1,009
Views
12
CrossRef citations to date
0
Altmetric
Review

Bioprocessing of Horticultural Wastes by Solid-State Fermentation into Value-Added/Innovative Bioproducts: A Review

ORCID Icon &

References

  • Food and Agriculture Organization of the United Nations (FAO). Food Loss Prevention in Perishable Crops. FAO Agricultural Service Bulletin, No. 43. FAO Statistics Division, Rome. 1981. (accessed February 18, 2021).http://www.fao.org/3/s8620e/S8620E00.htm
  • Östergren, K.; Gustavsson, J.; Bos-Brouwers, H.; Timmermans, T.; Hansen, O. –. J.; Møller, H.; Anderson, G.; O’Connor, C.; Soethoudt, H.; Tom Quested, T., et al. FUSIONS Definitional Framework for Food Waste. Full Report. 2014. (accessed February 18, 2021). https://www.eu-fusions.org/phocadownload/Publications/FUSIONS%20Definitional%20Framework%20for%20Food%20Waste%202014.pdf
  • Garg, N. Value Addition of Horticultural Waste. Lucknow Science Congress −2014; Babasaheb Bhimrao Ambedkar University: Lucknow, India, 2014. DOI:10.13140/RG.2.1.4616.1045.
  • Glossary of Environment Statistics. Studies in Methods, Series F, No. 67. New York, USA: United Nations. 1997. (accessed February 18, 2021).https://unstats.un.org/unsd/environmentgl/introduction.asp
  • Sadh, P. K.; Surekha Duhan, S.; Duhan, J. S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Technol. 2018, 5, 1. DOI: 10.1186/s40643-017-0187-z.
  • Kennes, C. Bioconversion Processes. Fermentation. 2018, 4(2), 21. DOI: 10.3390/fermentation4020021.
  • Thomas, L.; Larroche, C.; Pandey, A. Current Developments in Solid-State Fermentation. Biochem. Eng. J. 2013, 81, 146–161. DOI: 10.1016/j.bej.2013.10.013.
  • Ghosh, P. R.; Fawcett, D.; Sharma, S. B.; Poinern, G. E. J. Progress Towards Sustainable Utilisation and Management of Food Wastes in the Global Economy. Int. J. Food Sci. 2016, 2016(1), 3563478. DOI: 10.1155/2016/3563478.
  • Mirabella, N.; Castellani, V.; Sala, S. Current Options for the Valorization of Food Manufacturing Waste: A Review. J. Clean. Prod. 2014, 65, 28–41. DOI: 10.1016/j.jclepro.2013.10.051.
  • Salemdeeb, R.; Zu Ermgassen, E. K. H. J.; Kim, M. H.; Balmford, A.; Al-Tabbaa, A. Environmental and Health Impacts of Using Food Waste as Animal Feed: A Comparative Analysis of Food Waste Management Options. J. Clean. Prod. 2017, 140, 871–880. DOI: 10.1016/j.jclepro.2016.05.049.
  • Food and Agriculture Organization (FAO). Definitional Framework of Food Loss. Working paper of the Global Initiative on Food Loss and Waste Reduction. Rome, Italy, FAO. 2014. (accessed February 18, 2021).http://www.fao.org/fileadmin/user_upload/save-food/PDF/FLW_Definition_and_Scope_2014.pdf
  • Ghosh, P. R.; Sharma, S. B.; Haigh, Y. T.; Evers, A.; Ho, G. An Overview of Food Loss and Waste: Why Does It Matter? Cosmos. 2015, 11(1), 89–103. DOI: 10.1142/S0219607715500068.
  • Kaipia, R.; Dukovska-Popovska, I.; Loikkanen, L. Creating Sustainable Fresh Food Supply Chains through Waste Reduction. Int. J. Phys. Distrib. Logist. Manag. 2013, 43(3), 262–276. DOI: 10.1108/IJPDLM-11-2011-0200.
  • Lipinski, B.; Hanson, C.; Lomax, J.; Kitinoja, L.; Waite, R.; Searchinger, T. Reducing Food Loss and Waste. Working Paper, Installment 2 of Creating a Sustainable Food Future. World Resources Institute: Washington, DC; 2013; pp 8–9. (accessed February 18, 2021). http://www.worldresourcesreport.org
  • Alesci, A.; Cicero, N.; Salvo, A.; Palombieri, D.; Zaccone, D.; Dugo, G.; Bruno, M.; Vadalà, R.; Lauriano, E. R.; Pergolizzi, S. Extracts Deriving from Olive Mill Wastewater and Their Effects on the Liver of Goldfish Carassius Auratus with Hypercholesterolemic Diet. Nat. Prod. Res. 2014, 28(17), 1343–1349. DOI: 10.1080/14786419.2014.903479.
  • Beretta, C.; Stoessel, F.; Baier, U.; Hellweg, S. Quantifying Food Losses and the Potential for Reduction in Switzerland. Waste Manag. 2013, 33(3), 764–773. DOI: 10.1016/j.wasman.2012.11.007.
  • Gerland, P.; Raftery, A. E.; Ševčíková, H.; Li, N.; Gu, D.; Spoorenberg, T.; Alkema, L.; Fosdick, B. K.; Chunn, J.; Lalic, N., et al. World Population Stabilization Unlikely This Century. Science.2014, 346(6206), 234–237. DOI:10.1126/science.1257469.
  • Sagar, N. A.; Pareek, S.; Sharma, S.; Yahia, E. M.; Lobo, M. G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17(3), 512–531. DOI: 10.1111/1541-4337.12330.
  • Toomer, O. T.; Comprehensive, A. Review of the Value-Added Uses of Peanut (Arachis Hypogaea) Skins and By-Products. Crit. Rev. Food Sci. Nutr. 2020, 60(2), 341–350. DOI: 10.1080/10408398.2018.1538101.
  • Dilas, S.; Čanadanović‐Brunet, J.; Ćetković, G. By‐Products of Fruits Processing as a Source of Phytochemicals. Chem. Ind. Chem. Eng. Q. 2009, 15(4), 191–202. DOI: 10.2298/CICEQ0904191D.
  • Yahia, E. M. The Contribution of Fruits and Vegetables to Human Health. In Fruit and Vegetable Phytochemicals: Chemistry, Nutritional Value and Stability; De La Rosa, L., Alvarez‐Parrilla, E., Gonzalez‐Aguilar, G., Eds.; Wiley‐Blackwell Publishing: Iowa, 2010; pp 3–51.
  • Yahia, E. M. Fruit and Vegetable Phytochemicals: Chemistry and Human Health; Wiley‐Blackwell Publishing: Iowa, 2017.
  • Baiano, A. Recovery of Biomolecules from Food Wastes—A Review. Molecules. 2014, 19(9), 14821–14842. DOI: 10.3390/molecules19091482.
  • Foley, J. A.; Ramankutty, N.; Brauman, K. A.; Cassidy, E. S.; Gerber, J. S.; Johnston, M.; Mueller, N. D.; O’Connell, C.; Ray, D. K.; West, P. C., et al. Solutions for a Cultivated Planet. Nature.2011, 478(7369), 337–342. DOI:10.1038/nature10452.
  • Godfray, H. C. J.; Beddington, J. R.; Crute, I. R.; Haddad, L.; Lawrence, D.; Muir, J. F.; Pretty, J.; Robinson, S.; Thomas, S. M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science. 2010, 327(5967), 812–818. DOI: 10.1126/science.1185383.
  • Food and Agriculture Organization (FAO). The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction. Rome, Italy, FAO. 2019. (accessed February 18, 2021).http://www.fao.org/3/ca6122en/ca6122en.pdf
  • Huang, C.-H.; Liu, S.-M.; Hsu, N. Y. Understanding Global Food Surplus and Food Waste to Tackle Economic and Environmental Sustainability. Sustainability. 2020, 12, 2892. DOI: 10.3390/su12072892.
  • Buzby, J. C.; Wells, H. F.; Hyman, J. The Estimated Amount, Value, and Calories of Postharvest Food Losses at the Retail and Consumer Levels in the United States; EIB-121; Department of Agriculture, Economic Research Service: U.S. Washington, DC, USA, 2014. (accessed February 18, 2021). https://www.ers.usda.gov/webdocs/publications/43833/43680_eib121.pdf?v=3550.5
  • Segre, A.; Falasconi, L. Save Food: Global Initiative on Food Loss and Waste Reduction, Background Paper on the Economics of Food Loss and Waste; Food and Agriculture Organization of the United Nations, Rome, Italy, 2014. (accessed February 18, 2021).http://www.fao.org/3/a-at143e.pdf
  • Abu Yazid, N.; Barrena, R.; Komilis, D.; Sánchez, A. Solid-State Fermentation as A Novel Paradigm for Organic Waste Valorization: A Review. Sustainability. 2017, 9(2), 224. DOI: 10.3390/su9020224.
  • The Indian Express. India Wastes Rs. 44,000 Cr of Fruits, Vegetables and Grains Annually. The report highlights additional challenges faced by India’s cold storage industry today. Updated: February 6, 2014.(accessed February 18, 2021). https://indianexpress.com/article/india/india-others/india-wastes-rs-13-300-cr-of-fruits-and-vegetables-annually/
  • Food and Agriculture Organization (FAO). The State of Food Insecurity in the World High Food Prices and Food Security—Threats and Opportunities; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008. http://www.fao.org/3/a-i0291e.pdf (accessed February 18, 2021).).
  • Parfitt, J.; Barthel, M.; Macnaughton, S. Food Waste within Food Supply Chains: Quantification and Potential for Change to 2050. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365(1554), 3065–3081. DOI: 10.1098/rstb.2010.0126.
  • Waarts, Y.; Eppink, M. M.; Oosterkamp, E. B.; Hiller, S.; van der Sluis, A.; Timmermans, T. Reducing Food Waste: Obstacles Experienced in Legislation and Regulations; LEI Report 2011-059; Wageningen University & Research: Wageningen, The Netherlands. 2011.(accessed February 18, 2021). https://library.wur.nl/WebQuery/wurpubs/fulltext/188798
  • Golan, E.; Buzby, J. C. Innovating to Meet the Challenge of Food Waste. Food Technol. Magaz. 691, 2015, 21–25. https://www.ift.org/news-and-publications/food-technology-magazine/issues/2015/january/features/food-waste (accessed February 18, 2021).).
  • Waste & Resources Action Programme (WRAP). Estimates of Food and Packaging Waste in the UK Grocery Retail and Hospitality Supply Chains. 2015. (accessed February 18, 2021). http://www.wrap.org.uk/sites/files/wrap/UK%20Estimates%20October%2015%20%28FINAL%29_0.pdf
  • European Commission (EC). Proposal for a Directive of the European Parliament and of the Council Amending Directives 2008/98/EC on Waste, 94/62/EC on Packaging and Packaging Waste, 1999/31/EC on the Landfill of Waste, 2000/53/EC on End-of-life Vehicles, 2006/66/EC on Batteries and Accumulators and Waste Batteries and Accumulators, and 2012/19/EU on Waste Electrical and Electronic Equipment. 2014. (accessed February 18, 2021).https://ec.europa.eu/environment/waste/pdf/Legal%20proposal%20review%20targets.pdf
  • House of Lords. London: The Stationery Office Limited; London, UK: 2014. Counting the Cost of Food Waste: EU Food Waste Prevention. (Report Session 2013–14 No. 10) European Union Committee.(accessed February 18, 2021). https://publications.parliament.uk/pa/ld201314/ldselect/ldeucom/154/15402.htm
  • Evangelisti, S.; Lettieri, P.; Borello, D.; Clift, R. Life Cycle Assessment of Energy from Waste via Anaerobic Digestion: A UK Case Study. Waste Manag. 2014, 34(1), 226–237. DOI: 10.1016/j.wasman.2013.09.013.
  • Salemdeeb, R.; Al-Tabbaa, A. A Hybrid Life Cycle Assessment of Food Waste Management Options: A UK Case Study. In Presented at the 2015 ISWA World Congress. International Solid Waste Association: Antwerp, Belgium, 2015. DOI:10.13140/RG.2.1.2264.7925.
  • Venkat, K. The Climate Change and Economic Impacts of Food Waste in the United States. Int. J. Food Syst. Dynam. 2011, 2(4), 431–446. DOI: 10.18461/ijfsd.v2i4.247.
  • Vilariño, M. V.; Franco, C.; Quarrington, C. Food Loss and Waste Reduction as an Integral Part of a Circular Economy. Front. Environ. Sci. 2017, 5, 1–5. DOI: 10.3389/fenvs.2017.00021.
  • Whiting, A.; Azapagic, A. Life Cycle Environmental Impacts of Generating Electricity and Heat from Biogas Produced by Anaerobic Digestion. Energy. 2014, 70, 181–193. DOI: 10.1016/j.energy.2014.03.103.
  • Gowe, C. Review on Potential Use of Fruit and Vegetables By‐Products as a Valuable Source of Natural Food Additives. Food Sci Qual Manag. 2015, 45, 47–61.
  • Fritsch, C.; Staebler, A.; Happel, A.; Márquez, M. A. C.; Aguiló-Aguayo, I.; Abadias, M.; Gallur, M.; Cigognini, I. M.; Montanari, A.; Maria Jose López, M. J., et al. Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. Sustainability.2017, 9(8), 1492. DOI:10.3390/su9081492.
  • European Commission (EC). Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Off J Eur Commun. 1999, L 182/2. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999L0031&from=EN (accessed February 18, 2021).).
  • European Commission (EC). Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text with EEA Relevance). Official J. European Union 2008. 2008, 22, 11. L 312/3. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN (accessed February 18, 2021).).
  • Cerda, A.; Artola, A.; Barrena, R.; Font, X.; Gea, T.; Sánchez, A. Innovative Production of Bioproducts from Organic Waste through Solid-State Fermentation. Front. Sustain. Food Syst. 2019, 3, 63. DOI: 10.3389/fsufs.2019.00063.
  • Griggs, M. B. How Microbes Clean Up Our Environmental Messes. 2011. (accessed February 18, 2021). https://www.popularmechanics.com/science/environment/a7176/how-microbes-will-clean-up-our-messes/
  • Panda, S. K.; Ray, R. C.; Mishra, S. S.; Kayitesi, E. Microbial Processing of Fruit and Vegetable Wastes into Potential Biocommodities: A Review. Crit. Rev. Biotechnol. 2018, 38(1), 1–16. DOI: 10.1080/07388551.2017.1311295.
  • Abdul Manan, M.; Webb, C. Modern Microbial Solid State Fermentation Technology for Future Biorefineries for the Production of Added-Value Products. Biofuel Res. J. 2017, 16, 730–740. DOI: 10.18331/BRJ2017.4.4.5.
  • El-Bakry, M.; Abraham, J.; Cerda, A.; Barrena, R.; Ponsá, S.; Gea, T.; Sánchez, A. From Wastes to High Value Added Products: Novel Aspects of SSF in the Production of Enzymes. Crit. Rev. Environ. Sci. Technol. 2015, 45(18), 1999–2042. DOI: 10.1080/10643389.2015.1010423.
  • Panda, S. K.; Ray, R. C. 2015. Microbial Processing for Valorization of Horticultural Wastes. In Environmental Microbial Biotechnology, Soil Biology 45, Sukla, L.B., Pradhan, N., Panda, S., Mishra, B.K., Eds.; Springer International Publishing: Cham: pp 203–221. DOI:10.1007/978-3-319-19018-1_11.
  • Singh, A.; Kuila, A.; Adak, S.; Bishai, M.; Banerjee, R. Use of Fermentation Technology on Vegetable Residues for Value Added Product Development: A Concept of Zero Waste Utilization. Int. J. Food Ferment. Technol. 2011, 1(2), 173–184.
  • Bhargav, S.; Panda, B. P.; Ali, M.; Javed, S. Solid-State Fermentation: An Overview. Chem. Biochem. Eng. Q. 2008, 22(1), 49–70.
  • Kumar, A.; Kanwar, S. S. Lipase Production in Solid-State Fermentation (SSF): Recent Developments and Biotechnological Applications. Dyn. Biochem. Process Biotechnol. Mol. Biol. 2012, 61, 13–27. http://www.globalsciencebooks.info/Online/GSBOnline/images/2012/DBPBMB_6(SI1)/DBPBMB_6(SI1)13-27o.pdf (accessed February 18, 2021).).
  • Lizardi-Jiménez, M. A.; Hernández-Martínez, R. Solid State Fermentation (SSF): Diversity of Applications to Valorize Waste and Biomass. 3 Biotech. 2017, 7(1), 44. DOI: 10.1007/s13205-017-0692-y.
