810
Views
1
CrossRef citations to date
0
Altmetric
Review

Use of Berry Pomace to Design Functional Foods

, & ORCID Icon

References

  • Tańska, I. Salient Features of European Union Regulations on Nutraceuticals and Functional Foods. In Nutraceutical and Functional Food Regulations in the United States and around the World, 1st ed. Bagchi, D.; Elsevier: Warsaw, Poland, 2019; 323–336. DOI:10.1016/B978-0-12-816467-9.00021-6.
  • Granato, D.; Barba, F. J.; Bursać Kovačević, D.; Lorenzo, J. M.; Cruz, A. G.; Putnik, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu. Rev. Food Sci. Technol. 2020, 11(1), 93–118. DOI: 10.1146/annurev-food-032519-051708.
  • Sun-Waterhouse, D. The Development of Fruit-Based Functional Foods Targeting the Health and Wellness Market: A Review. Int. J. Food Sci. Technol. 2011, 46(5), 899–920. DOI: 10.1111/j.1365-2621.2010.02499.x.
  • Lavelli, V. Circular Food Supply Chains – Impact on Value Addition and Safety. Trends Food Sci. Technol. 2021, 114, 323–332. DOI: 10.1016/J.TIFS.2021.06.008.
  • Déniel, M.; Haarlemmer, G.; Roubaud, A.; Weiss-Hortala, E.; Fages, J. Energy Valorisation of Food Processing Residues and Model Compounds by Hydrothermal Liquefaction. Renew. Sustain. Energy Rev. 2016, 54, 1632–1652. DOI: 10.1016/j.rser.2015.10.017.
  • May, N.; Guenther, E. Shared Benefit by Material Flow Cost Accounting in the Food Supply Chain – The Case of Berry Pomace as Upcycled by-Product of a Black Currant Juice Production. J. Clean. Prod. 2020, 245, 118946. DOI: 10.1016/j.jclepro.2019.118946.
  • Majerska, J.; Michalska, A.; Figiel, A. A Review of New Directions in Managing Fruit and Vegetable Processing By-Products. Trends Food Sci. Technol. 2019, 88, 207–219. DOI: 10.1016/j.tifs.2019.03.021.
  • Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A. F.; Arora, A. Bioactives from Fruit Processing Wastes: Green Approaches to Valuable Chemicals. Food Chem. 2017, 225, 10–22. DOI: 10.1016/j.foodchem.2016.12.093.
  • Vagiri, M.; Jensen, M. Influence of Juice Processing Factors on Quality of Black Chokeberry Pomace as a Future Resource for Colour Extraction. Food Chem. 2017, 217, 409–417. DOI: 10.1016/j.foodchem.2016.08.121.
  • Mokhtar, S. M.; Swailam, H. M.; Embaby, H. E. S. Physicochemical Properties, Nutritional Value and Techno-Functional Properties of Goldenberry (Physalis Peruviana) Waste Powder Concise Title: Composition of Goldenberry Juice Waste. Food Chem. 2018, 248, 1–7. DOI: 10.1016/j.foodchem.2017.11.117.
  • Alba, K.; Campbell, G. M.; Kontogiorgos, V. Dietary Fibre from Berry‐processing Waste and Its Impact on Bread Structure: A Review. J. Sci. Food Agric. 2019, 99(9), 4189–4199. DOI: 10.1002/jsfa.9633.
  • Quirós-Sauceda, A. E.; Palafox-Carlos, H.; Sáyago-Ayerdi, S. G.; Ayala-Zavala, J. F.; Bello-Perez, L. A.; Alvarez-Parrilla, E.; De La Rosa, L. A.; González-Córdova, A. F.; González-Aguilar, G. A.; Fiber, D. Phenolic Compounds as Functional Ingredients: Interaction and Possible Effect after Ingestion. Food Funct. 2014, 5(6), 1063–1072. DOI: 10.1039/c4fo00073k.
  • Fraga, C. G.; Croft, K. D.; Kennedy, D. O.; Tomás-Barberán, F. A. The Effects of Polyphenols and Other Bioactives on Human Health. Food Funct. 2019, 10(2), 514–528. DOI: 10.1039/c8fo01997e.
  • Lavefve, L.; Howard, L. R.; Carbonero, F. Berry Polyphenols Metabolism and Impact on Human Gut Microbiota and Health. Food Funct. 2020, 11(1), 45–65. DOI: 10.1039/c9fo01634a.
  • Sharma, A.; Kaur, M.; Katnoria, J. K.; Nagpal, A. K. Polyphenols in Food: Cancer Prevention and Apoptosis Induction. Curr. Med. Chem. 2017, 25(36), 4740–4757. DOI: 10.2174/0929867324666171006144208.
  • Gowd, V.; Bao, T.; Wang, L.; Huang, Y.; Chen, S.; Zheng, X.; Cui, S.; Chen, W. Antioxidant and Antidiabetic Activity of Blackberry after Gastrointestinal Digestion and Human Gut Microbiota Fermentation. Food Chem. 2018, 269, 618–627. DOI: 10.1016/j.foodchem.2018.07.020.
  • Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of in Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—a Non-Systematic Review. Nutrients. 2020, 12(5), 5. DOI: 10.3390/nu12051401.
  • Braga, A. R. C.; Murador, D. C.; de Souza Mesquita, L. M.; de Rosso, V. V. Bioavailability of Anthocyanins: Gaps in Knowledge, Challenges and Future Research. J. Food Compos. Anal. 2018, 68, 31–40. DOI: 10.1016/j.jfca.2017.07.031.
  • Fleschhut, J.; Kratzer, F.; Rechkemmer, G.; Kulling, S. E. Stability and Biotransformation of Various Dietary Anthocyanins in Vitro. Eur. J. Nutr. 2006, 45(1), 7–18. DOI: 10.1007/s00394-005-0557-8.
  • Diez-Sánchez, E.; Quiles, A.; Hernando, I. Interactions between Blackcurrant Polyphenols and Food Macronutrients in Model Systems: In Vitro Digestion Studies. Foods. 2021, 10(4), 847. DOI: 10.3390/foods10040847.
