369
Views
1
CrossRef citations to date
0
Altmetric
Review

Last Five Years Development In Food Safety Perception of n-Carboxymethyl Lysine

, , , , &

References

  • O’Malley, C. L.; Lake, A. A.; Townshend, T. G.; Moore, H. J. Exploring the Fast Food and Planning Appeals System in England and Wales: Decisions Made by the Planning Inspectorate (PINS). Perspect. Public Health. 2020, XX(X), 1–10. DOI: 10.1177/1757913920924424.
  • Alsabieh, M.; Alqahtani, M.; Altamimi, A.; Albasha, A.; Alsulaiman, A.; Alkhamshi, A.; Habib, S. S.; Bashir, S Fast Food Consumption and Its Associations with Heart Rate, Blood Pressure, Cognitive Function and Quality of Life. Pilot Study. Heliyon. 2019, 5(5), e01566. DOI: 10.1016/j.heliyon.2019.e01566.
  • Liu, X.; Zheng, L.; Zhang, R.; Liu, G.; Xiao, S.; Qiao, X.; Wu, Y.; Gong, Z. Toxicological Evaluation of Advanced Glycation End Product Nε-(carboxymethyl)lysine: Acute and Subacute Oral Toxicity Studies. Regul. Toxicol. Pharmacol. 2016, 77, 65–74. DOI: 10.1016/j.yrtph.2016.02.013.
  • Trevisan, A. J. B.; De Almeida Lima, D.; Sampaio, G. R.; Soares, R. A. M.; Markowicz Bastos, D. H. Influence of Home Cooking Conditions on Maillard Reaction Products in Beef. Food Chem. 2016, 196, 161–169. DOI: 10.1016/j.foodchem.2015.09.008.
  • Henning, C.; Glomb, M. A. Pathways of the Maillard Reaction under Physiological Conditions. Glycoconj. J. 2016, 33(4), 499–512. DOI: 10.1007/s10719-016-9694-y.
  • Nicolas, C.; Jaisson, S.; Gorisse, L.; Tessier, F. J.; Niquet-Léridon, C.; Jacolot, P.; Pietrement, C.; Gillery, P. Carbamylation and Glycation Compete for Collagen Molecular Aging in Vivo. Sci. Rep. 2019, 9(1), 1–10. DOI: 10.1038/s41598-019-54817-4.
  • Fournet, M.; Bonté, F.; Desmoulière, A. Glycation Damage: A Possible Hub for Major Pathophysiological Disorders and Aging. Aging Dis. 2018, 9(5), 880–900. DOI: 10.14336/AD.2017.1121.
  • Maher, P. A.; Schubert, D. R. Metabolic Links between Diabetes and Alzheimer’s Disease. Expert Rev. Neurother. 2009, 9(5), 617–630. DOI: 10.1586/ern.09.18.
  • Reichert, S.; Triebert, U.; Santos, A. N.; Hofmann, B.; Schaller, H. G.; Schlitt, A.; Schulz, S. Soluble Form of Receptor for Advanced Glycation End Products and Incidence of New Cardiovascular Events among Patients with Cardiovascular Disease. Atherosclerosis. 2017, 266, 234–239. DOI: 10.1016/j.atherosclerosis.2017.08.015.
  • Schröter, D.; Höhn, A. Role of Advanced Glycation End Products in Carcinogenesis and Their Therapeutic Implications. Curr. Pharm. Des. 2019, 24(44), 5245–5251. DOI: 10.2174/1381612825666190130145549.
  • Khan, M. I.; Rath, S.; Adhami, V. M.; Mukhtar, H. Hypoxia Driven Glycation: Mechanisms and Therapeutic Opportunities. Semin. Cancer Biol. 2018, 49(May), 75–82. DOI: 10.1016/j.semcancer.2017.05.008.
  • Jaisson, S.; Souchon, P. F.; Desmons, A.; Salmon, A. S.; Delemer, B.; Gillery, P. Early Formation of Serum Advanced Glycation End-products in Children with Type 1 Diabetes Mellitus: Relationship with Glycemic Control. J. Pediatr. 2016, 172, 56–62. DOI: 10.1016/j.jpeds.2016.01.066.