  • Couto, S. R. Exploitation of Biological Wastes for the Production of Value-Added Products under Solid-State Fermentation Conditions. Biotechnol. J. 2008, 3(7), 859–870. DOI: 10.1002/biot.200800031.
  • Schmidt, C. G.; Gonçalves, L. M.; Prietto, L.; Hackbart, H. S.; Furlong, E. B. Antioxidant Activity and Enzyme Inhibition of Phenolic Acids from Fermented Rice Bran with Fungus Rizhopus Oryzae. Food Chem. 2014, 146, 371–377. DOI: 10.1016/j.foodchem.2013.09.101.
  • Singhania, R. R.; Patel, A. K.; Soccol, C. R.; Pandey, A. Recent Advances in Solid-state Fermentation. Biochem. Eng. J. 2009, 44(1), 13–18. DOI: 10.1016/j.bej.2008.10.019.
  • Mitchell, D. A.; Berovič, M.; Krieger, N. Solid-State Fermentation Bioreactors Fundamentals of Design and Operation; Springer: Heidelberg, 2019.
  • Pandey, A. Recent Process Developments in Solid-State Fermentation. Process Biochem. 1992, 27(2), 109–117. DOI: 10.1016/0032-9592(92)80017-W.
  • Toca-Herrera, J. L.; Osma, J. F.; Rodríguez Couto, S. Potential of Solid-State Fermentation for Laccase Production. In Communicating Current Research and Educational Topics and Trends in Applied Microbiology; Méndez-Vilas, A., Ed.; Formatex Research Center Publisher: Badajoz, 2007; pp 391–400.
  • El Sheikha, A. F. Revolution in Fermented Food: From Artisan Household Technology to Era of Biotechnology. In Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity & Traceability, El Sheikha, A.F., Levin, R.E., Xu, J., Eds.; John Wiley & Sons Ltd.: Chichester, 2018; Vol. (2018, pp 241–260.
  • Manan, M. A.; Webb, C. Design Aspects of Solid State Fermentation as Applied to Microbial Bioprocessing. J. Appl. Biotechnol. Bioeng. 2017, 4(1), 511–532. DOI: 10.15406/jabb.2017.04.00094.
  • Ali, H. K. Q.; Zulkali, M. M. D. Design Aspects of Bioreactors for Solid-State Fermentation: A Review. Chem. Biochem. Eng. Q. 2011a, 25(2), 255–266.
  • Chang, B.-V.; Chang, Y.-M. Biodegradation of Toxic Chemicals by Pleurotus Eryngii in Submerged Fermentation and Solid-State Fermentation. J. Microbiol. Immunol. Infect. 2014, 49(2), 175–181. DOI: 10.1016/j.jmii.2014.04.012.
  • Roy, R. V.; Das, M.; Banerjee, R.; Bhowmick, A. K. Comparative Studies on Rubber Biodegradation through Solid-State and Submerged Fermentation. Process Biochem. 2006, 41(1), 181–186. DOI: 10.1016/j.procbio.2005.06.016.
  • Subramaniyam, R.; Vimala, R. Solid State and Submerged Fermentation for the Production of Bioactive Substances: A Comparative Study. Int. J. Sci. Nat. 2012, 3(3), 480–486.
  • Ballardo, C.; Abraham, J.; Barrena, R.; Artola, A.; Gea, T.; Sánchez, A. Valorization of Soy Waste through SSF for the Production of Compost Enriched with Bacillus Thuringiensis with Biopesticide Properties. J. Environ. Manag. 2016, 169, 126–131. DOI: 10.1016/j.jenvman.2015.12.029.
  • Yang, Z.; Zhang, B.; Chen, X.; Bai, Z.; Zhang, H. Studies on Pyrolysis of Wheat Straw Residues from Ethanol Production by Solid-State Fermentation. J. Anal. Appl. Pyrolysis. 2008, 81(2), 243–246. DOI: 10.1016/j.jaap.2007.12.001.
  • Modi, H. A.; Patel, K. C.; Ray, R. M. Solid State Fermentation for Cellulase Production by Streptomyces Sp HM-29. In Solid State Fermentation; Pandey, A., Ed.; Wiley Eastern Publishers: New Delhi, 1994; pp 137–141.
  • Zhang, -B.-B.; Lu, L.-P.; Xu, G.-R. Why Solid-State Fermentation Is More Advantageous over Submerged Fermentation for Converting High Concentration of Glycerol into Monacolin K by Monascus Purpureus 9901: A Mechanistic Study. J. Biotechnol. 2015, 206, 60–65. DOI: 10.1016/j.jbiotec.2015.04.011.
  • Prado Barragán, L. A.; Figueroa, J. J. B.; Rodríguez Durán, L. V.; Aguilar González, C. N.; Hennigs, C. Fermentative Production Methods. In Biotransformation of Agricultural Waste and By-Products: The Food, Feed, Fibre, Fuel (4F) Economy; Poltronieri, P., D’Urso, O.F., Eds.; Elsevier: Amsterdam, 2016; pp 189–217. DOI: 10.1016/B978-0-12-803622-8.00007-0.
  • Ashok, A.; Doriya, K.; Rao, D. R. M.; Kumar, D. S. Design of Solid State Bioreactor for Industrial Applications: An Overview to Conventional Bioreactors. Biocatal. Agric. Biotechnol. 2017, 9, 11–18. DOI: 10.1016/j.bcab.2016.10.014.
  • Soccol, C. R.; Da Costa, E. S. F.; Letti, L. A. J.; Karp, S. G.; Woiciechowski, A. L.; Vandenberghe, L. P. S. Recent Developments and Innovations in Solid State Fermentation. Biotechnol. Res. Innov. 2017, 1(1), 52–71. DOI: 10.1016/j.biori.2017.01.002.
  • Durand, A.; de La Broise, D.; Blachère, H. Laboratory Scale Bioreactor for Solid State Processes. J. Biotechnol. 1988, 8(1), 59–66. DOI: 10.1016/0168-1656(88)90068-5.
  • Robinson, T.; Nigam, P. Bioreactor Design for Protein Enrichment of Agricultural Residues by Solid State Fermentation. Biochem. Eng. J. 2003, 13(2–3), 197–203. DOI: 10.1016/S1369-703X(02)00132-8.
  • Sangsurasak, P.; Mitchell, D. A. Validation of a Model Describing Two-Dimensional Heat Transfer during Solid-State Fermentation in Packed Bed Bioreactors. Biotechnol. Bioeng. 1998, 60(6), 739–749. DOI: 10.1002/(SICI)1097-0290(19981220)60:6<739::AID-BIT10>3.0.CO;2-U.
  • Lüth, P.; Eiben, U. Solid-State Fermenter and Method for Solid-State Fermentation. U.S. Patent 6,620,614 B1, 2003.
  • Couto, S. R.; Sanroḿan, M. A. Application of Solid-State Fermentation to Food Industry – A Review. J. Food Eng. 2006, 76(3), 291–302. DOI: 10.1016/j.jfoodeng.2005.05.022.
  • Mitchell, D. A.; Krieger, N.; Stuart, D. M.; Pandey, A. New Developments in Solidstate Fermentation II. Rational Approaches to the Design, Operation and Scale-Up of Bioreactors. Process Biochem. 2000, 35(10), 1211–1225. DOI: 10.1016/S0032-9592(00)00157-6.
  • Vandenberghe, L. P. S.; Soccol, C. R.; Pandey, A.; Lebeault, J. –. M. Solid-State Fermentation for the Synthesis of Citric Acid by Aspergillus Niger. Bioresour. Technol. 2000, 74(2), 175–178. DOI: 10.1016/S0960-8524(99)00107-8.
  • Schutyser, M. A. I.; Briels, W. J.; Boom, R. M.; Rinzema, A. Combined Discrete Particle and Continuum Model Predicting Solid-State Fermentation in a Drum Fermentor. Biotechnol. Bioeng. 2004, 86(4), 405–413. DOI: 10.1002/bit.20076.
  • Zhang, Z. Y.; Jin, B.; Kelly, J. M. Production of Lactic Acid from Renewable Materials by Rhizopus Fungi. Biochem. Eng. J. 2007, 35(3), 251–263. DOI: 10.1016/j.bej.2007.01.028.
  • Zhuang, J.; Marchant, M. A.; Nokes, S. E.; Strobel, H. J. Economic Analysis of Cellulase Production Methods for Bio-Ethanol. Appl. Eng. Agric. 2007, 23(5), 679–687. DOI: 10.13031/2013.23659.
  • De Castro, A. M.; Carvalho, D. F.; Freire, D. M. G.; Castilho, L. D. R. Economic Analysis of the Production of Amylases and Other Hydrolases by Aspergillus Awamori in Solid-State Fermentation of Babassu Cake. Enzyme Res. 2010, 2010(1), 576872. DOI: 10.4061/2010/576872.
  • Colla, L. M.; Ficanha, A. M. M.; Rizzardi, J.; Bertolin, T. E.; Reinehr, C. O.; Costa, Jorge Alberto Vieira. Production and Characterization of Lipases by Two New Isolates of Aspergillus through Solid-State and Submerged Fermentation. BioMed Research International. 2015, 2015, 725959. DOI: 10.1155/2015/725959.
  • Graminha, E. B. N.; Gonc, A. Z. L.; Pirota, R. D. P. B.; Balsalobre, M. A. A.; Da Silva, R.; Gomesa, E. Enzyme Production by Solid-State Fermentation: Application to Animal Nutrition. Anim. Feed Sci. Technol. 2008, 144(1), 1–22. DOI: 10.1016/j.anifeedsci.2007.09.029.
  • Hölker, U.; Lenz, J. Solid-State Fermentation – Are There Any Biotechnological Advantages? Curr. Opin. Microbiol. 2005, 8(3), 301–306. DOI: 10.1016/j.mib.2005.04.006.
  • Nasehi, M.; Torbatinejad, N. M.; Zerehdaran, S.; Safaie, A. R. Effect of Solid-State Fermentation by Oyster Mushroom (Pleurotus Florida) on Nutritive Value of Some Agro By-Products. J. Appl. Anim. Res. 2017, 45(1), 221–226. DOI: 10.1080/09712119.2016.1150850.
  • Selvakumar, P.; Ashakumary, L.; Pandey, A. Biosynthesis of Glucoamylase from Aspergillus Niger by Solid-State Fermentation Using Tea Waste as the Basis of a Solid Substrate. Bioresour. Technol. 1998, 65(1–2), 83–85. DOI: 10.1016/S0960-8524(98)00012-1.
  • Kapilan, R.; Arasaratnam, V. Kinetic Studies of the Xylanase Produced by Bacillus Pumilus. Proceedings of the 15th Annual Session of Jaffna Science Association, 58; Jaffna Science Association: Jaffna, 2008.
  • Kapilan, R.; Arasaratnam, V. Paddy Husk as Support for Solid State Fermentation to Produce Xylanase from Bacillus Pumilus. Rice Sci. 2011, 18(1), 36–45. DOI: 10.1016/S1672-6308(11)60006-1.
  • Chen, H. Z.; He, Q. Value-Added Bioconversion of Biomass by Solid-State Fermentation. J. Chem. Technol. Biotechnol. 2012, 87(12), 1619–1625. DOI: 10.1002/jctb.3901.
  • Mussatto, S. I.; Ballesteros, L. F.; Martins, S.; Teixeira, J. A. Use of Agro-Industrial Wastes in Solid-State Fermentation Processes. Ind. Wastes. Show, K.–.Y., Guo, X., Eds; InTech: Rijeka, 2012; pp 121–140. http://www.intechopen.com/books/industrial-waste/use-of-agro-industrialwastes-in-solid-state-fermentation-processes accessed 2021.
  • Catalán, E.; Sánchez, A. Solid‐State Fermentation (SSF) versus Submerged Fermentation (Smf) for the Recovery of Cellulases from Coffee Husks: A Life Cycle Assessment (LCA) Based Comparison. Energies. 2020, 13(11), 2685. DOI: 10.3390/en13112685.
  • Pandey, A. Solid-State Fermentation. Biochem. Eng. J. 2003, 13(2–3), 81–84. DOI: 10.1016/S1369-703X(02)00121-3.
  • Zhang, R. X.; Xue, G.; Zhang, C. J.; Guo, C. G.; Xu, Q. A Device for Discharging of Spherical Digester Used in Pulping. 2007. China Patent. 200720079330. X.
  • Zhao, Z. M.; Wang, L.; Chen, H. Z.; Novel Steam, A. Explosion Sterilization Improving Solid-state Fermentation Performance. Bioresour. Technol. 2015, 192, 547–555. DOI: 10.1016/j.biortech.2015.05.099.
  • Kumar, V.; Ahluwalia, V.; Saran, S.; Kumar, J.; Patel, A. K.; Singhania, R. R. Recent Developments on Solid-state Fermentation for Production of Microbial Secondary Metabolites: Challenges and Solutions. Bioresour. Technol. 2021, 323, 124566. DOI: 10.1016/j.biortech.2020.124566.
  • Ayo, J. A.; Adedeji, O. E.; Olaoye, T. F. The Untapped Potential of Agro-Industrial Wastes in Developing Country: A Case Study of Nigeria. Am. Res. J. Agric. 2015, 1(4), 1–13.
  • Pandey, A.; Soccol, C. R.; Larroche, C. Current Developments in Solid-State Fermentation; Springer: New York, 2008.
  • Ray, R. C.; Bari, M. L.; Isobe, S. Agro-Industrial Bioprocessing of Tropical Root and Tuber Crops – Current Research and Future Prospects. In Industrial Exploitation of Microorganisms;; Maheshwari, D.K., Dubey, R.C., Saravanamurthu, R., Eds.; I. K. International Pvt Ltd.: New Delhi, 2010; pp 352–374.
  • Dimova, N. D.; Iovkova, Z. S.; Brinkova, M.; Godjevargova, T. I. Production of Candida Biomass from Hydrolysed Agricultural Biowaste. Biotechnol. Biotechnol. Equip. 2010, 24(1), 1577–1581. DOI: 10.2478/V10133-010-0008-4.
  • Abd Razak, D. L.; Abd Rashid, N. Y.; Jamaluddin, A.; Sharifudin, S. A.; Abd Kahar, A.; Long, K. Cosmeceutical Potentials and Bioactive Compounds of Rice Bran Fermented with Single and Mix Culture of Aspergillus Oryzae and Rhizopus Oryzae. J. Saudi Soc. Agric. Sci. 2017, 16(2), 127–134. DOI: 10.1016/j.jssas.2015.04.001.
  • Abu Yazid, N. Proteases from Protein-Rich Waste: Production by SSF, Downstream Immobilisation onto Nanoparticles and Application on Protein Hydrolysis. PhD Thesis, Univesitat Autònoma de Barcelona, Spain, 2017.
  • Pêrez-Guerra, N.; Torrado-Agrasar, A.; López-Macias, C.; Pastrana, L. Main Characteristics and Applications of Solid Substrate Fermentation. Electron. J. Environ. Agric. Food Chem. 2003, 2(3), 343–350.
  • Varzakas, T.; Zakynthinos, G.; Verpoort, F. Plant Food Residues as a Source of Nutraceuticals and Functional Foods. Foods. 2016, 5, 88. DOI: 10.3390/foods5040088.
  • Pandey, A.; Soccol, C. R.; Mitchell, D. New Developments in Solid State Fermentation: I-Bioprocesses and Products. Process Biochem. 2000a, 35(10), 1153–1169. DOI: 10.1016/S0032-9592(00)00152-7.
  • Mienda, B. S.; Idi, A.; Umar, A. Microbiological Features of Solid State Fermentation and Its Applications - an Overview. Res. Biotechnol. 2011, 2(6), 21–26.
  • Singhania, R. R.; Soccol, C. R.; Pandey, A. Application of Tropical Agro-industrial Residues as Substrate for Solid-State Fermentation Processes. In Current Developments in Solid-State Fermentation; Pandey, A., Soccol, C.R., Larroche, C.C., Eds.; Springer: New York, 2008; pp 412–442.
  • Demır, H. Production of Pectinase from Aspergillus Sojae by Solid-Statie Fermentation. Ph.D. Dissertation, İzmir Institute of Technology, İzmir, Turkey, 2012. (accessed February 18, 2021). https://openaccess.iyte.edu.tr/xmlui/handle/11147/2933
  • Liang, S.; Han, Y.; Wei, L.; McDonald, A. G. Production and Characterization of Bio-Oil and Bio-Char from Pyrolysis of Potato Peel Wastes. Biomass Convers. Biorefin. 2015a, 5(3), 237–246. DOI: 10.1007/s13399-014-0130-x.