  • Grussu, D.; Stewart, D.; McDougall, G. J. Berry Polyphenols Inhibit α-Amylase in Vitro : Identifying Active Components in Rowanberry and Raspberry. J. Agric. Food Chem. 2011, 59(6), 2324–2331. DOI: 10.1021/jf1045359.
  • McDougall, G. J.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D. Assessing Potential Bioavailability of Raspberry Anthocyanins Using an in Vitro Digestion System. J. Agric. Food Chem. 2005, 53(15), 5896–5904. DOI: 10.1021/jf050131p.
  • Campos, D. A.; Gómez-García, R.; Vilas-Boas, A. A.; Madureira, A. R.; Pintado, M. M. Management of Fruit Industrial By-Products—A Case Study on Circular Economy Approach. Molecules. 2020, 25(2), 320. DOI: 10.3390/molecules25020320.
  • FAO. Resumen | Objetivos de Desarrollo Sostenible | Organización de las Naciones Unidas para la Alimentación y la Agricultura https://www.fao.org/sustainable-development-goals/background/es/ (accessed May, 10 2021).
  • Caldeira, C.; De, L. V.; Corrado, S.; Holsteijn, F. V.; Sala, S. Quantification of Food Waste per Product Group along the Food Supply Chain in the European Union: A Mass Flow Analysis. Resour. Conserv. Recycl. 2019, 149, 479. DOI: 10.1016/J.RESCONREC.2019.06.011.
  • Ross, K. A.; Ehret, D.; Godfrey, D.; Fukumoto, L.; Diarra, M. Characterization of Pilot Scale Processed Canadian Organic Cranberry (Vaccinium Macrocarpon) and Blueberry (Vaccinium Angustifolium) Juice Pressing Residues and Phenolic-Enriched Extractives. Int. J. Fruit Sci. 2017, 17(2), 202–232. DOI: 10.1080/15538362.2017.1285264.
  • Gouw, V. P.; Jung, J.; Zhao, Y. Functional Properties, Bioactive Compounds, and in Vitro Gastrointestinal Digestion Study of Dried Fruit Pomace Powders as Functional Food Ingredients. LWT - Food Sci. Technol. 2017, 80, 136–144. DOI: 10.1016/j.lwt.2017.02.015.
  • Struck, S.; Plaza, M.; Turner, C.; Rohm, H. Berry Pomace - a Review of Processing and Chemical Analysis of Its Polyphenols. Int. J. Food Sci. Technol. 2016, 51(6), 1305–1318. DOI: 10.1111/ijfs.13112.
  • Reißner, A.-M.; Al-Hamimi, S.; Quiles, A.; Schmidt, C.; Struck, S.; Hernando, I.; Turner, C.; Rohm, H. Composition and Physicochemical Properties of Dried Berry Pomace. J. Sci. Food Agric. 2019, 99(3), 1284–1293. DOI: 10.1002/jsfa.9302.
  • Michalska, A.; Wojdyło, A.; Lech, K.; Łysiak, G. P.; Figiel, A. Effect of Different Drying Techniques on Physical Properties, Total Polyphenols and Antioxidant Capacity of Blackcurrant Pomace Powders. LWT - Food Sci. Technol. 2017, 78, 114–121. DOI: 10.1016/j.lwt.2016.12.008.
  • Michalska, A.; Wojdyło, A.; Łysiak, G. P.; Lech, K.; Figiel, A. Functional Relationships between Phytochemicals and Drying Conditions during the Processing of Blackcurrant Pomace into Powders. Adv. Powder Technol. 2017, 28(5), 1340–1348. DOI: 10.1016/j.apt.2017.03.002.
  • Zielinska, M.; Michalska, A. The Influence of Convective, Microwave Vacuum and Microwave-Assisted Drying on Blueberry Pomace Physicochemical Properties. Int. J. Food Eng. 2018, 14(3), 1–14. DOI: 10.1515/ijfe-2017-0332.
  • Khanal, R. C.; Howard, L. R.; Prior, R. L. Effect of Heating on the Stability of Grape and Blueberry Pomace Procyanidins and Total Anthocyanins. Food Res. Int. 2010, 43(5), 1464–1469. DOI: 10.1016/j.foodres.2010.04.018.
  • Oliveira, G.; Eliasson, L.; Ehrnell, M.; Höglund, E.; Andlid, T.; Alminger, M. Tailoring Bilberry Powder Functionality through Processing: Effects of Drying and Fractionation on the Stability of Total Polyphenols and Anthocyanins. Food Sci. Nutr. 2019, 7(3), 1017–1026. DOI: 10.1002/fsn3.930.
  • Kerbstadt, S.; Eliasson, L.; Mustafa, A.; Ahrné, L. Effect of Novel Drying Techniques on the Extraction of Anthocyanins from Bilberry Press Cake Using Supercritical Carbon Dioxide. Innov. Food Sci. Emerg. Technol. 2015, 29, 209–214. DOI: 10.1016/j.ifset.2015.02.002.
  • Grimm, A.; Nyström, J.; Mossing, T.; Östman, U. B.; Geladi, P. Novel Drying Treatment to Stabilize Bilberry, Blackcurrant, and Cloudberry Press Cakes: Dryer Performance and Product Quality Characteristics. LWT - Food Sci. Technol. 2020, 128, 109478. DOI: 10.1016/j.lwt.2020.109478.
  • Hilz, H.; Bakx, E. J.; Schols, H. A.; Voragen, A. G. J. Cell Wall Polysaccharides in Black Currants and Bilberries - Characterisation in Berries, Juice, and Press Cake. Carbohydr. Polym. 2005, 59(4), 477–488. DOI: 10.1016/j.carbpol.2004.11.002.
  • Aura, A. M.; Holopainen-Mantila, U.; Sibakov, J.; Kössö, T.; Mokkila, M.; Kaisa, P. Bilberry and Bilberry Press Cake as Sources of Dietary Fibre. Food Nutr. Res. 2015, 59(1), 28367. DOI: 10.3402/fnr.v59.28367.