  • Delgado-Andrade, C. Carboxymethyl-lysine: Thirty Years of Investigation in the Field of AGE Formation. Food Funct. 2016, 7(1), 46–57. DOI: 10.1039/c5fo00918a.
  • Rabbani, N.; Thornalley, P. J. Dicarbonyl Stress in Cell and Tissue Dysfunction Contributing to Ageing and Disease. Biochem. Biophys. Res. Commun. 2015, 458(2), 221–226. DOI: 10.1016/j.bbrc.2015.01.140.
  • Zhao, D.; Sheng, B.; Li, H.; Wu, Y.; Xu, D.; Li, C. Glycation from α-dicarbonyl Compounds Has Different Effects on the Heat-induced Aggregation of Bovine Serum Albumin and β-casein. Food Chem. 2021, 340, 128108. DOI: 10.1016/j.foodchem.2020.128108.
  • Zhang, L.; Sun, Y.; Pu, D.; Zhang, Y.; Sun, B.; Zhao, Z. Kinetics of α-dicarbonyl Compounds Formation in Glucose‐glutamic Acid Model of Maillard Reaction. Food Sci. Nutr. 2021, 9(1), 290–302. DOI: 10.1002/fsn3.1995.
  • Tessier, F. J.; Niquet-Léridon, C.; Jacolot, P.; Jouquand, C.; Genin, M.; Schimidt, A.-M.; Grossin, N.; Boulanger, E. Quantitative Assessment of Organ Distribution of Dietary Protein-bound 13C-labeled Nɛ-carboxymethyllysine after a Chronic Oral Exposure in Mice. Mol. Nutr. Food Res. 2016, 60(11), 2446–2456. DOI: 10.1002/mnfr.201600140.
  • Yamagishi, S. I.; Matsui, T. Pathologic Role of Dietary Advanced Glycation End Products in Cardiometabolic Disorders, and Therapeutic Intervention. Nutrition. 2016, 32(2), 157–165. DOI: 10.1016/j.nut.2015.08.001.
  • Mishra, N.; Saxena, S.; Shukla, R. K.; Singh, V.; Meyer, C. H.; Kruzliak, P.; Khanna, V. K. Association of Serum Nε-Carboxy Methyl Lysine with Severity of Diabetic Retinopathy. J. Diabetes Complications. 2016, 30(3), 511–517. DOI: 10.1016/j.jdiacomp.2015.12.009.
  • Zhang, J. H.; Xu, H. Z.; Shen, Q. F.; Lin, Y. Z.; Sun, C. K.; Sha, L.; Ge, Y. S.; Liu, Y.; Wang, C. Nϵ-(carboxymethyl)-lysine, White Matter, and Cognitive Function in Diabetes Patients. Can. J. Neurol. Sci. 2016, 43(4), 518–522. DOI: 10.1017/cjn.2015.398.
  • Haddad, M.; Perrotte, M.; Landri, S.; Lepage, A.; Fülöp, T.; Ramassamy, C.; Krantic, S. Circulating and Extracellular Vesicles Levels of N-(1-Carboxymethyl)-L-Lysine (CML) Differentiate Early to Moderate Alzheimer’s Disease. J. Alzheimer’s Dis. 2019, 69(3), 751–762. DOI: 10.3233/JAD-181272.
  • Manjunatha, S.; Distelmaier, K.; Dasari, S.; Carter, R. E.; Kudva, Y. C.; Nair, K. S. Functional and Proteomic Alterations of Plasma High Density Lipoproteins in Type 1 Diabetes Mellitus. Metabolism. 2016, 65(9), 1421–1431. DOI: 10.1016/j.metabol.2016.06.008.
  • Taghavi, F.; Habibi-Rezaei, M.; Amani, M.; Saboury, A. A.; Moosavi-Movahedi, A. A. The Status of Glycation in Protein Aggregation. Int. J. Biol. Macromol. 2017, 100(2015), 67–74. DOI: 10.1016/j.ijbiomac.2015.12.085.