  • Limayem, A.; Ricke, S. C. Lignocellulosic Biomass for Bioethanol Production: Current Perspectives, Potential Issues and Future Prospects. Prog. Energy Combust. Sci. 2012, 38(4), 449–467. DOI: 10.1016/j.pecs.2012.03.002.
  • Handa, S.; Sharma, N.; Pathania, S. Multiple Parameter Optimization for Maximization of Pectinase Production by Rhizopus Sp. C4 under Solid State Fermentation. Fermentation. 2016, 2(2), 10. DOI: 10.3390/fermentation2020010.
  • Saxena, R.; Singh, R. Amylase Production by Solid-State Fermentation of Agro-Industrial Wastes Using Bacillus Sp. Braz. J. Microbiol. 2011, 42(4), 1334–1342. DOI: 10.1590/S1517-838220110004000014.
  • Mrudula, S.; Murugammal, R. Production of Cellulose by Aspergillus Niger under Submerged and Solid State Fermentation Using Coir Waste as a Substrate. Braz. J. Microbiol. 2011, 42(3), 1119–1127. DOI: 10.1590/S1517-838220110003000033.
  • Food and Drug Administration (FDA). Water Activity (Aw) in Foods. Latest update: 27 January 2015. (accessed February 18, 2021). https://www.fda.gov/iceci/inspections/inspectionguides/inspectiontechnicalguides/ucm072916.htm
  • Bück, A.; Casciatori, F. P.; Thoméo, J. C.; Tsotsas, E. Model-Based Control of Enzyme Yield in Solid-State Fermentation. Procedia Eng. 2015, 102, 362–371. DOI: 10.1016/j.proeng.2015.01.163.
  • Li, C.; Yang, Z.; Zhang, R. H. C.; Zhang, D.; Chen, S.; Ma, L. Effect of pH on Cellulase Production and Morphology of Trichoderma Reesei and the Application in Cellulosic Material Hydrolysis. J. Biotechnol. 2013a, 168(4), 470–477. DOI: 10.1016/j.jbiotec.2013.10.003.
  • Li, S.; Li, G.; Zhang, L.; Zhou, Z.; Han, B.; Hou, W.; Wang, J.; Li, T. A Demonstration Study of Ethanol Production from Sweet Sorghum Stems with Advanced Solid State Fermentation Technology. Appl. Energy. 2013b, 102, 260–265. DOI: 10.1016/j.apenergy.2012.09.060.
  • Raghavarao, K. S. M. S.; Ranganathan, T. V.; Karanth, N. G. Some Engineering Aspects of Solid-State Fermentation. Biochem. Eng. J. 2003, 13(2–3), 127–135. DOI: 10.1016/S1369-703X(02)00125-0.
  • Ray, R. C.; Behera, S. S. Solid State Fermentation for Production of Microbial Cellulases. In Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications; Brahmachari, G., Demain, A.L., Adrio, J.L., Eds.; Academic Press: London, 2017; pp 43–79.
  • He, Q.; Chen, H. Pilot-Scale Gas Double-Dynamic Solid-State Fermentation for the Production of Industrial Enzymes. Food Bioproc. Tech. 2013, 6(10), 2916–2924. DOI: 10.1007/s11947-012-0956-9.
  • Chen, H. Z.; Zhao, Z. M.; Li, H. Q. The Effect of Gas Double-Dynamic on Mass Distribution in Solid-State Fermentation. Enzyme Microb. Technol. 2014, 58, 14–21. DOI: 10.1016/j.enzmictec.2014.02.007.
  • Rodríguez-Zúñiga, U. F.; Couri, S.; Neto, V. B.; Crestana, S.; Farinas, C. S. Integrated Strategies to Enhance Cellulolytic Enzyme Production Using an Instrumented Bioreactor for Solid-State Fermentation of Sugarcane Bagasse. Bioenergy Res. 2013, 6(1), 142–152. DOI: 10.1007/s12155-012-9242-y.
  • Guo, Y. P.; Fan, S. Q.; Fan, Y. T.; Pan, C. M.; Hou, H. W. The Preparation and Application of Crude Cellulase for Cellulose-Hydrogen Production by Anaerobic Fermentation. Int. J. Hydrogen Energy. 2010, 35(2), 459–468. DOI: 10.1016/j.ijhydene.2009.10.021.
  • Ray, R. C.; Shetty, K.; Ward, O. P. Solid-State Fermentation and Value-Added Utilization of Horticultural Processing Wastes. In Microbial Biotechnology in Horticulture; Ray, R.C., Ward, O.P., Eds.; Science Publishers: Florida, 2008b; Vol. 3, pp 231–272.
  • Yoon, L. W.; Ang, T. N.; Ngoh, G. C.; Chua, A. S. M. Fungal Solid-State Fermentation and Various Methods of Enhancement in Cellulase Production. Biomass Bioenergy. 2014, 67, 319–338. DOI: 10.1016/j.biombioe.2014.05.013.
  • Sudhakar, P. Production of Chitinase by Solid State Fermentation. Ph.D. Dissertation, Annamalai University, India, 2012.
  • Nimrichter, L.; de Souza, M. M.; Poeta, M. D.; Nosanchuk, J. D.; Joffe, L.; Tavares, P. M.; Rodrigues, M. L. Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells. Front. Microbiol. 2016, 7, 1034. DOI: 10.3389/fmicb.2016.01034.
  • Biswas, R.; Persad, A.; Bisaria, V. S. Production of Cellulolytic Enzymes. In Bioprocessing of Renewable Resources to Commodity Bioproducts, 1st ed.; Bisaria, V.S., Kondo, A., Eds.; John Wiley & Sons, Inc.: New Jersey, 2014; pp 105–132.
  • Zhou, Z.; Gu, J.; Du, Y.; Li, Y.; Wang, Y. The -omics Era- toward a Systems-Level Understanding of Streptomyces. Curr. Genomics. 2011, 12(6), 404–416. DOI: 10.2174/138920211797248556.
  • Te Biesebeke, R.; Ruijter, G.; Rahardjo, Y. S.; Hoogschagen, M. J.; Heerikhuisen, M.; Levin, A.; van Driel, K. G. A.; Schutyser, M. A. I.; Dijksterhuis, J.; Zhu, Y., et al. Aspergillus Oryzae in Solid‐State and Submerged Fermentations. FEMS Yeast Res. 2002, 2(2), 245–248. DOI:10.1016/S1567-1356(02)00092-2.
  • Masai, K.; Maruyama, J.; Nakajima, H.; Sakamoto, K.; Akita, O.; Kitamoto, K. Analysis of Differential Gene Expression across Regions of the Aspergillus Oryzae Mycelium. Fungal Genet. Newsl. 2005, 52, 161.
  • Krishna, C. Solid-State Fermentation Systems—An Overview. Crit. Rev. Biotechnol. 2005, 25(1–2), 1–30. DOI: 10.1080/07388550590925383.
  • Hagman, A.; Piškur, J. A Study on the Fundamental Mechanism and the Evolutionary Driving Forces behind Aerobic Fermentation in Yeast. PLoS ONE. 2015, 10(1), e0116942. DOI: 10.1371/journal.pone.0116942.
  • Soccol, C. R.; Spier, M. R.; Vandenberghe, L. P. S.; Medeiros, A. B. P.; Letti, L. A. J.; Sturm, W. Data Acquisition Systems in Bioprocesses. In Data Acquisition Applications; Karakehayov, Z., Ed.; IntechOpen: Rijeka, 2012; pp 79–106. DOI: 10.5772/48466.
  • Sanchez, S.; Demain, A. L. Metabolic Regulation and Overproduction of Primary Metabolites. Microb. Biotechnol. 2008, 1(4), 283–319. DOI: 10.1111/j.1751-7915.2007.00015.x.
  • Gottumukkala, L. D.; Rajasree, K.; Singhania, R. R.; Soccol, C. R.; Pandey, A. Solid-State Fermentation: Current Trends and Future Prospects. In Fermentation Microbiology and Biotechnology, 3rd ed.; El-Mansi, E.M.T., Bryce, C.F.A., Dahhoo, B., Sanchez, S., Demain, A.L., Allman, A.R., Eds.; CRC Press, Taylor & Francis Group: Florida, 2012; pp 403–416.
  • Mæhre, H. K.; Dalheim, L.; Edvinsen, G. K.; Elvevoll, E. O.; Jensen, I. –. J. Protein Determination - Method Matters. Foods. 2018, 7(1), 5. DOI: 10.3390/foods7010005.
  • Goyal, A. Study on Ergosterol Content and Protein Profile of Medicinal Mushroom, Ganoderma Lucidum. Ph.D. Dissertation, Punjab Agricultural University, India, 2013.
  • Pandey, A.; Soccol, C. R.; Nigam, P.; Soccol, V. T.; Vandenberghe, L. P. S.; Mohan, R. Biotechnological Potential of Agro-Industrial Residues. II: Cassava Bagasse. Bioresour. Technol. 2000b, 74(1), 81–87. DOI: 10.1016/S0960-8524(99)00143-1.
  • Deshmukh, R.; Khardenavis, A. A.; Purohit, H. J. Diverse Metabolic Capacities of Fungi for Bioremediation. Indian J. Microbiol. 2016, 56(3), 247–264. DOI: 10.1007/s12088-016-0584-6.
  • Ali, H. K. Q.; Zulkali, M. M. D. Utilization of Agro-Residual Ligno-Cellulosic Sub-Stances by Using Solid State Fermentation: A Review. Croat. J. Food Technol. Biotechnol. Nutrit. 2011b, 6(1–2), 5–12.
  • Guan, W.; Shi, S.; Tu, M.; Lee, Y. Y. Acetone–Butanol–Ethanol Production from Kraft Paper Mill Sludge by Simultaneous Saccharification and Fermentation. Bioresour. Technol. 2016, 200, 713–721. DOI: 10.1016/j.biortech.2015.10.102.
  • Solomon, B. D.; Barnes, J. R.; Halvorsen, K. E. Grain and Cellulosic Ethanol: History, Economics, and Energy Policy. Biomass Bioenergy. 2007, 31(6), 416–425. DOI: 10.1016/j.biombioe.2007.01.023.
  • Ravindran, R.; Jaiswal, A. Microbial Enzyme Production Using Lignocellulosic Food Industry Wastes as Feedstock: A Review. Bioengineering. 2016b, 3, 30. DOI: 10.3390/bioengineering3040030.
  • Veana, F.; Martínez-Hernández, J. L.; Aguilar, C. N.; Rodríguez-Herrera, R.; Michelena, G. Utilization of Molasses and Sugar Cane Bagasse for Production of Fungal Invertase in Solid State Fermentation Using Aspergillus Niger GH1. Braz. J. Microbiol. 2014, 45(2), 373–377. DOI: 10.1590/S1517-83822014000200002.
  • Pandey, A.; Selvakumar, P.; Ashakumary, L. Glucoamylase Production by Aspergillus Niger on Rice Bran Is Improved by Adding Nitrogen Sources. World J. Microbiol. Biotechnol. 1994, 10(3), 348–349. DOI: 10.1007/BF00414878.
  • Onilude, A. A.; Festus Fadahunsi, I.; Antia, E.; Garuba, E. O.; Inuwa, M.; Afaru, J. Characterization of Crude Alkaline β-Mannosidase Produced by Bacillus Sp. 3A Isolated from Degraded Palm Kernel Cake. AU J. Technol. 2012, 15(3), 152–158.
  • Ravindran, R.; Desmond, C.; Jaiswal, S.; Jaiswal, A. K. Optimisation of Organosolv Pretreatment for the Extraction of Polyphenols from Spent Coffee Waste and Subsequent Recovery of Fermentable Sugars. Bioresour. Technol. Rep. 2018, 3, 7–14. DOI: 10.1016/j.biteb.2018.05.009.
  • Francis, F.; Sabu, A.; Nampoothiri, K. M.; Ramachandran, S.; Ghosh, S.; Szakacs, G.; Pandey, A. Use of Response Surface Methodology for Optimizing Process Parameters for the Production of α-Amylase by Aspergillus Oryzae. Biochem. Eng. J. 2003, 15(2), 107–115. DOI: 10.1016/S1369-703X(02)00192-4.
  • Adeniran, H. A.; Abiose, S. H.; Ogunsua, A. O. Production of Fungal β-amylase and Amyloglucosidase on Some Nigerian Agricultural Residues. Food Bioproc. Tech. 2010, 3(5), 693–698. DOI: 10.1007/s11947-008-0141-3.
  • Dhillon, G. S.; Kaur, S.; Brar, S. K.; Verma, M. Potential of Apple Pomace as a Solid Substrate for Fungal Cellulase and Hemicellulase Bioproduction through Solid-State Fermentation. Ind. Crops Prod. 2012, 38, 6–13. DOI: 10.1016/j.indcrop.2011.12.036.
  • Leite, P.; Salgado, J. M.; Venâncio, A.; Domínguez, J. M.; Belo, I. Ultrasounds Pretreatment of Olive Pomace to Improve Xylanase and Cellulase Production by Solid-State Fermentation. Bioresour. Technol. 2016, 214, 737–746. DOI: 10.1016/j.biortech.2016.05.028.
  • Biz, A.; Finkler, A. T. J.; Pitol, L. O.; Medina, B. S.; Krieger, N.; Mitchell, D. A. Production of Pectinases by Solid-State Fermentation of a Mixture of Citrus Waste and Sugarcane Bagasse in a Pilot-Scale Packed-Bed Bioreactor. Biochem. Eng. J. 2016, 111, 54–62. DOI: 10.1016/j.bej.2016.03.007.
  • Hassan, S. S.; Williams, G. A.; Jaiswal, A. K. Emerging Technologies for the Pretreatment of Lignocellulosic Biomass. Bioresour. Technol. 2018, 262, 310–318. DOI: 10.1016/j.biortech.2018.04.099.
  • Ravindran, R.; Jaiswal, A. K.; Comprehensive, A. Review on Pre-Treatment Strategy for Lignocellulosic Food Industry Waste: Challenges and Opportunities. Bioresour. Technol. 2016a, 199, 92–102. DOI: 10.1016/j.biortech.2015.07.106.
  • Vandenberghe, L. P. S.; Pandey, A.; Carvalho, J. C.; Letti, L. A. J.; Woiciechowski, A. L.; Karp, S. G.; Thomaz‑Soccol, V.; Martínez‑Burgos, W. J.; Penha, R. O.; Herrmann, L. W., et al. Solid‑State Fermentation Technology and Innovation for the Production of Agricultural and Animal Feed Bioproducts. Syst. Microbiol. Biomanuf. 2020, DOI:10.1007/s43393-020-00015-7.
  • Fernández Núñez, E. G.; Barchi, A. C.; Ito, S.; Escaramboni, B.; Herculano, R. D.; Mayer, C. R. M.; de Oliva Neto, P. Artificial Intelligence Approach for High Level Production of Amylase Using Rhizopus Microsporus Var. Oligosporus and Different Agro-Industrial Wastes. J. Chem. Technol. Biotechnol. 2017, 92(3), 684–692. DOI: 10.1002/jctb.5054.
  • Krishna, C.; Chandrasekaran, M. Banana Waste as Substrate for α-Amylase Production by Bacillus Subtilis (CBTK 106) under Solid-State Fermentation. Appl. Microbiol. Biotechnol. 1996, 46, 106–111. DOI: 10.1007/s002530050790.
  • Pandey, A. Improvements in Solid-State Fermentation for Glucoamylase Production. Biol. Wastes. 1990, 34(1), 11–19. DOI: 10.1016/0269-7483(90)90140-N.
  • Sun, H.-Y.; Li, J.; Zhao, P.; Peng, M. Banana Peel: A Novel Substrate for Cellulase Production under Solid-State Fermentation. Afr. J. Biotechnol. 2011, 10(77), 17887–17890. DOI: 10.5897/AJB10.1825.
  • Seyis, I.; Aksoz, N. Xylanase Production from Trichoderma Harzianum 1073 D3 with Alternative Carbon and Nitrogen Sources. Food Technol. Biotechnol. 2005, 43(1), 37–40.