  • Sójka, M.; Kołodziejczyk, K.; Milala, J. Polyphenolic and Basic Chemical Composition of Black Chokeberry Industrial By-Products. Ind. Crops Prod. 2013, 51, 77–86. DOI: 10.1016/j.indcrop.2013.08.051.
  • Witczak, T.; Stępień, A.; Gumul, D.; Witczak, M.; Fiutak, G.; Zięba, T. The Influence of the Extrusion Process on the Nutritional Composition, Physical Properties and Storage Stability of Black Chokeberry Pomaces. Food Chem. 2021, 334, 127548. DOI: 10.1016/j.foodchem.2020.127548.
  • Sójka, M.; Król, B. Composition of Industrial Seedless Black Currant Pomace. Eur. Food Res. Technol. 2009, 228(4), 597–605. DOI: 10.1007/s00217-008-0968-x.
  • Nawirska, A.; Kwaśniewska, M. Dietary Fibre Fractions from Fruit and Vegetable Processing Waste. Food Chem. 2005, 91(2), 221–225. DOI: 10.1016/j.foodchem.2003.10.005.
  • Pieszka, M.; Szczurek, P.; Bederska-Łojewska, D.; Migdał, W.; Pieszka, M.; Gogol, P.; Jagusiak, W. The Effect of Dietary Supplementation with Dried Fruit and Vegetable Pomaces on Production Parameters and Meat Quality in Fattening Pigs. Meat Sci. 2017, 126, 1–10. DOI: 10.1016/j.meatsci.2016.11.016.
  • Kosmala, M.; Jurgoński, A.; Juśkiewicz, J.; Karlińska, E.; Macierzyński, J.; Rój, E.; Zduńczyk, Z. Chemical Composition of Blackberry Press Cake, Polyphenolic Extract, and Defatted Seeds, and Their Effects on Cecal Fermentation, Bacterial Metabolites, and Blood Lipid Profile in Rats. J. Agric. Food Chem. 2017, 65(27), 5470–5479. DOI: 10.1021/acs.jafc.7b01876.
  • Reque, P. M.; Steffens, R. S.; Da Silva, A. M.; Jablonski, A.; Flôres, S. H.; Rios, A. D. O.; Jong, E. D. V. Characterization of Blueberry Fruits (Vaccinium Spp.) And Derived Products. Food Sci. Technol. 2015, 34(4), 773–779. DOI: 10.1590/1678-457X.6470.
  • Calabuig-Jiménez, L.; Barrera, C.; Seguí, L.; Betoret, N. Effect of Particle Size of Blueberry Pomace Powder on Its Properties. In IDS’ 2018 – 21st International Drying Symposium, Valencia, Spain; 2018; pp 11–14. 10.4995/ids2018.2018.7879.
  • Tagliani, C.; Perez, C.; Curutchet, A.; Arcia, P.; Cozzano, S. Blueberry Pomace, Valorization of an Industry by-Product Source of Fibre with Antioxidant Capacity. Food Sci. Technol. 2019, 39(3), 644–651. DOI: 10.1590/fst.00318.
  • Ross, K. A.; DeLury, N.; Fukumoto, L.; Diarra, M. S. Dried Berry Pomace as a Source of High Value-Added Bioproduct: Drying Kinetics and Bioactive Quality Indices. Int. J. Food Prop. 2020, 23(1), 2123–2143. DOI: 10.1080/10942912.2020.1847144.
  • Rodríguez‐Werner, M.; Winterhalter, P.; Esatbeyoglu, T. Phenolic Composition, Radical Scavenging Activity and an Approach for Authentication of Aronia Melanocarpa Berries, Juice, and Pomace. J. Food Sci. 2019, 84(7), 1791–1798. DOI: 10.1111/1750-3841.14660.
  • Mayer-Miebach, E.; Adamiuk, M.; Behsnilian, D. Stability of Chokeberry Bioactive Polyphenols during Juice Processing and Stabilization of a Polyphenol-Rich Material from the By-Product. Agriculture. 2012, 2(3), 244–258. DOI: 10.3390/agriculture2030244.
  • White, B. L.; Howard, L. R.; Prior, R. L. Release of Bound Procyanidins from Cranberry Pomace by Alkaline Hydrolysis. J. Agric. Food Chem. 2010, 58(13), 7572–7579. DOI: 10.1021/jf100700p.
  • McDougall, N. R.; Beames, R. M. Composition of Raspberry Pomace and Its Nutritive Value for Monogastric Animals. Anim. Feed Sci. Technol. 1994, 45(2), 139–148. DOI: 10.1016/0377-8401(94)90022-1.
  • Puganen, A.; Kallio, H. P.; Schaich, K. M.; Suomela, J. P.; Yang, B. Red/Green Currant and Sea Buckthorn Berry Press Residues as Potential Sources of Antioxidants for Food Use. J. Agric. Food Chem. 2018, 66(13), 3426–3434. DOI: 10.1021/acs.jafc.8b00177.
  • Dobson, G.; Shrestha, M.; Hilz, H.; Karjalainen, R.; Mcdougall, G.; Stewart, D. Lipophilic Components in Black Currant Seed and Pomace Extracts. Eur. J. Lipid Sci. Technol. 2012, 114(5), 575–582. DOI: 10.1002/ejlt.201100313.
  • Yao, J.; Chen, J.; Yang, J.; Hao, Y.; Fan, Y.; Wang, C.; Li, N. Free, Soluble-Bound and Insoluble-Bound Phenolics and Their Bioactivity in Raspberry Pomace. LWT - Food Sci. Technol. 2021, 135, 109995. DOI: 10.1016/j.lwt.2020.109995.
  • Saura-Calixto F. (1998). Antioxidant Dietary Fiber Product:  A New Concept and a Potential Food Ingredient. J. Agric. Food Chem., 46(10), 4303–4306. 10.1021/jf9803841
  • Tumbas Šaponjac, V.; Gironés-Vilaplana, A.; Djilas, S.; Mena, P.; Ćetković, G.; Moreno, D. A.; Čanadanović-Brunet, J.; Vulić, J.; Stajčić, S.; Krunić, M. Anthocyanin Profiles and Biological Properties of Caneberry (Rubus Spp.) Press Residues. J. Sci. Food Agric. 2014, 94(12), 2393–2400. DOI: 10.1002/jsfa.6564.