  • Li, Y.; Khan, M. S.; Akhter, F.; Husain, F. M.; Ahmad, S.; Chen, L. The Non-enzymatic Glycation of LDL Proteins Results in Biochemical Alterations - A Correlation Study of Apo B 100 -AGE with Obesity and Rheumatoid Arthritis. Int. J. Biol. Macromol. 2019, 122, 195–200. DOI: 10.1016/j.ijbiomac.2018.09.107.
  • Tessier, F. J. The Maillard Reaction in the Human Body. The Main Discoveries and Factors that Affect Glycation. Pathol. Biol. 2010, 58(3), 214–219. DOI: 10.1016/j.patbio.2009.09.014.
  • Henning, C.; Liehr, K.; Girndt, M.; Ulrich, C.; Glomb, M. A. Analysis and Chemistry of Novel Protein Oxidation Markers in Vivo. J. Agric. Food Chem. 2018, 66(18), 4692–4701. DOI: 10.1021/acs.jafc.8b00558.
  • Wang, Z.; Li, L.; Du, R.; Yan, J.; Liu, N.; Yuan, W.; Jiang, Y.; Xu, S.; Ye, F.; Yuan, G., et al. CML/RAGE Signal Induces Calcification Cascade in Diabetes. Diabetol. Metab. Syndr. 2016, 8(1), 1–12. DOI: 10.1186/s13098-016-0196-7.
  • Cepas, V.; Collino, M.; Mayo, J. C.; Sainz, R. M. Redox Signaling and Advanced Glycation Endproducts (Ages) in Diet-related Diseases. Antioxidants. 2020, 9(2), 1–20. DOI: 10.3390/antiox9020142.
  • Teodorowicz, M.; Van Neerven, J.; Savelkoul, H. Food Processing: The Influence of the Maillard Reaction on Immunogenicity and Allergenicity of Food Proteins. Nutrients. 2017, 9(8), 8. DOI: 10.3390/nu9080835.
  • Liu, Y. H.; Lu, Y. L.; Han, C. H.; Hou, W. C. Inhibitory Activities of Acteoside, Isoacteoside, and Its Structural Constituents against Protein Glycation in Vitro. Bot. Stud. 2013, 54(1), 1–9. DOI: 10.1186/1999-3110-54-6.
  • Han, C. M.; Yue, X. J.; Bengmark, S. Advanced Glycation End Products and Food. Chinese J. Clin. Nutr. 2009, 17(2), 107–110. DOI: 10.3760/cma.j.issn.1674-635X.2009.02.013.
  • Treibmann, S.; Spengler, F.; Degen, J.; Löbner, J.; Henle, T. Studies on the Formation of 3-Deoxyglucosone- and Methylglyoxal-Derived Hydroimidazolones of Creatine during Heat Treatment of Meat. J. Agric. Food Chem. 2019, 3–10. DOI: 10.1021/acs.jafc.9b01243.
  • Cloos, P. A. C.; Christgau, S. Non-enzymatic Covalent Modifications of Proteins: Mechanisms, Physiological Consequences and Clinical Applications. Matrix Biol. 2002, 21(1), 39–52. DOI: 10.1016/S0945-053X(01)00188-3.
  • Chellan, P.; Nagaraj, R. H. Protein Crosslinking by the Maillard Reaction: Dicarbonyl-derived Imidazolium Crosslinks in Aging and Diabetes. Arch. Biochem. Biophys. 1999, 368(1), 98–104. DOI: 10.1006/abbi.1999.1291.
  • Liman, P. B.; Agustina, R.; Djuwita, R.; Umar, J.; Permadhi, I.; Helmizar, Hidayat, A.; Feskens, E. J. M.; Abdullah, M.; Abdullah, M. Dietary and Plasma Carboxymethyl Lysine and Tumor Necrosis factor-α as Mediators of Body Mass Index and Waist Circumference among Women in Indonesia. Nutrients. 2019, 11(12), 12. DOI: 10.3390/nu11123057.
  • Quintanilla-García, C. V.; Uribarri, J.; Fajardo-Araujo, M. E.; Barrientos-Romero, J. J.; Romero-Gutiérrez, G.; Reynaga-Ornelas, M. G.; Garay-Sevilla, M. E. Changes in Circulating Levels of Carboxymethyllysine, Soluble Receptor for Advanced Glycation End Products (Srage), and Inflammation Markers in Women during Normal Pregnancy. J. Matern. Neonatal Med. 2019, 32(24), 4102–4107. DOI: 10.1080/14767058.2018.1481948.