  • Yin, J.-S.; Liang, Q.-L.; Li, D.-M.; Sun, Z.-T. Optimization of Production Conditions for β-mannanase Using Apple Pomace as Raw Material in Solid-State Fermentation. Ann. Microbiol. 2013, 63(1), 101–108. DOI: 10.1007/s13213-012-0449-0.
  • Yang, S. Q.; Xiong, H.; Yang, H. Y.; Yan, Q. J.; Jiang, Z. Q. High-Level Production of β-1,3-1,4-Glucanase by Rhizomucor Miehei under Solid-State Fermentation and Its Potential Application in the Brewing Industry. J. Appl. Microbiol. 2015, 118(1), 84–91. DOI: 10.1111/jam.12694.
  • Raj Kashyap, D.; Kumar Soni, S.; Tewari, R. Enhanced Production of Pectinase by Bacillus Sp. DT7 Using Solid State Fermentation. Bioresour. Technol. 2003, 88(3), 251–254. DOI: 10.1016/S0960-8524(02)00206-7.
  • MarketsandMarkets Research. Industrial Enzymes Market by Type (Amylases, Cellulases, Proteases, Lipases, and Phytases), Application (Food & Beverages, Cleaning Agents, and Animal Feed), Source (Microorganism, Plant, and Animal), and Region - Global Forecast to 2022, 2020.(accessed February 18, 2021). https://www.marketsandmarkets.com/Market-Reports/industrial-enzymes-market-237327836.html?gclid=CjwKCAjwgbLzBRBsEiwAXVIygGTKbDEwhy0U5qJA7pEUbP86LCaWIOlXo-MLT6JUHn-JIIeDFPAHkBoCpzYQAvD_BwE
  • Panda, S. K.; Mishra, S. S.; Kayitesi, E.; Ray, R. C. Microbial-Processing of Fruit and Vegetable Wastes for Production of Vital Enzymes and Organic Acids: Biotechnology and Scopes. Environ. Res. 2016, 146, 161–172. DOI: 10.1016/j.envres.2015.12.035.
  • Han, W.; Fang, J.; Liu, Z.; Tang, J. Techno-Economic Evaluation of a Combined Bioprocess for Fermentative Hydrogen Production from Food Waste. Bioresour. Technol. 2016, 202, 107–112. DOI: 10.1016/j.biortech.2015.11.072.
  • Singh, D. P.; Singh, H. B.; Prabha, R. Microbial Inoculants in Sustainable Agricultural Productivity; Springer: India, 2016; Vol. 1.
  • Bechara, M. A.; Heinemann, P. H.; Walker, P. N.; Romaine, C. P. A Two-Phase Solid-State Fermentation Process for Mushroom (Agaricus Bisporus) Production on Cereal Grains. Biol. Eng. Trans. 2011, 4(4), 219–229. DOI: 10.13031/2013.40410.
  • Philippoussis, A. N. Production of Mushrooms Using Agro-Industrial Residues as Substrates. In Biotechnology for Agro-Industrial Residues Utilization; Nigam, P.S., Pandey, A., Eds.; Springer: Dordrecht, 2009; pp 163–196. DOI: 10.1007/978-1-4020-9942-7_9.
  • Cavalcante, R. S.; Lima, H. L. S.; Pinto, G. A. S.; Gava, C. A. T.; Rodrigues, S. Effect of Moisture on Trichoderma Conidia Production on Corn and Wheat Bran by Solid State Fermentation. Food Bioproc. Tech. 2008, 1(1), 100–104. DOI: 10.1007/s11947-007-0034-x.
  • Zheng, Z.; Shetty, K. Solid-State Bioconversion of Phenolics from Cranberry Pomace and Role of Lentinus Edodes β-glucosidases. J. Agric. Food Chem. 2000a, 48(3), 895–900. DOI: 10.1021/jf990972u.
  • Santa, H. S. D.; Santa, O. R. D.; Brand, D.; Vandenberghe, L. P. S.; Soccol, C. R. Spore Production of Beauveria Bassiana from Agro-Industrial Residues. Braz. Arch. Biol. Technol. 2005, 48, 51–60. DOI: 10.1590/S1516-89132005000400007.
  • Bai, Z.; Bo, J.; Li, Y.; Chen, J.; Li., Z. Utilization of Winery Wastes for Trichoderma Viride Biocontrol Agent Production by Solid State Fermentation. J. Environ. Sci. 2008, 20(3), 353–358. DOI: 10.1016/S1001-0742(08)60055-8.
  • BIO-FIT. BIOFERTILIZERS Towards Sustainable Agricultural Development. 2015. (accessed February 18, 2021).https://www.bio-fit.eu/upload/Bio-Fit-Book/EN/Bio-FIT_Book_EN.pdf
  • Teamroong, N.; Boonkerd, N. Rhizobial Production Technology. In Microbial Biotechnology in Agriculture and Aquaculture; Ray, R.C., Ed.; Science Publishers: New Hampshire, 2006; Vol. ume II, pp 77–110.
  • Lagnaoui, A.; Cisneros, F.; Alcazar, J.; Morales, A. A Sustainable Pest Management Strategy for Sweet Potato Weevil in Cuba: A Success Story. In Control of Weevils in Sweet Potato Production: Proceedings of International Seminar 20. Symposium of the International Society for Tropical Root Crops (ISTRAC), Tsukuba, Japan, September 11-15, 2000; Chen, C.T., Ed.; 2000; pp 3–13.
  • Martin, A. M. In Bioconversion of Waste Materials to Industrial Products, 2nd ed.; Springer Science+Business Media: New York, 1998; 568.
  • Machado, C. M. M.; Oishi, B. O.; Pandey, A.; Soccol, C. R. Kinetics of Gibberella Fujikuroi Growth and Gibberellic Acid Production by Solid-State Fermentation in a Packed Bed Column Bioreactor. Biotechnol. Progress. 2004, 20(5), 1449–1453. DOI: 10.1021/bp049819x.
  • Rangaswamy, V. Improved Production of Gibberellic Acid by Fusarium Moniliforme. J. Microbiol. Res. 2012, 2(3), 51–55. DOI: 10.5923/j.microbiology.20120203.02.
  • Kamthan, R.; Tiwari, I. Agricultural Wastes-Potential Substrates for Mushroom Cultivation. Eur. J. Exp. Biol. 2018, 7(5:31), 1–4. https://www.imedpub.com/articles/agricultural-wastes-potential-substrates-for-mushroom-cultivation.pdf (accessed February 18, 2021).).
  • Amin, R.; Khair, A.; Alam, N.; Lee, T. S. Effect of Different Substrates and Casing Materials on the Growth and Yield of Calocybe Indica. Mycobiology. 2010, 38(2), 97–101. DOI: 10.4489/MYCO.2010.38.2.097.
  • Shashitha, K. N.; Shlini, P.; Kavitha, G. S. Vegetable Waste-a Potent Substrate for Cultivation of P. Ostreatus. Int. J. Res. Stud. Biosci. 2016, 4(6), 5–9. https://www.arcjournals.org/pdfs/ijrsb/v4-i6/2.pdf (accessed February 18, 2021).).
  • Zheng, Z.; Shetty, K. Solid State Production of Polygalacturonase by Lentinus Edodes Using Fruit Processing Wastes. Process Biochem. 2000b, 35(8), 825–830. DOI: 10.1016/S0032-9592(99)00143-0.
  • Philippoussis, A.; Diamantopoulou, P.; Israilides, C. Production of Functional Food from the Sporophores of the Medicinal Mushroom Lentinula Edodes through Exploitation of Lingocellulosic Agricultural Residues. Int. Biodeterior. Biodegradation. 2007, 59(3), 216–219. DOI: 10.1016/j.ibiod.2006.10.007.
  • Alananbeh, K. M.; Bouqellah, N. A.; Al Kaff, N. S. Cultivation of Oyster Mushroom Pleurotus Ostreatus on Date-Palm Leaves Mixed with Other Agro-Wastes in Saudi Arabia. Saudi J. Biol. Sci. 2014, 21(6), 616–625. DOI: 10.1016/j.sjbs.2014.08.001.
  • Al-Qarawi, A. A.; Abd-Allah, E. F.; Bawadiji, A. A. Production of Pleurotus Ostreatus on Date Palm Residues. J. Pure Appl. Microbiol. 2013, 7(2), 1093–1097.
  • Tonial, T. M.; Pandey, A.; Chiarello, M. D.; Soccol, C. R. Cultivation of Volvariella Volvaceae to Produce Biomass from Potato and Cassava Processing Residues by Submerged Fermentation. Indian J. Microbiol. 2000, 40(1), 35–40.
  • Buzzini, P. Batch and Fed-Batch Carotenoid Production by Rhodotorula glutinis-Debaryomyces Castellii Co-Cultures in Corn Syrup. J. Appl. Microbiol. 2001, 90(5), 843–847. DOI: 10.1046/j.1365-2672.2001.01319.x.
  • Joshi, V. K.; Attri, D. Solid State Fermentation of Apple Pomace for the Production of Value Added Products. Nat. Prod. Rad. 2006, 54, 289–296. http://nopr.niscair.res.in/bitstream/123456789/7966/1/NPR%205%284%29%20289-296.pdf (accessed February 18, 2021).).
  • Timotius, K. H. The Influence of Tapioca on the Growth, the Activity of Glucoamylase and Pigment Production of Monascus Purpureus UKSW 40 in Soybean-Soaking Wastewater. World J. Microbiol. Biotechnol. 2005, 21(4), 615–617. DOI: 10.1007/s11274-004-1892-2.
  • Soares, M.; Christen, P.; Pandey, A.; Soccol, C. R. Fruity Flavour Production by Ceratocystis Fimbriata Grown on Coffee Husk in Solid-state Fermentation. Process Biochem. 2000, 35(8), 857–861. DOI: 10.1016/S0032-9592(99)00144-2.
  • Medeiros, A. B. P.; Soccol, C. R.; Vandenberghe, L. P. S.; Woiciechowski, A. L. Flavor Production by Solid and Liquid Fermentation. In Handbook of Food Products Manufacturing; Hui, Y.H., Ed.; John Wiley & Sons Inc.: New Jersey, 2007; pp 193–203.
  • Vaithanomsat, P.; Apiwatanapiwat, W. Feasibility Study on Vanillin Production from Jatropha Curcas Stem Using Steam Explosion as a Pretreatment. World Acad. Sci. Eng. Technol. 2009, 53, 956–959. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.193.3925&rep=rep1&type=pdf (accessed February 18, 2021).).
  • Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of Vegetable Waste into Value Added Products: (A) the Upgrading Concept; (B) Practical Implementations. Bioresour. Technol. 2003, 87(2), 167–198. DOI: 10.1016/S0960-8524(02)00167-0.
  • Fischbach, R.; Laufenberg, G.; Kunz, B. Generation of Natural Flavours by Solid-State Fermentation of Food Industry By-Products. Proc. Biotechnol. 2000, 4, 266–268.
  • Badee, A. Z. M.; Helmy, S. A.; Morsy, N. F. S. Utilisation of Orange Peel in the Production of α-Terpineol by Penicillium Digitatum (NRRL 1202). Food Chem. 2011, 126(3), 849–854. DOI: 10.1016/j.foodchem.2010.11.046.
  • Laufenberg, G.; Rosato, P.; Kunz, B. Conversion of Vegetable Waste into Value Added Products: Oil Press Cake as an Exclusive Substrate for Microbial D-Decalactone Production. In Lipids, Fats, and Oils: Reality and Public Perception 2001; 24th World Congress and Exhibition of the ISF, 09.01 AOCS Press: Berlin, 2001; 10ff., pp 16–20.
  • Ray, R. C.; Moorthy, S. N. Exopolysaccharide (Pullulan) Production by Aureobasidium Pullulans Strain MTCC 1991. J. Sci. Ind. Res. 2007, 663, 252–255. http://nopr.niscair.res.in/bitstream/123456789/1237/1/JSIR%2066(3)%20(2007)%20252-255.pdf (accessed February 18, 2021).).
  • Selbmann, L.; Crognale, S.; Petruccioli, M. Exopolysaccharide Production from Sclerotium Glucanicum NRRL 3006 and Botryosphaeria Rhodina DABAC-P 82 on Raw and Hydrolyzed Starchy Materials. Lett. Appl. Microbiol. 2002, 34(1), 51–55. DOI: 10.1046/j.1472-765x.2002.01042.x.
  • Peak, S. S. Solid-State Xanthan Fermentation by Using Sugarcane Bagasse as Carbon Source. MSc Thesis, Universiti Tunku Abdul Rahman, Malaysia, 2014.(accessed February 18, 2021). http://eprints.utar.edu.my/1484/1/SCA-2014-1106159-1.pdf
  • Zhang, Z. G.; Chen, H. Z. Characterization of Xanthan Production under Solid State Fermentation on Polyurethane Foam. Adv. Mater. Res. 2012, 393-395, 1128–1132. 10.4028/www.scientific.net/AMR.393-395.1128.
  • Ajila, C. M.; Brar, S. K.; Verma, M.; Tyagi, R. D.; Valéro, J. R. Solid-State Fermentation of Apple Pomace Using Phanerocheate Chrysosporium – Liberation and Extraction of Phenolic Antioxidants. Food Chem. 2011, 126(3), 1071–1080. DOI: 10.1016/j.foodchem.2010.11.129.
  • Chandra, P.; Arora, D. S. Production of Antioxidant Bioactive Phenolic Compounds by Solid-State Fermentation on Agro-Residues Using Various Fungi Isolated from Soil. Asian J. Biotechnol. 2016, 8(2), 8–15. DOI: 10.3923/ajbkr.2016.8.15.
  • Vattem, D. A.; Lin, Y. –. T. Labbe, R. G.; Shetty, K. Antimicrobial Activity against Select Food-Borne Pathogens by Phenolic Antioxidants Enriched in Cranberry Pomace by Solid-State Bioprocessing Using the Food Grade Fungus Rhizopus Oligosporus. Process Biochem. 2004a, 39(12), 1939–1946. DOI: 10.1016/j.procbio.2003.09.032.
  • Vattem, D. A.; Lin, Y. –. T.; Shetty, K. Enrichment of Phenolic Antioxidants and Anti- Helicobacter Pylori Properties of Cranberry Pomace by Solid-State Bioprocessing. Food Biotechnol. 2005, 19(1), 51–68. DOI: 10.1081/FBT-200049065.
  • Correia, R. T. P.; McCue, P.; Vattem, D. A.; Magalhâes, M. M. A.; Macêdo, G. R.; Shetty, K. Amylase and Helicobacter Pylori Inhibition by Phenolic Extracts of Pine Apple Wastes Bioprocessed by Rhizopus Oligosporus. J. Food Biochem. 2004b, 28(5), 419–434. DOI: 10.1111/j.1745-4514.2004.06003.x.
  • Rubia-Soria, A.; Abriouel, H.; Lucas, R.; Omar, N. B.; Martínez-Cañamero, M.; Gálvez, A. Production of Antimicrobial Substances by Bacteria Isolated from Fermented Table Olives. World J. Microbiol. Biotechnol. 2006, 22(7), 765–768. DOI: 10.1007/s11274-005-9101-5.
  • Adinarayana, K.; Ellaiah, P.; Srinivasulu, B.; Bhavani, D. R.; Adinarayana, G. Response Surface Methodo-Logical Approach to Optimize the Nutritional Parameters for Neomycin Production by Streptomyces Marinensis under Solid State Fermentation. Process Biochem. 2003, 38(11), 1565–1572. DOI: 10.1016/S0032-9592(03)00057-8.
  • Ellaiah, P.; Srinivasulu, B.; Adinarayana, K. Optimization Studies on Neomycin Production by a Mutant Strain of Streptomyces Marinensis in Solid State Fermentation. Process Biochem. 2004, 39(5), 529–534. DOI: 10.1016/S0032-9592(02)00059-6.
  • Cuadra, T.; Fernandez, F. J.; Tomasini, A.; Barrios-González, J. Influence of pH Regulation and Nutrient Content on Cephalosporin C Production in Solid-State Fermentation by Acremonium Chrysogenum C10. Lett. Appl. Microbiol. 2008, 46(2), 216–220. DOI: 10.1111/j.1472-765x.2007.02285.x.
  • El-Naggar, M. Y.; El-Assar, S. A.; Abdul-Gawad, S. M. Solid-State Fermentation for the Production of Meroparamycin by Streptomyces Sp. Strain MAR01. J. Microbiol. Biotechnol. 2009, 19(5), 468–473. DOI: 10.4014/jmb.0807.457.