  • Bobinaitė, R.; Viškelis, P.; Sarkinas, A.; Venskutonis, P. R. Phytochemical Composition, Antioxidant and Antimicrobial Properties of Raspberry Fruit, Pulp, and Marc Extracts. CYTA - J. Food. 2013, 11(4), 334–342. DOI: 10.1080/19476337.2013.766265.
  • Khoddami, A.; Wilkes, M. A.; Roberts, T. H. Techniques for Analysis of Plant Phenolic Compounds. Molecules. 2013, 18(2), 2328–2375. DOI: 10.3390/molecules18022328.
  • Holtung, L.; Grimmer, S.; Aaby, K. Effect of Processing of Black Currant Press-Residue on Polyphenol Composition and Cell Proliferation. J. Agric. Food Chem. 2011, 59(8), 3632–3640. DOI: 10.1021/jf104427r.
  • Metzner Ungureanu, C.-R.; Ioana Lupitu, A.; Moisa, C.; Rivis, A.; Octav Copolovici, L.; Poiana, M.-A. Investigation on High-Value Bioactive Compounds and Antioxidant Properties of Blackberries and Their Fractions Obtained by Home-Scale Juice Processing. Sustainability. 2020, 12(14), 1–20. DOI: 10.3390/su12145681.
  • Jara-Palacios, M. J.; Santisteban, A.; Gordillo, B.; Hernanz, D.; Heredia, F. J.; Escudero-Gilete, M. L. Comparative Study of Red Berry Pomaces (Blueberry, Red Raspberry, Red Currant and Blackberry) as Source of Antioxidants and Pigments. Eur. Food Res. Technol. 2019, 245(1), 1–9. DOI: 10.1007/s00217-018-3135-z.
  • Zafra-Rojas, Q. Y.; González-Martínez, B. E.; Cruz-Cansino, N. D. S.; López-Cabanillas, M.; Suárez-Jacobo, Á.; Cervantes-Elizarrarás, A.; Ramírez-Moreno, E. Effect of Ultrasound on in Vitro Bioaccessibility of Phenolic Compounds and Antioxidant Capacity of Blackberry (Rubus Fruticosus) Residues Cv. Tupy. Plant Foods Hum. Nutr. 2020, 75(4), 608–613. DOI: 10.1007/s11130-020-00855-7.
  • Li, C.; Feng, J.; Huang, W. Y.; An, X. T. Composition of Polyphenols and Antioxidant Activity of Rabbiteye Blueberry (Vaccinium Ashei) in Nanjing. J. Agric. Food Chem. 2013, 61(3), 523–531. DOI: 10.1021/jf3046158.
  • Su, M. S.; Silva, J. L. Antioxidant Activity, Anthocyanins, and Phenolics of Rabbiteye Blueberry (Vaccinium Ashei) by-Products as Affected by Fermentation. Food Chem. 2006, 97(3), 447–451. DOI: 10.1016/j.foodchem.2005.05.023.
  • Kapci, B.; Neradová, E.; Čížková, H.; Voldřich, M.; Rajchl, A.; Capanoglu, E. Investigating the Antioxidant Potential of Chokeberry (Aronia Melanocarpa) Products. J. Food Nutr. Res. 2013, 52(4), 219–229.
  • Četojević-Simin, D. D.; Velićanski, A. S.; Cvetković, D. D.; Markov, S. L.; Ćetković, G. S.; Tumbas Šaponjac, V. T.; Vulić, J. J.; Čanadanović-Brunet, J. M.; Djilas, S. M. Bioactivity of Meeker and Willamette Raspberry (Rubus Idaeus L.) Pomace Extracts. Food Chem. 2015, 166, 407–413. DOI: 10.1016/j.foodchem.2014.06.063.
  • Michalska, A.; Wojdyło, A.; Lech, K.; Łysiak, G. P.; Figiel, A. Effect of Different Drying Techniques on Physical Properties, Total Polyphenols and Antioxidant Capacity of Blackcurrant Pomace Powders. LWT - Food Sci. Technol. 2017, 78, 114–121. DOI: 10.1016/j.lwt.2016.12.008.
  • Aly, A. A.; Ali, H. G. M.; Eliwa, N. E. R. Phytochemical Screening, Anthocyanins and Antimicrobial Activities in Some Berries Fruits. J. Food Meas. Charact. 2019, 13(2), 911–920. DOI: 10.1007/s11694-018-0005-0.
  • Bartkiene, E.; Lele, V.; Sakiene, V.; Zavistanaviciute, P.; Ruzauskas, M.; Bernatoniene, J.; Jakstas, V.; Viskelis, P.; Zadeike, D.; Juodeikiene, G. Improvement of the Antimicrobial Activity of Lactic Acid Bacteria in Combination with Berries/Fruits and Dairy Industry By‐products. J. Sci. Food Agric. 2019, 99(8), 3992–4002. DOI: 10.1002/jsfa.9625.
  • Das, Q.; Islam, M. R.; Marcone, M. F.; Warriner, K.; Diarra, M. S. Potential of Berry Extracts to Control Foodborne Pathogens. Food Control Elsevier Ltd. March 1 2017, 73, 650–662. DOI: 10.1016/j.foodcont.2016.09.019.
  • Caillet, S.; Côté, J.; Sylvain, J. F.; Lacroix, M. Antimicrobial Effects of Fractions from Cranberry Products on the Growth of Seven Pathogenic Bacteria. Food Control. 2012, 23(2), 419–428. DOI: 10.1016/j.foodcont.2011.08.010.
  • Yin Lau, A. T.; Barbut, S.; Ross, K.; Diarra, M. S.; Balamurugan, S. The Effect of Cranberry Pomace Ethanol Extract on the Growth of Meat Starter Cultures, Escherichia Coli O157: H7,Salmonella Enterica Serovar Enteritidis and Listeria Monocytogenes. LWT - Food Sci. Technol. 2019, 115, 108452. DOI: 10.1016/j.lwt.2019.108452.
