field Pea and Amaranth Protein Isolates on the Characteristics of Starch‐based Gluten‐free Muffins. Int. J. Food Sci. Technol. 2014, 49(10), 2237–2244. DOI: 10.1111/ijfs.12537.
  • Shevkani, K.; Kaur, A.; Kumar, S.; Singh, N. Cowpea Protein Isolates: Functional Properties and Application in Gluten-free Rice Muffins. LWT Food Sci. Technol. 2015, 63(2), 927–933. DOI: 10.1016/j.lwt.2015.04.058.
  • Lin, M.; Tay, S. H.; Yang, H.; Yang, B.; Li, H. Development of Eggless Cakes Suitable for Lacto-vegetarians Using Isolated Pea Proteins. Food Hydrocolloids. 2017, 69, 440–449. DOI: 10.1016/j.foodhyd.2017.03.014.
  • Arozarena, I.; Bertholo, H.; Empis, J.; Bunger, A.; Sousa, I. Study of the Total Replacement of Egg by White Lupine Protein, Emulsifiers and Xanthan Gum in Yellow Cakes. Eur. Food Res. Technol. 2001, 213(4–5), 312–316. DOI: 10.1007/s002170100391.
  • Campbell, L.; Euston, S. R.; Ahmed, M. A. Effect of Addition of Thermally Modified Cowpea Protein on Sensory Acceptability and Textural Properties of Wheat Bread and Sponge Cake. Food Chem. 2016, 194, 1230–1237. DOI: 10.1016/j.foodchem.2015.09.002.
  • Jarpa‐Parra, M.; Wong, L.; Wismer, W.; Temelli, F.; Han, J.; Huang, W.; Eckhart, E.; Tian, Z.; Shi, K.; Sun, T.; et al. Quality Characteristics of Angel Food Cake and Muffin Using Lentil Protein as Egg/milk Replacer. Int. J. Food Sci. Technol. 2017, 52(7), 1604–1613. DOI: 10.1111/ijfs.13433.
  • Mustafa, R.; He, Y.; Shim, Y. Y.; Reaney, M. J. Aquafaba, Wastewater from Chickpea Canning, Functions as an Egg Replacer in Sponge Cake. Int. J. Food Sci. Technol. 2018, 53(10), 2247–2255. DOI: 10.1111/ijfs.13813.
  • Buhl, T. F.; Christensen, C. H.; Hammershøj, M. Aquafaba as an Egg White Substitute in Food Foams and Emulsions: Protein Composition and Functional Behavior. Food Hydrocolloids. 2019, 96, 354–364. DOI: 10.1016/j.foodhyd.2019.05.041.
  • Clark, R.; Johnson, S. Sensory Acceptability of Foods with Added Lupin (Lupinus Angustifolius) Kernel Fiber Using Pre-set Criteria. J. Food Sci. 2002, 67(1), 356–362. DOI: 10.1111/j.1365-2621.2002.tb11410.x.
  • Hall, R. S.; Johnson, S. K. Sensory Acceptability of Foods Containing Australian Sweet Lupin (Lupinus Angustifolius) Flour. J. Food Sci. 2004, 69, S92–S97. DOI: 10.1111/j.1365-2621.2004.tb15520.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.