  • Garg, P. K.; Biggs, M. L.; Barzilay, J.; Djousse, L.; Hirsch, C.; Ix, J. H.; Kizer, J. R.; Tracy, R. P.; Newman, A. B.; Siscovick, D. S., et al. Advanced Glycation End Product Carboxymethyl-lysine and Risk of Incident Peripheral Artery Disease in Older Adults: The Cardiovascular Health Study. Diabetes Vasc. Dis. Res. 2019, 16(5), 483–485. DOI: 10.1177/1479164119847481.
  • Loomis, S. J.; Chen, Y.; Sacks, D. B.; Christenson, E. S.; Christenson, R. H.; Rebholz, C. M.; Selvin, E. Cross-sectional Analysis of AGE-CML, sRAGE, and esRAGE with Diabetes and Cardiometabolic Risk Factors in a Community-based Cohort. Clin. Chem. 2017, 63(5), 980–989. DOI: 10.1373/clinchem.2016.264135.
  • Ndidi, U. S.; Adanho, C. S. A.; Santiago, R. P.; Yahouédéhou, S. C. M. A.; Santana, S. S.; Mafili, V. V.; Pitanga, T. N.; Fonseca, C. A.; Ferreira, J. R. D.; Adorno, E. V., et al. Effect of N(Epsilon)-(carboxymethyl)lysine on Laboratory Parameters and Its Association with β S Haplotype in Children with Sickle Cell Anemia. Dis. Markers. 2019, 2019, 1–8. DOI: 10.1155/2019/1580485.
  • Knani, I.; Bouzidi, H.; Zrour, S.; Bergaoui, N.; Hammami, M.; Kerkeni, M. Increased Serum Concentrations of Nɛ-carboxymethyllysine are Related to the Presence and the Severity of Rheumatoid Arthritis. Ann. Clin. Biochem. 2018, 55(4), 430–436. DOI: 10.1177/0004563217733500.
  • Ahiawodzi, P. D.; Kerber, R. A.; Taylor, K. C.; Groves, F. D.; O’Brien, E.; Ix, J. H.; Kizer, J. R.; Djoussé, L.; Tracy, R. P.; Newman, A. B., et al. Sleep-disordered Breathing Is Associated with Higher Carboxymethyllysine Level in Elderly Women but Not Elderly Men in the Cardiovascular Health Study. Biomarkers.2017, 22(3–4), 361–366. DOI: 10.1080/1354750X.2016.1276966.
  • Okura, T.; Ueta, E.; Nakamura, R.; Fujioka, Y.; Sumi, K.; Matsumoto, K.; Shoji, K.; Matsuzawa, K.; Izawa, S.; Nomi, Y., et al. High Serum Advanced Glycation End Products are Associated with Decreased Insulin Secretion in Patients with Type 2 Diabetes: A Brief Report. J. Diabetes Res. 2017, 2017, 1–7. DOI: 10.1155/2017/5139750.
  • Nass, N.; Ignatov, A.; Andreas, L.; Weißenborn, C.; Kalinski, T.; Sel, S. Accumulation of the Advanced Glycation End Product Carboxymethyl Lysine in Breast Cancer Is Positively Associated with Estrogen Receptor Expression and Unfavorable Prognosis in Estrogen Receptor-negative Cases. Histochem. Cell Biol. 2017, 147(5), 625–634. DOI: 10.1007/s00418-016-1534-4.
  • Mishra, N.; Saxena, S.; Ruia, S.; Prasad, S.; Singh, V.; Khanna, V.; Staffa, R.; Gaspar, L.; Kruzliak, P. Increased Levels of Nϵ- Carboxy Methyl Lysine (Nϵ-cml) are Associated with Topographic Alterations in Retinal Pigment Epithelium: A Preliminary Study. J. Diabetes Complications. 2016, 30(5), 868–872. DOI: 10.1016/j.jdiacomp.2016.03.011.