  • Ospina, M.; Montaña-Oviedo, K.; Díaz-Duque, Á.; Toloza-Daza, H.; Narváez-Cuenca, C.-E. Utilization of Fruit Pomace, Overripe Fruit, and Bush Pruning Residues from Andes Berry (Rubus Glaucus Benth) as Antioxidants in an Oil in Water Emulsion. Food Chem. 2019, 281, 114–123. DOI: 10.1016/J.FOODCHEM.2018.12.087.
  • Bialek, M.; Rutkowska, J.; Bialek, A.; Adamska, A. Oxidative Stability of Lipid Fraction of Cookies Enriched with Chokeberry Polyphenols Extract. Polish J. Food Nutr. Sci. 2016, 66(2), 77–84. DOI: 10.1515/pjfns-2015-0027.
  • Peiretti, P. G.; Gai, F.; Zorzi, M.; Aigotti, R.; Medana, C. The Effect of Blueberry Pomace on the Oxidative Stability and Cooking Properties of Pork Patties during Chilled Storage. J. Food Process. Preserv. 2020, 44(7), 1–12. DOI: 10.1111/jfpp.14520.
  • Molan, A. L.; Lila, M. A.; Mawson, J.; De, S. In Vitro and in Vivo Evaluation of the Prebiotic Activity of Water-Soluble Blueberry Extracts. World J. Microbiol. Biotechnol. 2009, 25(7), 1243–1249. DOI: 10.1007/s11274-009-0011-9.
  • Domínguez Díaz, L.; Fernández-Ruiz, V.; Cámara, M. The Frontier between Nutrition and Pharma: The International Regulatory Framework of Functional Foods, Food Supplements and Nutraceuticals. Crit. Rev. Food Sci. Nutr. 2020, 60(10), 1738–1746. DOI: 10.1080/10408398.2019.1592107.
  • Wajs-Bonikowska, A.; Stobiecka, A.; Bonikowski, R.; Krajewska, A.; Sikora, M.; Kula, J. A Comparative Study on Composition and Antioxidant Activities of Supercritical Carbon Dioxide, Hexane and Ethanol Extracts from Blackberry (Rubus Fruticosus) Growing in Poland. J. Sci. Food Agric. 2017, 97(11), 3576–3583. DOI: 10.1002/jsfa.8216.
  • Seabra, I. J.; Braga, M. E. M.; Batista, M. T.; De Sousa, H. C. Effect of Solvent (Co2/ethanol/h2o) on the Fractionated Enhanced Solvent Extraction of Anthocyanins from Elderberry Pomace. J. Supercrit. Fluids. 2010, 54(2), 145–152. DOI: 10.1016/j.supflu.2010.05.001.
  • Laroze, L.; Soto, C.; Zúñiga, M. E. Phenolic Antioxidants Extraction from Raspberry Wastes Assisted By-Enzymes. Electron. J. Biotechnol. 2010, 13(6), 6. DOI: 10.2225/vol13-issue6-fulltext-12.
  • Woźniak, Ł.; Marszałek, K.; Skąpska, S.; Jędrzejczak, R. The Application of Supercritical Carbon Dioxide and Ethanol for the Extraction of Phenolic Compounds from Chokeberry Pomace. Appl. Sci. 2017, 7(4), 322. DOI: 10.3390/app7040322.
  • Kraujalis, P.; Kraujalienė, V.; Kazernavičiūtė, R.; Venskutonis, P. R. Supercritical Carbon Dioxide and Pressurized Liquid Extraction of Valuable Ingredients from Viburnum Opulus Pomace and Berries and Evaluation of Product Characteristics. J. Supercrit. Fluids. 2017, 122, 99–108. DOI: 10.1016/j.supflu.2016.12.008.
  • Laroze, L. E.; Díaz-Reinoso, B.; Moure, A.; Zúñiga, M. E.; Domínguez, H. Extraction of Antioxidants from Several Berries Pressing Wastes Using Conventional and Supercritical Solvents. Eur. Food Res. Technol. 2010, 231(5), 669–677. DOI: 10.1007/s00217-010-1320-9.
  • Wenzel, J.; Wang, L.; Horcasitas, S.; Warburton, A.; Constine, S.; Kjellson, A.; Cussans, K.; Ammerman, M.; Samaniego, C. S. Influence of Supercritical Fluid Extraction Parameters in Preparation of Black Chokeberry Extracts on Total Phenolic Content and Cellular Viability. Food Sci. Nutr. 2020, 8(7), 3626–3637. DOI: 10.1002/fsn3.1645.
  • Ferreira, L. F.; Minuzzi, N. M.; Rodrigues, R. F.; Pauletto, R.; Rodrigues, E.; Emanuelli, T.; Bochi, V. C. Citric Acid Water-Based Solution for Blueberry Bagasse Anthocyanins Recovery: Optimization and Comparisons with Microwave-Assisted Extraction (MAE). LWT - Food Sci. Technol. 2020, 133, 110064. DOI: 10.1016/j.lwt.2020.110064.
  • Galván D’Alessandro, L.; Dimitrov, K.; Vauchel, P.; Nikov, I. Kinetics of Ultrasound Assisted Extraction of Anthocyanins from Aronia Melanocarpa (Black Chokeberry) Wastes. Chem. Eng. Res. Des. 2014, 92(10), 1818–1826. DOI: 10.1016/j.cherd.2013.11.020.
  • Sady, S.; Matuszak, L.; Alfred, B. Optimisation of Ultrasonic-Assisted Extraction of Bioactive Compounds from Chokeberry Pomace Using Respoonse Surface Methodology. Acta Sci. Pol. Technol. Aliment. 2019, 18(3), 249–256. DOI: 10.17306/J.AFS.2019.0673.
  • He, B.; Zhang, L. L.; Yue, X. Y.; Liang, J.; Jiang, J.; Gao, X. L.; Yue, P. X. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds and Anthocyanins from Blueberry (Vaccinium Ashei) Wine Pomace. Food Chem. 2016, 204, 70–76. DOI: 10.1016/j.foodchem.2016.02.094.