  • Reddy, D. S. R.; Latha, D. P.; Latha, K. P. J. Production of Lovastatin by Solid State Fermentation by Penicillium Funiculosum NCIM 1174. Drug Invention Today. 36, 2011, 75–77. http://jprsolutions.info/newfiles/journal-file-55ed1326eeaa59.69480041.pdf (accessed February 18, 2021).).
  • Vastrad, B. M.; Neelagund, S. E.; Iiger, S. R.; Godbole, A. M.; Kulkarni, V. Improved Rifamycin B Production by Nocardia Mediterranei MTCC 14 under Solid-State Fermentation through Process Optimization. Biochem. Res. Int. 2014, 621309. DOI: 10.1155/2014/621309.
  • Vastrad, B. M.; Neelagund, S. E. Optimization of Process Parameters for Rifamycin B Production under Solid State Fermentation from Amycolatopsis Mediterranean MTCC14. Int. J. Curr. Pharm. Res. 2012, 4(2), 101–108.
  • Nagavalli, M.; Ponamgi, S. P. D.; Girijashankar, V.; Venkateswar Rao, L. Solid State Fermentation and Production of Rifamycin SV Using Amycolatopsis Mediterranei. Lett. Appl. Microbiol. 2015, 60(1), 44–51. DOI: 10.1111/lam.12332.
  • Zhang, P.; Chen, C.; Shen, Y.; Ding, T.; Ma, D.; Hua, Z.; Sun, D. Starch Saccharification and Fermentation of Uncooked Sweet Potato Roots for Fuel Ethanol Production. Bioresour. Technol. 2013a, 128, 835–838. DOI: 10.1016/j.biortech.2012.10.166.
  • Zhang, X.; Wang, T.; Zhou, W.; Jia, X.; Wang, H. Use of a Tn5‐based Transposon System to Create a Cost‐Effective Zymomonas Mobilis for Ethanol Production from Lignocelluloses. Microb. Cell Fact. 2013b, 12, 41. DOI: 10.1186/1475-2859-12-41.
  • Thauer, R. K.; Shima, S. Biogeochemistry: Methane and Microbes. Nature. 2006, 440(7086), 878–879. DOI: 10.1038/440878a.
  • Roati, C.; Fiore, S.; Ruffino, B.; Marchese, F.; Novarino, D.; Zanetti, M. C. Preliminary Evaluation of the Potential Biogas Production of Food-Processing Industrial Wastes. Am. J. Environ. Sci. 2012, 83, 291–296. https://core.ac.uk/download/pdf/25855444.pdf (accessed February 18, 2021).).
  • Chakravarti, R.; Sahai, V. Optimization of Compactin Production in Chemically Defined Production Medium by Penicillium Citrinum Using Statistical Methods. Process Biochem. 2002, 38(4), 481–486. DOI: 10.1016/S0032-9592(02)00138-3.
  • Shaligram, N. S.; Singh, S. K.; Singhal, R. S.; Szakacs, G.; Pandey, A. Effect of Pre-Cultural and Nutritional Parameters on Compactin Production by Solidstate Fermentation. J. Microbiol. Biotechnol. 2009, 19(7), 690–697. DOI: 10.4014/jmb.0808.466.
  • Szakacs, G.; Morovján, G.; Tengredy, R. P. Production of Lovastatin by a Wild Strain of Aspergillus Terreus. Biotechnol. Lett. 1998, 20(4), 411–415. DOI: 10.1023/A:1005391716830.
  • Manzoni, M.; Rollini, M. Biosynthesis and Biotechnological Production of Statins by Filamentous Fungi and Application of These Cholesterol-Lowering Drugs. Appl. Microbiol. Biotechnol. 2002, 58(5), 555–564. DOI: 10.1007/s00253-002-0932-9.
  • Ahmed, Z. M.; Panda, B. P.; Javed, S.; Ali, M. Production of Mevastatin by Solid State Fermentation Using Wheat Bran as Substrate. Res. J. Microbiol. 2006, 1(5), 443–447. DOI: 10.3923/jm.2006.443.447.
  • Park, J. W.; Lee, J. K.; Kwon, T. J.; Yi, D. H.; Kim, Y. J.; Moon, S. H.; Suh, -H.-H.; Kang, S.-M.; Park, Y. I. Bioconversion of Compactin into Pravastatin by Streptomyces Sp. Biotechnol. Lett. 2003, 25(21), 1827–1831. DOI: 10.1023/A:1026281914301.
  • Kostova, I.; Ivanova, N.; Losev, V.; Dimitrova, A.; Vasileva, R.; Todorova, D. Method for Production of Pravastatin by Fermentation. European Patent 1 452 602 A1, 2004.
  • Sekar, C.; Rajasekar, V. W.; Balaraman, K. Production of Cyclosporin A by Solid State Fermentation. Bioprocess Biosyst. Eng. 1997, 17, 257–259. DOI: 10.1007/s004490050383.
  • Survase, S. A.; Shaligram, N. S.; Pansuriya, R. C.; Annapure, U. S.; Singhal, R. S.; Novel, A. Medium for the Enhanced Production of Cyclosporin A by Tolypocladium Inflatum MTCC 557 Using Solid State Fermentation. J. Microbiol. Biotechnol. 2009, 19(5), 462–467. DOI: 10.4014/jmb.0805.324.
  • Bussari, B.; Survase, S. A.; Saudagar, P. S.; Singhal, R. S. An Integrated Approach for Production of Cephamycin C Using Streptomyces Clavuligerus NT4: Sequential Optimization of Production Medium and Effect of Amino Acids. Curr. Trends Biotechnol. Pharm. 2009, 3(4), 372–384.
  • Kagliwal, L. D.; Survase, S. A.; Singhal, R. S.; Novel, A. Medium for the Production of Cephamycin C by Nocardia Lactamdurans Using Solid-State Fermentation. Bioresour. Technol. 2009, 100(9), 2600–2606. DOI: 10.1016/j.biortech.2008.11.046.
  • Yang, S. S.; Ling, M.-Y. Tetracycline Production with Sweet Potato Residue by Solid State Fermentation. Biotechnol. Bioeng. 1998, 33(8), 1921–1028. DOI: 10.1002/bit.260330811.
  • Saykhedkar, S. S.; Singhal, R. S. Solid-State Fermentation for Production of Griseofulvin on Rice Bran Using Penicillium Griseofulvum. Biotechnol. Prog. 2004, 20(4), 1280–1284. DOI: 10.1021/bp0343662.
  • Ohno, A.; Ano, T.; Shoda, M. Production of a Lipopeptide Antibiotic, Surfactin, by Recombinant Bacillus Subtilis in Solid State Fermentation. Biotechnol. Bioeng. 1995, 47(2), 209–214. DOI: 10.1002/bit.260470212.
  • Alani, F.; Grove, J. A.; Anderson, W. A.; Moo-Young, M. Mycophenolic Acid Production in Solid State Fermentation Using a Packed-Bed Bioreactor. Biochem. Eng. J. 2009, 44(2–3), 106–110. DOI: 10.1016/j.bej.2008.11.005.
  • Kunhorm, P.; Chaicharoenaudimrung, N., .; Noisa, P. Enrichment of Cordycepin for Cosmeceutical Applications: Culture Systems and Strategies. Appl. Microbiol. Biotechnol. 2019, 103(4), 1681–1691. DOI: 10.1007/s00253-019-09623-3.
  • El‐Sayed, E. R.; Ahmed, A. S.; Al‐Hagar, O. E. A. Agro‐industrial Wastes for Production of Paclitaxel by Irradiated Aspergillus Fumigatus under Solid‐state Fermentation. J. Appl. Microbiol. 2020, 128(5), 1427–1439. DOI: 10.1111/jam.14574.
  • Ballardo, C.; Barrena, R.; Artola, A.; Sánchez, A.; Novel, A. Strategy for Producing Compost with Enhanced Biopesticide Properties through Solid-State Fermentation of Biowaste and Inoculation with Bacillus Thuringiensis. Waste Manag. 2017, 70, 53–58. DOI: 10.1016/j.wasman.2017.09.041.
  • Qiu, L.; Li, J.; Li, Z.; Wang, J. Production and Characterization of Biocontrol Fertilizer from Brewer’s Spent Grain via Solid-State Fermentation. Sci. Rep. 2019, 9, 480. DOI: 10.1038/s41598-018-36949-1.
  • Jimenez-Peñalver, P.; Castillejos, M.; Koh, A.; Gross, R.; Sánchez, A.; Font, X.; Gea, T. Production and Characterization of Sophorolipids from Stearic Acid by Solid-State Fermentation, a Cleaner Alternative to Chemical Surfactants. J. Clean. Prod. 2018, 172, 2735–2747. DOI: 10.1016/j.jclepro.2017.11.138.
  • El-Housseiny, G.; Aboshanab, K.; Aboulwafa, M.; Hassouna, N. Rhamnolipid Production by a Gamma Ray-Induced Pseudomonas Aeruginosa Mutant under Solid State Fermentation. AMB Express. 2019, 9(1), 7–15. DOI: 10.1186/s13568-018-0732-y.
  • Martinez-Ávila, O.; Sánchez, A.; Font, X.; Barrena, R. Valorization of Sugarcane Bagasse and Sugar Beet Molasses Using Kluyveromyces Marxianus for Producing Value-Added Aroma Compounds via Solid-State Fermentation. J. Clean. Prod. 2017, 158(Suppl.C), 8–17. DOI: 10.1016/j.jclepro.2017.04.155.
  • Martinez-Ávila, O.; Sánchez, A.; Font, X.; Barrena, R. Enhancing the Bioproduction of Value-Added Aroma Compounds via Solid-State Fermentation of Sugarcane Bagasse and Sugar Beet Molasses: Operational Strategies and Scaling-Up of the Process. Bioresour. Technol. 2018, 263, 136–144. DOI: 10.1016/j.biortech.2018.04.106.
  • Buenrostro-Figueroa, J. J.; Velázquez, M.; Flores-Ortega, O.; Ascacio-Valdés, J. A.; Huerta-Ochoa, S.; Aguilar, C. N.; Prado-Barragán, L. A. Solid State Fermentation of Fig (Ficus Carica L.) By-Products Using Fungi to Obtain Phenolic Compounds with Antioxidant Activity and Qualitative Evaluation of Phenolics Obtained. Process Biochem. 2017, 62, 16–23. DOI: 10.1016/j.procbio.2017.07.016.
  • Shin, H.; Kim, S.; Lee, J.; Solid-State, L. S. Fermentation of Black Rice Bran with Aspergillus Awamori and Aspergillus Oryzae: Effects on Phenolic Acid Composition and Antioxidant Activity of Bran Extracts. Food Chem. 2019, 272, 235–241. DOI: 10.1016/j.foodchem.2018.07.174.
  • Rivero, C. P.; Hu, Y.; Kwan, T. H.; Webb, C.; Theodoropoulos, C.; Daoud, W.; Lin, C. S. K. Bioplastics from Solid Waste. In Current Developments in Biotechnology and Bioengineering. Solid Waste Management; Wong, J., Tyagi, R., Pandey, A., Eds.; Elsevier: Amsterdam, 2017; pp 1–26. DOI: 10.1016/B978-0-444-63664-5.00001-0.
  • Singh, R.; Kaur, N.; Kennedy, J. Pullulan Production from Agroindustrial Waste and Its Applications in Food Industry: A Review. Carbohydr. Polym. 2019, 217, 46–57. DOI: 10.1016/j.carbpol.2019.04.050.
  • O’Callaghan, M. Microbial Inoculation of Seed for Improved Crop Performance: Issues and Opportunities. Appl. Microbiol. Biotechnol. 2016, 100(13), 5729–5746. DOI: 10.1007/s00253-016-7590-9.
  • Dent, D.; Cocking, E. Establishing Symbiotic Nitrogen Fixation in Cereals and Other Non‑Legume Crops: The Greener Nitrogen Revolution. Agric. Food Secur. 2017, 6(1), 7. DOI: 10.1186/s40066-016-0084-2.
  • Khalid, M.; Hassani, D.; Bilal, M.; Asad, F.; Huang, D. Influence of Bio-Fertilizer Containing Beneficial Fungi and Rhizospheric Bacteria on Health Promoting Compounds and Antioxidant Activity of Spinacia Oleracea L. Bot. Stud. 2017, 58, 35. DOI: 10.1186/s40529-017-0189-3.
  • Sadhana, B. Arbuscular Mycorrhizal Fungi (AMF) as A Biofertilizer- A Review. Int. J. Curr. Microbiol. Appl. Sci. 34, 2014, 384–400. https://www.ijcmas.com/vol-3-4/B.Sadhana.pdf (accessed February 18, 2021).).
  • Heydari, A.; Pessarakli, M. A Review on Biological Control of Fungal Plant Pathogens Using Microbial Antagonists. J. Biol. Sci. 2010, 10(4), 273–290. DOI: 10.3923/jbs.2010.273.290.
  • Yendyo, S.; Ramesh, G. C.; Pandey, B. R. Evaluation of Trichoderma Spp., Pseudomonas Fluorescens and Bacillus Subtilis for Biological Control of Ralstonia Wilt of Tomato. F1000Res. 2028, 2018(6). DOI: 10.12688/f1000research.12448.1.
  • Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let’s Benefit from past Successes. Front. Microbiol. 2015, 6, 1559. DOI: 10.3389/fmicb.2015.01559.
  • Rossi, M. J.; Furigo, A., Jr.; Oliveira, V. L. Inoculant Production of Ectomycorrhizal Fungi by Solid and Submerged Fermentations. Food Technol. Biotechnol. 2007, 45(3), 277–286.
  • Greeshma Rao, U. B.; Narladkar, B. W. Role of Entomopathogenic Fungi in Tick Control: A Review. J. Entomol. Zool. Stud. 61, 2018, 1265–1269. http://www.entomoljournal.com/archives/2018/vol6issue1/PartR/6-1-112-205.pdf (accessed February 18, 2021).).
  • Vega, F. E. The Use of Fungal Entomopathogens as Endophytes in Biological Control: A Review. Mycologia. 2018, 110(1), 4–30. DOI: 10.1080/00275514.2017.1418578.
  • Maina, U. M.; Galadima, I. B.; Gambo, F. M.; Zakaria, D. A Review on the Use of Entomopathogenic Fungi in the Management of Insect Pests of Field Crops. J. Entomol. Zool. Stud. 61, 2018, 27–32. http://www.entomoljournal.com/archives/2018/vol6issue1/PartA/5-5-367-216.pdf (accessed February 18, 2021).).
  • Rai, D.; Updhyay, V.; Mehra, P.; Rana, M.; Pandey, A. K. Potential of Entomopathogenic Fungi as Biopesticides. Indian J. Sci. Res. Technol. 2014, 2(5), 7–13.
  • Sandhu, S. S.; Sharma, A. K.; Beniwal, V.; Goel, G.; Batra, P.; Kumar, A.; Jaglan, S.; Sharma, A. K.; Malhotra, S. Myco-Biocontrol of Insect Pests: Factors Involved, Mechanism, and Regulation. J. Pathog. 2012, 2012, 126819. DOI: 10.1155/2012/126819.
  • Maza, N.; Morales, A.; Ortiz, O.; Winters, P.; Alcázar, J.; Scott, G. Economic Impact of IPM on the Sweetpotato Weevil (Cylas Formicarius Fab.) In Cuba; International Potato Center (CIP): Lima, Peru, 2000; pp 52.
  • Capalbo, D. M. F.; Valicente, F. H.; Moraes, I. D. O.; Pelizer, L. H. Solid-State Fermentation of Bacillus Thuringiensis Tolworthi to Control Fall Armyworm in Maize. Electron. J. Biotechnol. 2001, 4(2), 1–6. DOI: 10.2225/vol4-issue2-fulltext-5.
  • Devlin, R. M. Plant Physiology; 5th; East-West Press Pvt. Ltd.: New Delhi, 2002; pp 782.
  • Swain, M. R.; Ray, R. C. Optimization of Cultural Conditions and Their Statistical Interpretations for Production of Indol-3-Acetic Acid by Bacillus Subtilis CM5 Using Cassava Fibrous Residue. J. Sci. Ind. Res. 2008, 67(8), 622–628.
  • Chang, S. T.; Wasser, S. P. The Cultivation and Environmental Impact of Mushrooms. Oxf. Res. Encyclo. Environ. Sci. 2017, 1–38. DOI:10.1093/acrefore/9780199389414.013.231.