  • Haddad, M.; Knani, I.; Bouzidi, H.; Berriche, O.; Hammami, M.; Kerkeni, M. Plasma Levels of Pentosidine, Carboxymethyl-lysine, Soluble Receptor for Advanced Glycation End Products, and Metabolic Syndrome: The Metformin Effect. Dis. Markers. 2016, 2016, 1–8. DOI: 10.1155/2016/6248264.
  • Mhlanga, C. M.; Mogale, M. A.; Adu, A.; Shai, L. J. Serum AGEs in Black South African Patients with Type 2 Diabetes. J. Endocrinol. Metab. Diabetes South Afr. 2016, 21, 56–62. DOI: 10.1080/16089677.2016.1240934.
  • Stanislovaitiene, D.; Žaliuniene, D.; Steponavičiute, R.; Žemaitiene, R.; Gustiene, O.; Žaliunas, R. N-carboxymethyllysine as a Biomarker for Coronary Artery Disease and Age-related Macular Degeneration. Med. 2016, 52, 99–103. DOI: 10.1016/j.medici.2016.02.001.
  • Bartakova, V.; Kollarova, R.; Kuricova, K.; Sebekova, K.; Belobradkova, J.; Kankova, K. Serum Carboxymethyl-lysine, a Dominant Advanced Glycation End Product, Is Increased in Women with Gestational Diabetes Mellitus. Biomed. Pap. 2016, 160(1), 70–75. DOI: 10.5507/bp.2015.045.
  • Luft, V. C.; Duncan, B. B.; Schmidt, M. I.; Chambless, L. E.; Pankow, J. S.; Hoogeveen, R. C.; Couper, D. J.; Heiss, G.; Ndidi, U. S. Carboxymethyl Lysine, an Advanced Glycation End Product, and Incident Diabetes: A Case–cohort Analysis of the ARIC Study. Diabet. Med. 2016, 33(10), 1392–1398. DOI: 10.1111/dme.12963.
  • Semba, R. D.; Sun, K.; Schwartz, A. V.; Varadhan, R.; Harris, T. B.; Satterfield, S.; Garcia, M.; Ferrucci, L.; Newman, A. B. Serumcarboxymethyl-lysine, an Advanced Glycation End Product, Is Associatedwith Arterial Stiffness in Older Adults. J. Hypertens. 2015, 33(4), 797–803. DOI: 10.1097/HJH.0000000000000460.
  • Whitson, H. E.; Arnold, A. M.; Yee, L. M.; Mukamal, K. J.; Kizer, J. R.; Djousse, L.; Ix, J. H.; Siscovick, D.; Tracy, R. P.; Thielke, S. M., et al. Serum Carboxymethyl-lysine, Disability, and Frailty in Older Persons: The Cardiovascular Health Study. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 710–716. DOI: 10.1093/gerona/glt155.
  • Hanssen, N. M. J.; Beulens, J. W. J.; Van Dieren, S.; Scheijen, J. L. J. M.; Van Der A, D. L.; Spijkerman, A. M. W.; Van Der Schouw, Y. T.; Stehouwer, C. D. A.; Schalkwijk, C. G. Plasma Advanced Glycation End Products are Associated with Incident Cardiovascularevents in Individuals with Type 2 Diabetes: A Case-Cohort Study with A Median follow-Up of 10 Years (EPIC-NL). Diabetes. 2015, 64(1), 257–265. DOI: 10.2337/db13-1864.
  • Yang, S.; Pinney, S. M.; Mallick, P.; Ho, S. M.; Bracken, B.; Wu, T. Impact of Oxidative Stress Biomarkers and Carboxymethyllysine (An Advanced Glycation End Product) on Prostate Cancer: A Prospective Study. Clin. Genitourin. Cancer. 2015, 13(5), e347–e351. DOI: 10.1016/j.clgc.2015.04.004.
  • Ghanem, A. A.; Elewa, A.; Arafa, L. F. Pentosidine and N-carboxymethyl-lysine: Biomarkers for Type 2 Diabetic Retinopathy. Eur. J. Ophthalmol. 2011, 21(1), 48–54. DOI: 10.5301/EJO.2010.4447.