  • Xu, Y. Y.; Qiu, Y.; Ren, H.; Ju, D. H.; Jia, H. L. Optimization of Ultrasound-Assisted Aqueous Two-Phase System Extraction of Polyphenolic Compounds from Aronia Melanocarpa Pomace by Response Surface Methodology. Prep. Biochem. Biotechnol. 2017, 47(3), 312–321. DOI: 10.1080/10826068.2016.1244684.
  • Klavins, L.; Kviesis, J.; Nakurte, I.; Klavins, M. Berry Press Residues as a Valuable Source of Polyphenolics: Extraction Optimisation and Analysis. LWT - Food Sci. Technol. 2018, 93, 583–591. DOI: 10.1016/j.lwt.2018.04.021.
  • Bobinaitė, R.; Pataro, G.; Lamanauskas, N.; Šatkauskas, S.; Viškelis, P.; Ferrari, G. Application of Pulsed Electric Field in the Production of Juice and Extraction of Bioactive Compounds from Blueberry Fruits and Their By-Products. J. Food Sci. Technol. 2015, 52(9), 5898–5905. DOI: 10.1007/s13197-014-1668-0.
  • Grunovaite, L.; Pukalskiene, M.; Pukalskas, A.; Venskutonis, P. R. Fractionation of Black Chokeberry Pomace into Functional Ingredients Using High Pressure Extraction Methods and Evaluation of Their Antioxidant Capacity and Chemical Composition. J. Funct. Foods. 2016, 24, 85–96. DOI: 10.1016/j.jff.2016.03.018.
  • Kitrytė, V.; Kraujalienė, V.; Šulniūtė, V.; Pukalskas, A.; Venskutonis, P. R. Chokeberry Pomace Valorization into Food Ingredients by Enzyme-Assisted Extraction: Process Optimization and Product Characterization. Food Bioprod. Process. 2017, 105, 36–50. DOI: 10.1016/j.fbp.2017.06.001.
  • Tokuşoğlu, Ö. Effect of High Hydrostatic Pressure Processing Strategies on Retention of Antioxidant Phenolic Bioactives in Foods and Beverages – A Review. Polish J. Food Nutr. Sci. 2016, 66(4), 243–251. DOI: 10.1515/pjfns-2015-0011.
  • Saad, N.; Louvet, F.; Tarrade, S.; Meudec, E.; Grenier, K.; Landolt, C.; Ouk, T. S.; Bressollier, P. Enzyme‐Assisted Extraction of Bioactive Compounds from Raspberry (Rubus Idaeus L.) Pomace. J. Food Sci. 2019, 84(6), 1371–1381. DOI: 10.1111/1750-3841.14625.
  • Karaś, M.; Jakubczyk, A.; Szymanowska, U.; Złotek, U.; Zielińska, E. Digestion and Bioavailability of Bioactive Phytochemicals. Int. J. Food Sci. Technol. 2017, 52(2), 291–305. DOI: 10.1111/ijfs.13323.
  • Szymanowska, U.; Baraniak, B. Antioxidant and Potentially Anti-Inflammatory Activity of Anthocyanin Fractions from Pomace Obtained from Enzymatically Treated Raspberries. Antioxidants. 2019, 8(8), 299. DOI: 10.3390/antiox8080299.
  • Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional Food. Product Development, Marketing and Consumer Acceptance-A Review. Appetite. 2008, 51(3), 456–467. DOI: 10.1016/j.appet.2008.05.060.
  • Gómez, M.; Ronda, F.; Blanco, C. A.; Caballero, P. A.; Apesteguía, A. Effect of Dietary Fibre on Dough Rheology and Bread Quality. Eur. Food Res. Technol. 2003, 216(1), 51–56. DOI: 10.1007/s00217-002-0632-9.
  • Laurikainen, T.; Härkönen, H.; Autio, K.; Poutanen, K. Effects of Enzymes in Fibre‐enriched Baking. J. Sci. Food Agric. 1998, 76(2), 239–249. DOI: 10.1002/(SICI)1097-0010(199802)76:2<239::AID-JSFA942>3.0.CO;2-L.
  • Struck, S.; Straube, D.; Zahn, S.; Rohm, H. Interaction of Wheat Macromolecules and Berry Pomace in Model Dough: Rheology and Microstructure. J. Food Eng. 2018, 223, 109–115. DOI: 10.1016/J.JFOODENG.2017.12.011.
  • Diez-Sánchez, E.; Llorca, E.; Tárrega, A.; Fiszman, S.; Hernando, I. Changing Chemical Leavening to Improve the Structural, Textural and Sensory Properties of Functional Cakes with Blackcurrant Pomace. LWT - Food Sci. Technol. 2020, 127, 109378. DOI: 10.1016/j.lwt.2020.109378.
  • Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, C. S. The Effects of Dietary Fibre Addition on the Quality of Common Cereal Products. J. Cereal Sci. 2013, 58(2), 216–227. DOI: 10.1016/J.JCS.2013.05.010.
  • Martins, Z. E.; Pinho, O.; Ferreira, I. M. P. L. V. O. Fortification of Wheat Bread with Agroindustry By-Products: Statistical Methods for Sensory Preference Evaluation and Correlation with Color and Crumb Structure. J. Food Sci. 2017, 82(9), 2183–2191. DOI: 10.1111/1750-3841.13837.
  • Gallagher, E.; Gormley, T. R.; Arendt, E. K. Recent Advances in the Formulation of Gluten-Free Cereal-Based Products. Trends Food Sci. Technol. 2004, 15(3–4), 143–152. DOI: 10.1016/j.tifs.2003.09.012.
  • Alba, K.; Rizou, T.; Paraskevopoulou, A.; Campbell, G. M.; Kontogiorgos, V. Effects of Blackcurrant Fibre on Dough Physical Properties and Bread Quality Characteristics. Food Biophys. 2020, 15(3), 313–322. DOI: 10.1007/s11483-020-09627-x.