  • Howard, R. L. Lignocellulose Biotechnology: Bioconversion and Cultivation of Edible Mushrooms. In Microbial Biotechnology in Horticulture; Ray, R.C., Ward, O.P., Eds.; Science Publishers: Florida, 2008; Vol. ume 3, pp 181–230.
  • El Sheikha, A. F.; Hu, D. –. M. How to Trace the Geographic Origin of Mushrooms? Trends Food Sci. Technol. 2018, 78, 292–303. DOI: 10.1016/j.tifs.2018.06.008.
  • El Sheikha, A. F.; Hu, D. –. M. Molecular Techniques Reveal More Secrets of Fermented Foods. Crit. Rev. Food Sci. Nutr. 2020, 60(1), 11–32. DOI: 10.1080/10408398.2018.1506906.
  • Hua, W.; El Sheikha, A. F.; Xu, J. Molecular Techniques for Making Recombinant Enzymes Used in Food Processing. In Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity and Traceability, 1st ed.; El Sheikha, A.F., Levin, R.E., Xu, J., Eds.; John Wiley & Sons, Inc.: Chichester, 2018; pp 95–114.
  • Akinyele, B. J.; Olaniyi, O. O.; Arotupin, D. J. Bioconversion of Selected Agricultural Wastes and Associated Enzymes by Volvariella Volvacea: An Edible Mushroom. Res. J. Microbiol. 2011, 6(1), 63–70. DOI: 10.3923/jm.2011.63.70.
  • Quimio, T. H. Mushrooms: Production, Disease Management and Processing. In Microbial Biotechnology in Horticulture; Ray, R.C., Ward, O.P., Eds.; Science Publishers: New Hampshire, 2006; pp 473–516.
  • Correia, R. T. P.; McCue, P.; Magalhâes, M. M. A.; Macêdo, G. R.; Shetty, K. Phenolic Antioxidant Enrichment of Soyflour-Supplemented Guava Waste by Rhizopus Oligosporus-mediated Solid-State Bioprocessing. J. Food Biochem. 2004a, 28(5), 404–418. DOI: 10.1111/j.1745-4514.2004.05703.x.
  • Vattem, D. A.; Shetty, K. Ellagic Acid Production and Phenolic Antioxidant Activity in Cranberry Pomace (Vaccinium Macrocarpon) Mediated by Lentinus Edodes Using a Solid-State System. Process Biochem. 2003, 39(3), 367–379. DOI: 10.1016/S0032-9592(03)00089-X.
  • Vattem, D. A.; Lin, Y. –. T.; Labbe, R. G.; Shetty, K. Phenolic Antioxidant Mobilization in Cranberry Pomace by Solid-State Bioprocessing Using Food Grade Fungus Lentinus Edodes and Effect on Antimicrobial Activity against Select Food Borne Pathogens. Innov. Food Sci. Emerg. Technol. 2004b, 5(1), 81–91. DOI: 10.1016/j.ifset.2003.09.002.
  • Agriculture and Agri-Food Canada (AAFC). Innovation in Agriculture: Canadian Industrial Bioproducts Industry Priorities & Recommendations. December 2017. (accessed February 18, 2021). http://www.biotech.ca/wp-content/uploads/2016/03/SG_BioProductsPolicy2017En_FINAL-compressed.pdf
  • Dubal, S. A.; Tilkari, Y. P.; Momin, S. A.; Borkar, I. V. Biotechnological Routes in Flavour Industries. Adv. Bio Tech. 2008, 6, 20–31.
  • Shaaban, H. A.; Mahmoud, K. F.; Amin, A. A.; El Banna, H. A. Application of Biotechnology to the Production of Natural Flavor and Fragrance Chemicals. Res. J. Pharm. Biol. Chem. Sci. 2016, 7(6), 2670–2717.
  • Ray, R. C.; Sahoo, A. K.; Assano, K.; Tomita, F. Microbial Processing of Agricultural Residues for Production of Food, Feed and Food-Additives. In Microbial Biotechnology in Agriculture and Aquaculture; Ray, R.C., Ed.; Science Publishers: New Hampshire, 2006b; Vol. ume II, pp 511–552.
  • Gupta, C.; Prakash, D.; Gupta, S. A Biotechnological Approach to Microbial Based Perfumes and Flavours. J. Microbiol. Exp. 2015, 2(1), 00034. DOI: 10.15406/jmen.2015.01.00034.
  • Carroll, A. L.; Desai, S. H.; Atsumi, S. Microbial Production of Scent and Flavor Compounds. Curr. Opin. Biotechnol. 2016, 37, 8–15. DOI: 10.1016/j.copbio.2015.09.003.
  • Boratyński, F.; Szczepańska, E.; Grudniewska, A.; Olejniczak, T. Microbial Kinetic Resolution of Aroma Compounds Using Solid-State Fermentation. Catalysts. 2018, 8(1), 28. DOI: 10.3390/catal8010028.
  • Fadel, H. H. M.; Mahmoud, M. G.; Asker, M. M. S.; Lotfy, S. N. Characterization and Evaluation of Coconut Aroma Produced by Trichoderma Viride EMCC-107 in Solid State Fermentation on Sugarcane Bagasse. Electron. J. Biotechnol. 2015, 18(1), 5–9. DOI: 10.1016/j.ejbt.2014.10.006.
  • Wang, Z. –. M.; Lu, Z. –. M.; Shi, J. –. S.; Xu, Z. –. H. Exploring Flavour-Producing Core Microbiota in Multispecies Solidstate Fermentation of Traditional Chinese Vinegar. Sci. Rep. 2016, 6, 26818. DOI: 10.1038/srep26818.
  • Medeiros, A. B. P.; Pandey, A.; Christen, P.; Fontoura, P. S. G.; De Freitas, R. J. S.; Soccol, C. R. Aroma Compounds Produced by Kluyveromyces Marxianus in Solid State Fermentation on a Packed Bed Column Bioreactor. World J. Microbiol. Biotechnol. 2001, 17(8), 767–771. DOI: 10.1023/A:101359633038.
  • Medeiros, A. B. P.; Christen, P.; Roussos, S.; Gern, J. C.; Soccol, C. R. Coffee Residues as Substrates for Aroma Production by Ceratocystis Fimbriata in Solid State Fermentation. Braz. J. Microbiol. 2003, 34(3), 245–248. DOI: 10.1590/S1517-83822003000300013.
  • Medeiros, A. B. P.; Pandey, A.; Freitas, R. J. S.; Christen, P.; Soccol, C. R. Optimization of the Production of Aroma Compounds by Kluyveromyces Marxianus in Solid-State Fermentation Using Factorial Design and Response Surface Methodology. Biochem. Eng. J. 2000, 6(1), 33–39. DOI: 10.1016/S1369-703X(00)00065-6.
  • Ray, R. C.; Ward, O. P. Post-Harvest Microbial Technology of Tropical Root and Tuber Crops. In Microbial Biotechnology in Horticulture; Ray, R.C., Ward, O.P., Eds.; Science Publishers: New Hampshire, 2006a; pp 345–396.
  • Ikeda, K. New Seasonings. Chem. Senses. 2002, 27(9), 847–849. DOI: 10.1093/chemse/27.9.847.
  • Ahmad, N. H.; Mustafa, S.; Che Man, Y. B. Microbial Polysaccharides and Their Modification Approaches: A Review. Int. J. Food Prop. 2015, 18(2), 332–347. DOI: 10.1080/10942912.2012.693561.
  • Giavasis, I. Production of Microbial Polysaccharides for Use in Food. In Microbial Production of Food Ingredients, Enzymes and Nutraceuticals, McNeil, B., Archer, D., Giavasis, I., Harvey, L., Eds.; Woodhead Publishing: Cambridge, 2013; A Volume in Woodhead Publishing Series in Food Science, Technology and Nutrition. pp 413–468.
  • Moscovici, M. Present and Future Medical Applications of Microbial Exopolysaccharides. Front. Microbiol. 2015, 6, 1012. DOI: 10.3389/fmicb.2015.01012.
  • Ramalingam, C.; Priya, J.; Mundra, S. Applications of Microbial Polysaccharides in Food Industry. Int. J. Pharm. Sci. Rev. Res. 271, 2014, 322–324. https://globalresearchonline.net/journalcontents/v27-1/58.pdf (accessed February 18, 2021).).
  • Bhatia, S. K.; Kumar, N.; Bhatia, R. K. Stepwise Bioprocess for Exopolysaccharide Production Using Potato Starch as Carbon Source. 3 Biotech. 2015, 5(5), 735–739. DOI: 10.1007/s13205-014-0273-2.
  • Nwe, N.; Stevens, W. F. Production of Fungal Chitosan by Solid Substrate Fermentation Followed by Enzymatic Extraction. Biotechnol. Lett. 2002, 24(2), 131–134. DOI: 10.1023/A:1013850621734.
  • Brewer, M. S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10(4), 221–247. DOI: 10.1111/j.1541-4337.2011.00156.x.
  • Caleja, C.; Ribeiro, A.; Barreiro, M. F.; Ferreira, I. C. F. R. Phenolic Compounds as Nutraceuticals or Functional Food Ingredients. Curr. Pharm. Des. 2017, 23(19), 2787–2806. DOI: 10.2174/1381612822666161227153906.
  • Vilela, A.; Cosme, F. Drink Red: Phenolic Composition of Red Fruit Juices and Their Sensorial Acceptance. Beverages. 2016, 2(4), 29. DOI: 10.3390/beverages2040029.
  • de Oliveira, L. L.; de Carvalho, M. V.; Melo, L. Health Promoting and Sensory Properties of Phenolic Compounds in Food. Food Sci. Technol. 2014, 61, 764–779. DOI: 10.1590/0034-737x201461000002.
  • Samarin, A. M.; Poorazarang, H.; Hematyar, N.; Elhamirad, A. Phenolics in Potato Peels: Extraction and Utilization as Natural Antioxidants. World Appl. Sci. J. 2012, 18(2), 191–195. DOI: 10.5829/idosi.wasj.2012.18.02.1057.
  • Dulf, F. V.; Vodnar, D. C.; Dulf, E. –. H.; Pintea, A. Phenolic Compounds, Flavonoids, Lipids and Antioxidant Potential of Apricot (Prunus Armeniaca L.) Pomace Fermented by Two Filamentous Fungal Strains in Solid State System. Chem. Cent. J. 2017, 11, 92. DOI: 10.1186/s13065-017-0323-z.
  • Mohamed, S. A.; Saleh, R. M.; Kabli, S. A.; Al-Garni, S. A. Influence of Solid State Fermentation by Trichoderma Spp. On Solubility, Phenolic Content, Antioxidant, and Antimicrobial Activities of Commercial Turmeric. Biosci. Biotechnol. Biochem. 2016, 80(5), 920–928. DOI: 10.1080/09168451.2015.1136879.
  • Sousa, B. A.; Correia, R. T. P. Phenolic Content, Antioxidant Activity of Extracts Obtained from Bioprocessed Pineapple and Guava Wastes. Braz. J. Chem. Eng. 2012, 29(1), 25–30. DOI: 10.1590/S0104-66322012000100003.
  • Wadhwa, M.; Bakshi, M. P. S.; Makkar, H. P. S. Wastes to Worth: Value Added Products from Fruit and Vegetable Wastes. CAB Rev. 2015, 10(43), 1–25. DOI: 10.1079/PAVSNNR201510043.
  • Wang, S. Y.; Stretch, A. W. Antioxidant Capacity in Cranberry Is Influenced by Cultivar and Storage Temperature. J. Agric. Food Chem. 2001, 49(2), 969–974. DOI: 10.1021/jf001206m.
  • Andler, S. M.; Goddard, J. M. Transforming Food Waste: How Immobilized Enzymes Can Valorize Waste Streams into Revenue Streams. NPJ Sci. Food. 2018, 2, 19. DOI: 10.1038/s41538-018-0028-2.
  • Abbasi, H.; Mortazavipour, S. R.; Setudeh, M. Polygalacturonase (PG) Production by Fungal Strains Using Agro-Industrial Bioproduct in Solid State Fermentation. Chem. Eng. Res. Bull. 2011, 15(1), 1–5. DOI: 10.3329/cerb.v15i1.6368.
  • Rana, N.; Verma, N.; Vaidya, D.; Dipta, B. Production of Amylase from Bacillus Thuringiensis J2 Using Apple Pomace as Substrate in Solid State Fermentation. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6(8), 3465–3474. DOI: 10.20546/ijcmas.2017.608.415.
  • Kaukab, S.; Asghar, M.; Rehman, K.; Asad, M. J.; Adedayo, O. Bio-Processing of Banana Peel for α-Amylase Production by Bacillus Subtilis. Int. J. Agric. Biol. 2003, 51, 36–39. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1088.1108&rep=rep1&type=pdf (accessed February 18, 2021).).
  • Osma, J. F.; Toca-Herrera, J. L.; Rodríguez-Couto, S. Banana Skin: A Novel Waste for Laccase Production by Trametes Pubescens under Solid-State Conditions. Application to Synthetic Dye Decolouration. Dyes Pigm. 2007, 75(1), 32–37. DOI: 10.1016/j.dyepig.2006.05.021.
  • Osma, J. F.; Moilanen, U.; Toca-Herrera, J. L.; Rodríguez-Couto, S. Morphology and Laccase Production of White-Rot Fungi Grown on Wheat Bran Flakes under Semi-Solid-State Fermentation Conditions. FEMS Microbiol. Lett. 2018, 318(1), 27–34. DOI: 10.1111/j.1574-6968.2011.02234.x.
  • Unakal, C.; Kallur, R. I.; Kaliwal, B. B. Production of α-amylase Using Banana Waste by Bacillus Subtilis under Solid State Fermentation. Eur. J. Exp. Biol. 2012, 2(4), 1044–1052.
  • Kunamneni, A.; Permaul, K.; Singh, S. Amylase Production in Solid State Fermentation by the Thermophilic Fungus Thermomyces Lanuginosus. J. Biosci. Bioeng. 2005, 100(2), 168–171. DOI: 10.1263/jbb.100.168.
  • Selvama, K.; Selvankumar, T.; Rajiniganth, R.; Srinivasan, P.; Sudhakar, C.; Senthilkumar, B.; Govarthanan, M. Enhanced Production of Amylase from Bacillus Sp. Using Groundnut Shell and Cassava Waste as a Substrate under Process Optimization: Waste to Wealth Approach. Biocatal. Agric. Biotechnol. 2016, 7, 250–256. DOI: 10.1016/j.bcab.2016.06.013.
  • Oliveira, M. A.; Rodriguez, C.; Reis, E. M.; Nozaki, J. Production of Fungal Protein by Solid Substrate Fermentation of Cactus Cereus Peruvianus and Opuntia Ficus Indica. Quím. Nova. 2001, 24(3), 307–310. DOI: 10.1590/S0100-40422001000300004.
  • Ray, R. C.; Mohapatra, S.; Panda, S.; Shaktimay Kar, S. Solid Substrate Fermentation of Cassava Fibrous Residue for Production of α-Amylase, Lactic Acid and Ethanol. J. Environ. Biol. 2008a, 29(1), 111–115.
  • Salihu, A.; Abbas, O.; Sallau, A. B.; Alam, M. Z. Agricultural Residues for Cellulolytic Enzyme Production by Aspergillus Niger: Effects of Pretreatment. 3 Biotech. 2015, 5(6), 1101–1106. DOI: 10.1007/s13205-015-0294-5.
  • Venkatesagowda, B.; Ponugupaty, E.; Barbosa, A. M.; Dekker, R. F. H. Solid-State Fermentation of Coconut Kernel-Cake as Substrate for the Production of Lipases by the Coconut Kernel-Associated Fungus Lasiodiplodia Theobromae VBE-1. Ann. Microbiol. 2015, 65, 129–142. DOI: 10.1007/s13213-014-0844-9.
  • Rosales, E.; Couto, S. R.; Sanromán, M. A. Reutilisation of Food Processing Wastes for Production of Relevant Metabolites: Application to Laccase Production by Trametes Hirsute. J. Food Eng. 2005, 66(4), 419–423. DOI: 10.1016/j.jfoodeng.2004.04.010.
  • Said, A.; Leila, A.; Kaouther, D.; Sadia, B. Date Wastes as Substrate for the Production of α-Amylase and Invertase. Iran. J. Biotechnol. 2014, 12(3), 41–49. DOI: 10.15171/ijb.1006.
  • Botella, C.; De Ory, I.; Webb, C.; Cantero, D.; Blandino, A. Hydrolytic Enzyme Production by Aspergillus Awamori on Grape Pomace. Biochem. Eng. J. 2005, 26(2–3), 100–106. DOI: 10.1016/j.bej.2005.04.020.