  • Reißner, A.-M.; Beer, A.; Struck, S.; Rohm, H. Pre-Hydrated Berry Pomace in Wheat Bread: An Approach considering Requisite Water in Fiber Enrichment. Foods. 2020, 9(11), 1600. DOI: 10.3390/foods9111600.
  • Górecka, D.; Pachołek, B.; Dziedzic, K.; Górecka, M. Raspberry Pomace as a Potential Fiber Source for Cookies Enrichment. Poznań Univ. Life Sci. 2008, 7(4), 53–60.
  • Tańska, M.; Roszkowska, B.; Czaplicki, S.; Borowska, E. J.; Bojarska, J.; Dąbrowska, A. Effect of Fruit Pomace Addition on Shortbread Cookies to Improve Their Physical and Nutritional Values. Plant Foods Hum. Nutr. 2016, 71(3), 307–313. DOI: 10.1007/s11130-016-0561-6.
  • Curutchet, A.; Cozzano, S.; Tárrega, A.; Arcia, P. Blueberry Pomace as a Source of Antioxidant Fibre in Cookies: Consumer’s Expectations and Critical Attributes for Developing a New Product. Food Sci. Technol. Int. 2019, 25(8), 642–648. DOI: 10.1177/1082013219853489.
  • Quiles, A.; Llorca, E.; Schmidt, C.; Reißner, A.-M.; Struck, S.; Rohm, H.; Hernando, I. Use of Berry Pomace to Replace Flour, Fat or Sugar in Cakes. Int. J. Food Sci. Technol. 2018, 53(6), 1579–1587. DOI: 10.1111/ijfs.13765.
  • Diez-Sánchez, E.; Quiles, A.; Llorca, E.; Reiβner, A.-M.; Struck, S.; Rohm, H.; Hernando, I. Extruded Flour as Techno-Functional Ingredient in Muffins with Berry Pomace. LWT - Food Sci. Technol. 2019, 113, 108300. DOI: 10.1016/j.lwt.2019.108300.
  • McDougall, G. J.; Shpiro, F.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D. Different Polyphenolic Components of Soft Fruits Inhibit α-Amylase and α-Glycosidase. J. Agric. Food Chem. 2005, 53(7), 2760–2766. DOI: 10.1021/jf0489926.
  • Mildner-Szkudlarz, S.; Bajerska, J.; Górnaś, P.; Segliņa, D.; Pilarska, A.; Jesionowski, T. Physical and Bioactive Properties of Muffins Enriched with Raspberry and Cranberry Pomace Powder: A Promising Application of Fruit By-Products Rich in Biocompounds. Plant Foods Hum. Nutr. 2016, 71(2), 165–173. DOI: 10.1007/s11130-016-0539-4.
  • Górnaś, P.; Juhņeviča-Radenkova, K.; Radenkovs, V.; Mišina, I.; Pugajeva, I.; Soliven, A.; Segliņa, D. The Impact of Different Baking Conditions on the Stability of the Extractable Polyphenols in Muffins Enriched by Strawberry, Sour Cherry, Raspberry or Black Currant Pomace. LWT - Food Sci. Technol. 2016, 65, 946–953. DOI: 10.1016/j.lwt.2015.09.029.
  • Šarić, B.; Dapčević-Hadnađev, T.; Hadnađev, M.; Sakač, M.; Mandić, A.; Mišan, A.; Škrobot, D. Fiber Concentrates from Raspberry and Blueberry Pomace in Gluten-Free Cookie Formulation: Effect on Dough Rheology and Cookie Baking Properties. J. Texture Stud. 2019, 50(2), 124–130. DOI: 10.1111/jtxs.12374.
  • Gagneten, M.; Archaina, D. A.; Salas, M. P.; Leiva, G. E.; Salvatori, D. M.; Schebor, C. Gluten-Free Cookies Added with Fibre and Bioactive Compounds from Blackcurrant Residue. Int. J. Food Sci. Technol. 2020, 1–7. DOI: 10.1111/ijfs.14798.
  • Schmidt, C.; Geweke, I.; Struck, S.; Zahn, S.; Rohm, H. Blackcurrant Pomace from Juice Processing as Partial Flour Substitute in Savoury Crackers: Dough Characteristics and Product Properties. Int. J. Food Sci. Technol. 2018, 53(1), 237–245. DOI: 10.1111/ijfs.13639.
  • Ganhão, R.; Estévez, M.; Armenteros, M.; Morcuende, D. Mediterranean Berries as Inhibitors of Lipid Oxidation in Porcine Burger Patties Subjected to Cooking and Chilled Storage. J. Integr. Agric. 2013, 12(11), 1982–1992. DOI: 10.1016/S2095-3119(13)60636-X.
  • Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F. J.; Zhang, W.; Lorenzo, J. M.; Comprehensive, A. Review on Lipid Oxidation in Meat and Meat Products. Antioxidants. 2019, 8(10), 429. DOI: 10.3390/antiox8100429.
  • Ahmad, S. R.; Gokulakrishnan, P.; Giriprasad, R.; Yatoo, M. A. Fruit-Based Natural Antioxidants in Meat and Meat Products: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55(11), 1503–1513. DOI: 10.1080/10408398.2012.701674.
  • Lourenço, S. C.; Moldão-Martins, M.; Alves, V. D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules. 2019, 24(22), 22. DOI: 10.3390/molecules24224132.
  • Muzolf-Panek, M.; Waśkiewicz, A.; Kowalski, R.; Konieczny, P. The Effect of Blueberries on the Oxidative Stability of Pork Meatloaf during Chilled Storage. J. Food Process. Preserv. 2016, 40(5), 899–909. DOI: 10.1111/jfpp.12668.
  • Jia, N.; Kong, B.; Liu, Q.; Diao, X.; Xia, X. Antioxidant Activity of Black Currant (Ribes Nigrum L.) Extract and Its Inhibitory Effect on Lipid and Protein Oxidation of Pork Patties during Chilled Storage. Meat Sci. 2012, 91(4), 533–539. DOI: 10.1016/j.meatsci.2012.03.010.
  • Salaheen, S.; Jaiswal, E.; Joo, J.; Peng, M.; Ho, R.; OConnor, D.; Adlerz, K.; Aranda-Espinoza, J. H.; Biswas, D. Bioactive Extracts from Berry Byproducts on the Pathogenicity of Salmonella Typhimurium. Int. J. Food Microbiol. 2016, 237, 128–135. DOI: 10.1016/J.IJFOODMICRO.2016.08.027.
  • Salaheen, S.; Nguyen, C.; Hewes, D.; Biswas, D. Cheap Extraction of Antibacterial Compounds of Berry Pomace and Their Mode of Action against the Pathogen Campylobacter Jejuni. Food Control. 2014, 46, 174–181. DOI: 10.1016/j.foodcont.2014.05.026.
  • Tamkutė, L.; Gil, B. M.; Carballido, J. R.; Pukalskienė, M.; Venskutonis, P. R. Effect of Cranberry Pomace Extracts Isolated by Pressurized Ethanol and Water on the Inhibition of Food Pathogenic/Spoilage Bacteria and the Quality of Pork Products. Food Res. Int. 2019, 120(October 2018), 38–51. DOI: 10.1016/j.foodres.2019.02.025.
  • Tamkutė, L.; Vaicekauskaitė, R.; Gil, B. M.; Rovira Carballido, J.; Venskutonis, P. R. Black Chokeberry (Aronia Melanocarpa L.) Pomace Extracts Inhibit Food Pathogenic and Spoilage Bacteria and Increase the Microbiological Safety of Pork Products. J. Food Process. Preserv. 2021, 45(3), 1–11. DOI: 10.1111/jfpp.15220.
  • Kryževičūtė, N.; Jaime, I.; Diez, A. M.; Rovira, J.; Venskutonis, P. R. Effect of Raspberry Pomace Extracts Isolated by High Pressure Extraction on the Quality and Shelf-Life of Beef Burgers. Int. J. Food Sci. Technol. 2017, 52(8), 1852–1861. DOI: 10.1111/ijfs.13460.
  • Cutrim, C. S.; Cortez, M. A. S. A Review on Polyphenols: Classification, Beneficial Effects and Their Application in Dairy Products. Int. J. Dairy Technol. 2018, 71(3), 564–578. DOI: 10.1111/1471-0307.12515.
  • Raikos, V.; Ni, H.; Hayes, H.; Ranawana, V. Antioxidant Properties of a Yogurt Beverage Enriched with Salal (Gaultheria Shallon) Berries and Blackcurrant (Ribes Nigrum) Pomace during Cold Storage. Beverages. 2018, 5(1), 1–11. DOI: 10.3390/beverages5010002.
  • Oliveira, A.; Alexandre, E. M. C.; Coelho, M.; Lopes, C.; Almeida, D. P. F.; Pintado, M. Incorporation of Strawberries Preparation in Yoghurt: Impact on Phytochemicals and Milk Proteins. Food Chem. 2015, 171, 370–378. DOI: 10.1016/j.foodchem.2014.08.107.
  • Ni, H.; Hayes, H. E.; Stead, D.; Raikos, V. Incorporating Salal Berry (Gaultheria Shallon) and Blackcurrant (Ribes Nigrum) Pomace in Yogurt for the Development of a Beverage with Antidiabetic Properties. Heliyon. 2018, 4(10), 10. DOI: 10.1016/j.heliyon.2018.e00875.
  • Diez-Sánchez E, Martínez A, Rodrigo D, Quiles A and Hernando I. (2020). Optimizing High Pressure Processing Parameters to Produce Milkshakes Using Chokeberry Pomace. Foods, 9(4), 405 10.3390/foods9040405
  • Drozdz, W.; Boruczkowska, H.; Boruczkowski, T.; Tomaszewska-Ciosk, E.; Zdybel, E. Use of Blackcurrant and Chokeberry Press Residue in Snack Products. Polish J. Chem. Technol. 2019, 21(1), 13–19. DOI: 10.2478/pjct-2019-0003.
  • Mäkilä, L.; Laaksonen, O.; Ramos Diaz, J. M.; Vahvaselkä, M.; Myllymäki, O.; Lehtomäki, I.; Laakso, S.; Jahreis, G.; Jouppila, K.; Larmo, P., et al. Exploiting Blackcurrant Juice Press Residue in Extruded Snacks. LWT - Food Sci. Technol. 2014, 57(2), 618–627. DOI: 10.1016/j.lwt.2014.02.005.
  • Wang, S.; Gu, B. J.; Ganjyal, G. M. Impacts of the Inclusion of Various Fruit Pomace Types on the Expansion of Corn Starch Extrudates. LWT - Food Sci. Technol. 2019, 110, 223–230. DOI: 10.1016/j.lwt.2019.03.094.
  • Staroszczyk, H.; Kusznierewicz, B.; Malinowska-Pańczyk, E.; Sinkiewicz, I.; Gottfried, K.; Kołodziejska, I. Fish Gelatin Films Containing Aqueous Extracts from Phenolic-Rich Fruit Pomace. LWT. 2020, 117, 108613. DOI: 10.1016/j.lwt.2019.108613.
  • Park, S.-I.; Zhao, Y. Development and Characterization of Edible Films from Cranberry Pomace Extracts. Food Eng. Phys. Prop. 2006, 71(2), 95–101. DOI: 10.1111/j.1365-2621.2006.tb08902.x.
  • Singh, A.; Gu, Y.; Castellarin, S. D.; Kitts, D. D.; Pratap-Singh, A. Development and Characterization of the Edible Packaging Films Incorporated with Blueberry Pomace. Foods. 2020, 9(11), 1599. DOI: 10.3390/foods9111599.
  • Kurek, M.; Hlupić, L.; Ščetar, M.; Bosiljkov, T.; Galić, K. Comparison of Two PH Responsive Color Changing Bio-Based Films Containing Wasted Fruit Pomace as a Source of Colorants. J. Food Sci. 2019, 84(9), 2490–2498. DOI: 10.1111/1750-3841.14716.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.