  • Kumar, R.; Sharma, J.; Singh, R. Production of Tannase from Aspergillus Ruber under Solid-State Fermentation Using Jamun (Syzygium Cumini) Leaves. Microbiol. Res. 2007, 162(4), 384–390. DOI: 10.1016/j.micres.2006.06.012.
  • Parihar, D. K. Production of Lipase Utilizing Linseed Oilcake as Fermentation Substrate. Int. J. Environ. Sci. Technol. 2012, 13, 135–143. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=4DEBB24A27309827B83BF1D9856E3468?doi=10.1.1.301.6521&rep=rep1&type=pdf (accessed February 18, 2021).
  • Erdal, S.; Taskin, M. Production of Alpha-Amylase by Penicillium Expansum MT-1 in Solid-State Fermentation Using Waste Loquat (Eriobotrya Japonica Lindley) Kernels as Substrate. Rom. Biotechnol. Lett. 153, 2010, 5342–5350. http://www.ijpaes.com/admin/php/uploads/65_pdf.pdf (accessed February 18, 2021).).
  • Kumar, D.; Yadav, K. K.; Muthukumar, M.; Garg, N. Production and Characterization of [α]-Amylase from Mango Kernel by Fusarium Solani NAIMCC-F-02956 Using Submerged Fermentation. J. Environ. Biol. 2013, 34(6), 1053–1058.
  • Mendoza-Cal, A.; Cuevas-Glory, L.; Lizama-U, G.; Ortiz-Vázquez, E. Naringinase Production from Filamentous Fungi Using Grapefruit Rind in Solid State Fermentation. Afr. J. Microbiol. Res. 2010, 4(19), 1964–1969. DOI: 10.5897/AJMR.9000524.
  • Martin, N.; de Souza, S. R.; Da Silva, R.; Eleni Gomes, E. Pectinase Production by Fungal Strains in Solid-State Fermentation Using Agro-Industrial Bioproduct. Braz. Arch. Biol. Technol. 2004, 47(5), 813–819. DOI: 10.1590/S1516-89132004000500018.
  • Mahmoud, K. Statistical Optimization of Cultural Conditions of an Halophilic Alpha-Amylase Production by Halophilic Streptomyces Sp. Grown on Orange Waste Powder. Biocatal. Agric. Biotechnol. 2015, 4(4), 685–693. DOI: 10.1016/j.bcab.2015.08.011.
  • Norsalwani, T. T.; Norulaini, N. N. Utilization of Lignocellulosic Wastes as a Carbon Source for the Production of Bacterial Cellulases under Solid State Fermentation. Int. J. Environ. Sci. Dev. 2012, 3, 136–140. DOI: 10.7763/IJESD.2012.V3.203.
  • Hariharan, S.; Nambisan, P. Optimization of Lignin Peroxidase, Manganese Peroxidase, and Lac Production from Ganoderma Lucidum under Solid State Fermentation of Pineapple Leaf. BioResources. 2013, 8(1), 250–271. DOI: 10.15376/biores.8.1.250-271.
  • Mushtaq, Q.; Irfan, M.; Tabssum, F.; Qazi, J. I. Potato Peels: A Potential Food Waste for Amylase Production. J. Food Process Eng. 2017, 40(4), e12512. DOI: 10.1111/jfpe.12512.
  • Liu, Y.; Li, C.; Meng, X.; Yan, Y. Biodiesel Synthesis Directly Catalyzed by the Fermented Solid of Burkholderia Cenocepacia via Solid State Fermentation. Fuel Process. Technol. 2013, 106, 303–309. DOI: 10.1016/j.fuproc.2012.08.013.
  • Umsza-Guez, M. A.; Diaz, A. B.; Ory, I.; Blandino, A.; Gomes, E.; Caro, I. Xylanase Production by Aspergillus Awamori under Solid State Fermentation Conditions on Tomato Pomace. Braz. J. Microbiol. 2011, 42(4), 1585–1597. DOI: 10.1590/S1517-838220110004000046.
  • Isil, S.; Nilufer, A. Investigation of Factors Affecting Xylanase Activity from Trichoderma Harzianum 1073 D3. Braz. Arch. Biol. Technol. 2005, 48(2), 187–193. DOI: 10.1590/S1516-89132005000200004.
  • Mohamed, S. A.; Al-Malki, A. L.; Khan, J. A.; Kabli, S. A.; Al-Garni, S. M. Solid State Production of Poly-Galacturonase and Xylanase by Trichoderma Species Using Cantaloupe and Watermelon Rinds. J. Microbiol. 2013, 51(5), 605–611. DOI: 10.1007/s12275-013-3016-x.
  • McKinney, K.; Combs, J.; Becker, P.; Humphries, A.; Filer, K.; Vriesekoop, F. Optimization of Phytase Production from Escherichia Coli by Altering Solid-State Fermentation Conditions. Fermentation. 2015, 1(1), 13–23. DOI: 10.3390/fermentation1010013.
  • Asther, M.; Haon, M.; Roussos, S.; Record, E.; Delattre, M.; Lesage-Meessen, L.; Labat, M.; Asther, M. Feruloyl Esterase from Aspergillus Niger: A Comparison of the Production in Solid State and Submerged Fermentation. Process Biochem. 2002, 38(5), 685–691. DOI: 10.1016/S0032-9592(02)00196-6.
  • Vintila, T.; Dragomirescu, M.; Jurcoane, S.; Caprita, R.; Maiu, M. Production of Cellulase by Submerged and Solid-State Cultures and Yeasts Selection for Conversion of Lignocellulose to Ethanol. Rom. Biotechnol. Lett. 142, 2009, 4275–4281. http://www.rombio.eu/rbl2vol14/cnt/Lucr-9.pdf (accessed February 18, 2021).).
  • Mahadik, N. D.; Puntambekar, U. S.; Bastawde, K. B.; Khire, J. M.; Gokhale, D. V. Production of Acidic Lipase by Aspergillus Niger in Solid State Fermentation. Process Biochem. 2002, 38(5), 715–721. DOI: 10.1016/S0032-9592(02)00194-2.
  • Krishna, C.; Nokes, S. E. Predicting Vegetative Inoculums Performance to Maximize Phytase Production in Solid-State Fermentation Using Response Surface Methodology. J. Ind. Microbiol. Biotechnol. 2001, 26(3), 161–170. DOI: 10.1038/sj/jim/7000103.
  • Papagianni, M.; Nokes, S. E.; Filek, K. Submerged and Solid-State Phytase Fermentation by Aspergillus Niger: Effects of Agitation and Medium Viscosity on Phytase Production, Fungal Morphology and Inoculum Performance. Food Technol. Biotechnol. 394, 2001, 319–326. https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1104&context=bae_facpub (accessed February 18, 2021).).
  • Maldonado, M. C.; Strasser de Saad, A. M. Production of Pectinestrase and Polygalactouronase by Aspergillus Niger in Submerged and Solid State Systems. J. Ind. Microbiol. Biotechnol. 1998, 20, 34–38. DOI: 10.1038/sj.jim.2900470.
  • Basha, N. S.; Rekha, R.; Komala, M.; Ruby, S. Production of Extracellular Anti-Leukaemic Enzyme Lasparaginase from Marine Actinomycetes by Solid State and Submerged Fermentation: Purification and Characterisation. Trop. J. Pharm. Res. 2009, 8(4), 353–360. DOI: 10.4314/tjpr.v8i4.45230.
  • Singh, R. K.; Mishra, S. K.; Kumar, N. Optimization of Culture Conditions for Amylase Production by Thermophilic Bacillus Sp. In Submerged Fermentation. Asian J. Microbiol. Biotechnol. Environ. Sci. 2010, 12(3), 867–876.
  • Gangadharan, D.; Sivaramakrishnan, S.; Nampoothiri, K. M.; Pandey, A. Solid Culturing of Bacillus Amyloliquefaciens for Alpha Amylase Production. Food Technol. Biotechnol. 2006, 44(2), 269–274.
  • Cerda, A.; El-Bakry, M.; Gea, T.; Sánchez, A. Long Term Enhanced Solid-State Fermentation: Inoculation Strategies for Amylase Production from Soy and Bread Wastes by Thermomyces Sp. In a Sequential Batch Operation. J. Environ. Chem. Eng. 2016, 4(2), 2394–2401. DOI: 10.1016/j.jece.2016.04.022.
  • Gupta, U.; Kar, R. Xylanase Production by a Thermo-Tolerant Bacillus Species under Solid-State and Submerged Fermentation. Braz. Arch. Biol. Technol. 2009, 52(6), 1363–1371. DOI: 10.1590/S1516-89132009000600007.
  • Khanahmadia, M.; Arezia, I.; Amiri, M.; Miranzadeh, M. Bioprocessing of Agro-Industrial Residues for Optimization of Xylanase Production by Solidstate Fermentation in Flask and Tray Bioreactor. Biocatal. Agric. Biotechnol. 2018, 13, 272–282. DOI: 10.1016/j.bcab.2018.01.005.
  • Sukumaran, R. K.; Singhania, R. R.; Pandey, A. Microbial Cellulases – Production, Application, and Challenges. J. Sci. Ind. Res. 6411, 2005, 832–844. http://nopr.niscair.res.in/bitstream/123456789/5375/1/JSIR%2064%2811%29%20832-844.pdf (accessed February 18, 2021).).
  • Mukherjee, A. K.; Adhikari, H.; Rai, S. K. Production of Alkaline Protease by a Thermophilic Bacillus Subtilis under Solid-State Fermentation (SSF) Condition Using Imperata Cylindrical Grass and Potato Peel as Low-Cost Medium: Characterization and Application of Enzyme in Detergent Formulation. Biochem. Eng. J. 2008, 39(2), 353–361. DOI: 10.1016/j.bej.2007.09.017.
  • Karp, S. G. Development of a Biotreatment for Delignification of Sugarcane Bagasse and Production of Laccases. Ph.D. Dissertation, Federal University of Paraná, Curitiba, Spain, 2012.(accessed February 18, 2021). https://acervodigital.ufpr.br/bitstream/handle/1884/34680/R%20-%20T%20-%20SUSAN%20GRACE%20KARP.pdf;sequence=1
  • Vandenberghe, L. P. S.; Soccol, C. R.; Spier, M. R.; Weingartner, V. Processo Para Produção de Mananase de Origem Microbiana Utilizando Subprodutos/resíduos Industriais. (BR 1020120065649) 2012, deposited Mai 2th 2012. ( In Portuguese)
  • Rodríguez-Fernández, D. E.; Rodríguez-León, J. A.; de Carvalho, J. C.; Sturm, W.; Soccol, C. R. The Behavior of Kinetic Parameters in Production of Pectinase and Xylanase by Solid-State Fermentation. Bioresour. Technol. 2011, 102(22), 10657–10662. DOI: 10.1016/j.biortech.2011.08.106.
  • Tonkova, A. Microbial Starch Converting Enzymes of the α-Amylase Family. In Microbial Biotechnology in Horticulture; Ray, R.C., Ward, O.P., Eds.; Science Publishers: New Hampshire, 2006; pp 421–472.
  • Maktouf, S.; Kamoun, A.; Moulis, C.; Remaud-Simeon, M.; Ghribi, D.; Semia Ellouz Châabouni, S. E. A. New Raw-Starch-Digesting α-Amylase: Production under Solid-State Fermentation on Crude Millet and Biochemical Characterization. J. Microbiol. Biotechnol. 2013, 23(4), 489–498. DOI: 10.4014/jmb.1211.11027.
  • Abu, E. A.; Ado, S. A.; James, D. B. Raw Starch Degrading Amylase Production by Mixed Culture of Aspergillus Niger and Saccharomyces Cerevisae Grown on Sorghum Pomace. Afr. J. Biotechno. 2005, 4(8), 785–790.
  • Ray, R. C.; Kar, S. Statistical Optimization of α-Amylase Production by Bacillus Brevis MTCC 7521 in Solid-State Fermentation Using Cassava Bagasse. Biologia. 2009, 64(5), 864–870. DOI: 10.2478/s11756-009-0160-1.
  • Nahar, S.; Hossain, F.; Feroza, B.; Halim, M. A. Production of Glucoamylase by Rhizopus Sp, in Liquid Culture. Pak. J. Bot. 2008, 40(4), 1693–1698.
  • Ray, R. C. Extracellular Amylase(s) Production by Fungi Botryodiplodia Theobromae and Rhizopus Oryzae Grown on Cassava Starch Residue. J. Environ. Biol. 2004, 25(4), 489–495.
  • Machida, M. Progress of Aspergillus Oryzae Genomics. Adv. Appl. Microbiol. 2002, 51, 81–106. DOI: 10.1016/S0065-2164(02)51002-9.
  • Singh, R.; Kumar, M.; Mittal, A.; Mehta, P. K. Microbial Metabolites in Nutrition, Healthcare and Agriculture. 3 Biotech. 2017, 7(1), 15. DOI: 10.1007/s13205-016-0586-4.
  • Diaz, A. B.; Blandino, A.; Caro, I. Value Added Products from Fermentation of Sugars Derived from Agro-Food Residues. Trends Food Sci. Technol. 2018, 71, 52–64. DOI: 10.1016/j.tifs.2017.10.016.
  • Ebner, H.; Follmann, H.; Sellmer, S. Vinegar. In Ullmann’s Encyclopaedia of Industrial Chemistry; Elvers, B., Hawkins, S., Eds.; Wiley-VCH Verlag GmbH & Co.: Weinheim, 2000; pp 403–413.
  • Raji, Y. O.; Jibril, M.; Misau, I. M.; Danjuma, B. Y. Production of Vinegar from Pineapple Peel. Int. J. Adv. Res. Sci. Eng. Technol. 2012, 3(2), 656–666.
  • Vikas, O. V.; Mridul, U. Bioconversion of Papaya Peel Waste into Vinegar Using Acetobacter Aceti. Int. J. Sci. Res. 2014, 3(11), 409–411. https://www.worldwidejournals.com/international-journal-of-scientific-research-(IJSR)/recent_issues_pdf/2014/November/November_2014_1493033572__136.pdf (accessed February 18, 2021).).
  • Shojaosadati, S. A.; Babaeipour, V. Citric Acid Production from Apple Pomace in Multi-Layer Packed Bed Solid-State Bioreactor. Process Biochem. 2002, 37(8), 909–914. DOI: 10.1016/S0032-9592(01)00294-1.
  • Dhillon, G. S.; Brar, S. K.; Verma, M.; Tyagi, R. D. Enhanced Solid-State Citric Acid Bio-Production Using Apple Pomace Waste through Surface Response Methodology. J. Appl. Microbiol. 2011, 110(4), 1045–1055. DOI: 10.1111/j.1365-2672.2011.04962.x.
  • Prabha, M. S.; Rangaiah, G. S. Citric Acid Production Using Ananas Comosus and Its Waste with the Effect of Alcohols. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 747–754.
  • Kumar, D.; Jain, V. K.; Shanker, G.; Srivastava, A. Citric Acid Production by Solid State Fermentation Using Sugarcane Bagasse. Process Biochem. 2003, 38(12), 1731–1738. DOI: 10.1016/S0032-9592(02)00252-2.
  • Kareem, S. O.; Akpan, I.; Alebiowu, O. O. Production of Citric Acid by Aspergillus Niger Using Pineapple Waste. Malays. J. Microbiol. 2010, 6(2), 161–165. http://mjm.usm.my/uploads/issues/206/formatted%20MJM%20190-09.pdf (accessed February 18, 2021).).
  • Torrado, A. M.; Cortés, S.; Salgado, J. M.; Max, B.; Rodríguez, N.; Bibbins, B. P.; Converti, A.; Domínguez, J. M. Citric Acid Production from Orange Peel Wastes by Solid-State Fermentation. Braz. J. Microbiol. 2011, 42(1), 394–409. DOI: 10.1590/S1517-83822011000100049.
  • Yadegary, M.; Hamidi, A.; Alavi, S. A.; Khodaverdi, E.; Yahaghi, H.; Sattari, S.; Bagherpour, G.; Yahaghi, E. Citric Acid Production from Sugarcane Bagasse through Solid State Fermentation Method Using Aspergillus Niger Mold and Optimization of Citric Acid Production by Taguchi Method. Jundishapur J. Microbiol. 2013, 6(9), e7625. DOI: 10.5812/jjm.7625.
  • El Sheikha, A. F.; Ray, R. C. Potential Impacts of Bioprocessing of Sweet Potato: Review. Crit. Rev. Food Sci. Nutr. 2017, 57(3), 455–471. DOI: 10.1080/10408398.2014.960909.
  • Bindumole, V. R.; Sasikiran, K.; Balagopalan, C. Production of Citric Acid by the Fermentation of Sweet Potato Using Aspergillus Niger. J. Root Crops. 2000, 26(1), 38–42.
  • Sharma, A.; Vivekanand, V.; Singh, R. P. Solid-State Fermentation for Gluconic Acid Production from Sugarcane Molasses by Aspergillus Niger ARNU-4 Employing Tea Waste as the Novel Solid Support. Bioresour. Technol. 2008, 99(9), 3444–3450. DOI: 10.1016/j.biortech.2007.08.006.
  • Singh, O. V.; Jain, R. K.; Singh, R. P. Gluconic Acid Production under Varying Fermentation Conditions by Aspergillus Niger. J. Chem. Technol. Biotechnol. 2003, 78(2–3), 208–212. DOI: 10.1002/jctb.748.
  • Robledo, A.; Aguilera-Carbó, A.; Rodriguez, R.; Martinez, J. L.; Garza, Y.; Aguilar, C. N. Ellagic Acid Production by Aspergillus Niger in Solid State Fermentation of Pomegranate Residues. J. Ind. Microbiol. Biotechnol. 2008, 35(6), 507–513. DOI: 10.1007/s10295-008-0309-x.
  • Sepúlveda, L.; La Cruz, R.; Buenrostro, J. J.; Ascacio-Valdés, J. A.; Aguilera-Carbó, A. F.; Prado, A.; Rodríguez-Herrera, R.; Aguilar, C. N. Effect of Different Polyphenol Sources on the Efficiency of Ellagic Acid Release by Aspergillus Niger. Rev. Argent. Microbiol. 2016, 48(1), 71–77. DOI: 10.1016/j.ram.2015.08.008.
  • Qi, B.; Yao, R. L-Lactic Acid Production from Lactobacillus Casei by Solid State Fermentation Using Rice Straw. BioResources. 2007, 2(3), 419–429. DOI: 10.15376/biores.2.3.419-429.
  • Mudaliyar, P.; Sharma, L.; Kulkarni, C. Food Waste Management—Lactic Acid Production by Lactobacillus Species. Int. J. Adv. Res. Biol. Sci. 2012, 2(1), 34–38.
  • Jawad, A. H.; Alkarkhi, A. F.; Jason, O. C.; Easa, A. M.; Norulaini, N. N. Production of the Lactic Acid from Mango Peel Waste—Factorial Experiment. J. King Saud Univ. Sci. 2013, 25(1), 39–45. DOI: 10.1016/j.jksus.2012.04.001.
  • Krishnakumar, J. Biological Production of Succinic Acid Using a Cull Peach Medium. MSc Dissertation, Clemson University, South Carolina, United States, 2013.(accessed February 18, 2021). https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=2735&context=all_theses
  • Liang, S.; McDonald, A. G.; Coats, E. R. Lactic Acid Production from Potato Peel Waste by Anaerobic Sequencing Batch Fermentation Using Undefined Mixed Culture. Waste Manag. 2015b, 45, 51–56. DOI: 10.1016/j.wasman.2015.02.004.
  • Ayudthaya, S. P. N.; van de Weijer, A. H. P.; van Gelder, A. H.; Stams, A. J. M.; de Vos, W. M.; Plugge, C. M. Organic Acid Production from Potato Starch Waste Fermentation by Rumen Microbial Communities from Dutch and Thai Dairy Cows. Biotechnol. Biofuels. 2018, 11(1), 13. DOI: 10.1186/s13068-018-1012-4.
  • Naranong, N.; Poocharoen, D. Production of L-Lactic Acid from Raw Cassava Starch by Rhizopus Oryzae NRRL 395. Kasetsart J. Nat. Sci. 2001, 35, 164–170.
  • John, R. P.; Namoothiri, K. M.; Pandey, A. Solid-State Fermentation for L-Lactic Acid Production from Agro Wastes Using Lactobacillus Delbrueckii. Process Biochem. 2006, 41(4), 759–763. DOI: 10.1016/j.procbio.2005.09.013.
  • Bustos, G.; Moldes, A. B.; Cruz, J. M.; Dominguez, J. M. Production of Lactic Acid from Vine-Trimming Wastes and Viticulture Lees Using a Simultaneous Saccharification and Fermentation Method. J. Sci. Food Agric. 2005, 85(3), 466–472. DOI: 10.1002/jsfa.2004.
  • Naveena, B. J.; Altaf, M.; Bhadrayya, K.; Madhavendra, S. S.; Reddy, G. Direct Fermentation of Starch to L(+) Lactic Acid in SSF by Lactobacillus Amylophilus GV6 Using Wheat Bran as Support and Substrate – Medium Optimization Using RSM. Process Biochem. 2005, 40(2), 681–690. DOI: 10.1016/j.procbio.2004.01.045.
  • Battcock, M.; Azam-Ali, S. Fermented Fruits and Vegetables: A Global Perspective; Daya Publishing House: New Delhi, India, 2001; FAO Agricultural Services Bulletin 134, Rome, Italy. pp 96.
  • Yu, D.; Shi, Y.; Wang, Q.; Zhang, X.; Zhao, Y. Application of Methanol and Sweet Potato Vine Hydrolysate as Enhancers of Citric Acid Production by Aspergillus Niger. Bioresour. Bioprocess. 2017, 4(1), 35. DOI: 10.1186/s40643-017-0166-4.
  • Swain, M. R.; Ray, R. C.; Patra, J. K. Citric Acid: Microbial Production and Applications in Food and Pharmaceutical Industries. In Citric Acid: Synthesis Properties and Applications; Vargas, D.A., Medina, J.V., Eds.; Nova Science Publisher: Zagreb, 2012; pp 97–118.
  • Imandi, S. B.; Bandaru, V. V. R.; Somalanka, S. R.; Bandaru, S. R.; Garapati, H. R. Application of Statistical Experimental Designs for the Optimization of Medium Constituents for the Production of Citric Acid from Pineapple Waste. Bioresour. Technol. 2008, 99(10), 4445–4450. DOI: 10.1016/j.biortech.2007.08.071.
  • Mohapatra, S.; Ray, R. C.; Ramachandran, S. Bioethanol from Biorenewable Feedstocks: Technology, Economics, and Challenges. In Bioethanol Production from Food Crops: Sustainable Sources, Interventions, and Challenges; Ray, R.C., Ramachandran, S., Eds.; Academic Press: Oxford, 2019; pp 3–27.
  • Ona, I. J. Enzyme Hydrolysis of Cassava Peels for Ethanol Production. PhD Thesis, University of Strathclyde. UK, 2013.
  • Wichitchan, C.; Skolpap, W. Optimum Cost for Ethanol Production from Cassava Roots and Cassava Chips. Energy Procedia. 2014, 52, 190–203. DOI: 10.1016/j.egypro.2014.07.070.
  • Wang, E. –. Q.; Li, S. –. Z.; Tao, L.; Geng, X.; Li, T. –. C. Modeling of Rotating Drum Bioreactor for Anaerobic Solid-State Fermentation. Appl. Energy. 2010, 87(9), 2839–2845. DOI: 10.1016/j.apenergy.2009.05.032.
  • Ercan, Y.; Irfan, T.; Mustafa, K. Optimization of Ethanol Production from Carob Pod Extract Using Immobilized Saccharomyces Cerevisiae Cells in a Stirred Tank Bioreactor. Bioresour. Technol. 2013, 135, 365–371. DOI: 10.1016/j.biortech.2012.09.006.
  • Ward, O. P.; Singh, A.; Ray, R. C. Production of Renewable Energy from Agricultural and Horticultural Substrates and Wastes. In Microbial Biotechnology in Horticulture; Ray, R.C., Ward, O.P., Eds.; Science Publishers: New Hampshire, 2006; pp 517–555.
  • Achinas, S.; Achinas, V.; Euverink, G. J. W. A Technological Overview of Biogas Production from Biowaste. Engineering. 2017, 3(3), 299–307. DOI: 10.1016/J.ENG.2017.03.002.
  • Yokoi, H.; Sitsu, A.; Uchida, A.; Hirose, J.; Hayashi, S.; Takasaki, Y. Microbial Hydrogen Production from Sweet Potato Starch Residue. J. Biosci. Bioeng. 2001, 9(1), 58–63. DOI: 10.1016/S1389-1723(01)80112-2.
  • Yahmed, N. B.; Carrere, H.; Marzouki, M. N.; Smaali, I. Enhancement of Biogas Production from Ulva Sp. By Using Solid-State Fermentation as Biological Pretreatment. Algal Res. 2017, 27, 206–214. DOI: 10.1016/j.algal.2017.09.005.
  • Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of Feedstock Pretreatment Strategies for Improved Anaerobic Digestion: From Lab-Scale Research to Full-Scale Application. Bioresour. Technol. 2016, 199, 386–397. DOI: 10.1016/j.biortech.2015.09.007.
  • Liu, S.; Li, X.; Wu, S.; He, J.; Pang, C.; Deng, Y.; Dong, R. Fungal Pretreatment by Phanerochaete Chrysosporium for Enhancement of Biogas Production from Corn Stover Silage. Appl. Biochem. Biotechnol. 2014, 174(5), 1907–1918. DOI: 10.1007/s12010-014-1185-7.
  • Rouches, E.; Herpoël-Gimbert, I.; Steyer, J. P.; Carrere, H. Improvement of Anaerobic Degradation by White-Rot Fungi Pretreatment of Lignocellulosic Biomass: A Review. Renewable Sustainable Energy Rev. 2016, 59, 179–198. DOI: 10.1016/j.rser.2015.12.317.
  • Ray, R. C.; Ward, O. P.; Singh, A.; Isobe, S. Commercialization of Microbial Biotechnology in Horticulture: Summary Outlook of Achievements, Constraints and Prospects. In Microbial Biotechnology in Horticulture; Ray, R.C., Ward, O.P., Eds.; Science Publishers: Florida, 2008c; Vol. ume 3, pp 341–366.
  • Hernández-Rodríguez, D.; Sánchez, J. E.; Nieto, M. G.; Márquez-Rocha, F. J. Degradation of Endosulfan during Substrate Preparation and Cultivation of Pleurotus Pulmonarius. World J. Microbiol. Biotechnol. 2006, 22(7), 753–760. DOI: 10.1007/s11274-005-9102-4.
  • Phuc, B. H. N.; Lindberg, J. E. Ileal Apparent Digestibility of Amino Acids in Growing Pigs Given a Cassava Root Meal Diet with Inclusion of Cassava Leaves, Leucaena Leaves and Groundnut Foliage. Anim. Sci. 2001, 72(3), 511–517. DOI: 10.1017/S1357729800052036.
  • Phuc, H. N.; Ogle, B.; Lindberg, J. E. Effect of Replacing Soybean Protein with Cassava Leaf Protein in Cassava Root Meal Based Diets for Growing Pigs on Digestibility and Nitrogen Retention. Anim. Feed Sci. Technol. 2000, 83(3–4), 223–235. DOI: 10.1016/S0377-8401(99)00136-4.
  • Zidehsaraei, A. Z.; Moshkelani, M.; Amiri, M. C. An Innovative Simultaneous Glucoamylase Extraction and Recovery Using Colloidal Gas Aphrons. Sep. Purif. Technol. 2009, 67(1), 8–13. DOI: 10.1016/j.seppur.2009.02.019.
  • Bhavsar, K.; Ravi Kumar, V.; Khire, J. M. Downstream Processing of Extracellular Phytase from Aspergillus Niger: Chromatography Process Vs. Aqueous Two Phase Extraction for Its Simultaneous Partitioning and Purification. Process Biochem. 2012, 47(7), 1066–1072. DOI: 10.1016/j.procbio.2012.03.012.
  • Abu Yazid, N.; Barrena, R.; Sánchez, A. Assessment of Protease Activity in Hydrolysed Extracts from SSF of Hair Waste by and Indigenous Consortium of Microorganisms. Waste Manag. 2016, 49, 420–426. DOI: 10.1016/j.wasman.2016.01.045.
  • Narra, M.; Balasubramanian, V. Utilization of Solid and Liquid Waste Generated during Ethanol Fermentation Process for Production of Gaseous Fuel through Anaerobic Digestion—A Zero Waste Approach. Bioresour. Technol. 2015, 180, 376–380. DOI: 10.1016/j.biortech.2015.01.016.
  • Dhillon, G. S.; Kaur, S.; Sarma, S. J.; Brar, S. K. Integrated Process for Fungal Citric Acid Fermentation Using Apple Processing Wastes and Sequential Extraction of Chitosan from Waste Stream. Ind. Crops Prod. 2013, 50, 346–351. DOI: 10.1016/j.indcrop.2013.08.010.
  • Hongzhang, C.; Hongqiang, L.; Liying, L. The Inhomogeneity of Corn Stover and Its Effects on Bioconversion. Biomass Bioenergy. 2011, 35(5), 1940–1945. DOI: 10.1016/j.biombioe.2011.01.037.
  • Rahardjo, Y. S. P. Fungal Mats in Solid-State Fermentation. PhD Thesis, Wageningen University, Wageningen, The Netherlands, 2005.(accessed February 18, 2021). https://edepot.wur.nl/121648
  • Llanos, A. P. C. Sustainable Carbohydrase Production Using Organic Wastes through Solid-State Fermentation: Operational Strategies and Microbial Communities Assessment. Ph.D. Dissertation, Univesitat Autònoma de Barcelona, Spain, 2017.
  • Durand, A. Bioreactor Designs for Solid State Fermentation. Biochem. Eng. J. 2003, 13(2–3), 113–125. DOI: 10.1016/S1369-703X(02)00124-9.
  • Mansour, A.; Arnaud, T.; Lu-Chau, T.; Fdz-Polanco, M.; Moreira, M.; Rivero, J. Review of Solid State Fermentation for Lignocellulolytic Enzyme Production: Challenges for Environmental Applications. Rev. Environ. Sci. Biotechnol. 2016, 15(1), 31–46. DOI: 10.1007/s11157-016-9389-7.
  • Sindhu, R.; Pandey, A.; Binod, P. Solid-State Fermentation for the Production of Poly(hydroxyalkanoates). Chem. Biochem. Eng. Q. 2015, 29(2), 173–181. DOI: 10.15255/CABEQ.2014.2256.
  • Castilho, L. R.; Polato, C. M. S.; Baruque, E. A.; Sant’Anna, G. L.; Freire, D. M. G. Economic Analysis of Lipase Production by Penicillium Restrictum in Solid-State and Submerged Fermentations. Biochem. Eng. J. 2000, 4(3), 239–247. DOI: 10.1016/S1369-703X(99)00052-2.
  • Song, H. –. Y.; El Sheikha, A. F.; Hu, D. –. M. The Positive Impacts of Microbial Phytase on Its Nutritional Applications. Trends Food Sci. Technol. 2019, 86, 553–562. DOI: 10.1016/j.tifs.2018.12.001.
  • Kiran, E. U.; Trzcinski, A.; Ng, W. J.; Liu, Y. Glucoamylase Production from Food Waste by Solid State Fermentation and Its Evaluation in the Hydrolysis of Domestic Food Waste. Biofuel Res. J. 2014, 3, 98–105. DOI: 10.18331/BRJ2015.1.3.7.
  • Nizami, A. S.; Rehan, M.; Waqas, M.; Naqvi, M.; Ouda, O. K. M.; Shahzad, K.; Miandad, R.; Khan, M. Z.; Syamsiro, M.; Ismail, I. M. I., et al. Waste Biorefineries: Enabling Circular Economies in Developing Countries. Bioresour. Technol. 2017, 241, 1101–1117. DOI: 10.1016/j.biortech.2017.05.097.
  • Bastidas-Oyanedel, J. –. R.; Fang, C.; Almardeai, S.; Javid, U.; Yousuf, A.; Schmidt, J. E. Waste Biorefinery in Arid/Semi-Arid Regions. Bioresour. Technol. 2016, 215, 21–28. DOI: 10.1016/j.biortech.2016.04.010.
  • Koutinas, A.; Kookos, I. Advances in Biorefinery Engineering and Food Supply Chain Waste Valorisation. Biochem. Eng. J. 2016, 116, 1–210. DOI: 10.1016/j.bej.2016.10.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.