  • Kizer, J. R.; Benkeser, D.; Arnold, A. M.; Ix, J. H.; Mukamal, K. J.; Djousse, L.; Tracy, R. P.; Siscovick, D. S.; Psaty, B. M.; Zieman, S. J. Advanced Glycation/glycoxidation Endproduct Carboxymethyl-lysine and Incidence of Coronary Heart Disease and Stroke in Older Adults. Atherosclerosis. 2014, 235(1), 116–121. DOI: 10.1016/j.atherosclerosis.2014.04.013.
  • Piroddi, M.; Palazzetti, I.; Quintaliani, G.; Pilolli, F.; Montaldi, M.; Valentina, V.; Libetta, C.; Galli, F. Circulating Levels and Dietary Intake of the Advanced Glycation End-product Marker Carboxymethyl Lysine in Chronic Kidney Disease Patients on Conservative Predialysis Therapy: A Pilot Study. J. Ren. Nutr. 2011, 21, 329–339. DOI: 10.1053/j.jrn.2010.06.024.
  • Semba, R. D.; Bandinelli, S.; Sun, K.; Guralnik, J. M.; Ferrucci, L. Relationship of an Advanced Glycation End Product, Plasma Carboxymethyl-lysine, with Slow Walking Speed in Older Adults: The InCHIANTI Study. Eur. J. Appl. Physiol. 2010, 108(1), 191–195. DOI: 10.1007/s00421-009-1192-5.
  • Takeda, A.; Wakai, M.; Niwa, H.; Dei, R.; Yamamoto, M.; Li, M.; Goto, Y.; Yasuda, T.; Nakagomi, Y.; Watanabe, M., et al. Neuronal and Glial Advanced Glycation End Product [N ε-(carboxymethyl)lysine] in Alzheimer’s Disease Brains. Acta Neuropathol. 2001, 101(1), 27–35. DOI: 10.1007/s004010000256.
  • Yagmur, E.; Tacke, F.; Weiss, C.; Lahme, B.; Manns, M. P.; Kiefer, P.; Trautwein, C.; Gressner, A. M. Elevation of Nε-(carboxymethyl)lysine-modified Advanced Glycation End Products in Chronic Liver Disease Is an Indicator of Liver Cirrhosis. Clin. Biochem. 2006, 39(1), 39–45. DOI: 10.1016/j.clinbiochem.2005.07.016.
  • Bär, K. J.; Franke, S.; Wenda, B.; Müller, S.; Kientsch-Engel, R.; Stein, G.; Sauer, H. Pentosidine and Nε-(carboxymethyl)-lysine in Alzheimer’s Disease and Vascular Dementia. Neurobiol. Aging. 2003, 24(2), 333–338. DOI: 10.1016/S0197-4580(02)00086-6.
  • Nagata, C.; Wada, K.; Yamakawa, M.; Nakashima, Y.; Koda, S.; Uji, T.; Oba, S. Dietary Intake of Nε-carboxymethyl-lysine, a Major Advanced Glycation End Product, Is Not Associated with Increased Risk of Mortality in Japanese Adults in the Takayama Study. J. Nutr. 2020, 150(10), 2799–2805. DOI: 10.1093/jn/nxaa230.
  • Jing, L.; Li, L.; Ren, X.; Sun, Z.; Bao, Z.; Yuan, G.; Cai, H.; Wang, L.; Shao, C.; Wang, Z. Role of Sortilin and Matrix Vesicles in nε-carboxymethyl-lysine-induced Diabetic Atherosclerotic Calcification. Diabetes, Metab. Syndr. Obes. Targets Ther. 2020, 13, 4141–4151. DOI: 10.2147/DMSO.S273029.
  • Nogami, M.; Hoshi, T.; Toukairin, Y.; Arai, T.; Nishio, T. Immunohistochemistry of Advanced Glycation End Product Nϵ-(carboxymethyl)lysine in Coronary Arteries in Relation to Cardiac Fibrosis and Serum N-terminal-pro Basic Natriuretic Peptide in Forensic Autopsy Cases. BMC Res. Notes. 2020, 13(1), 1–7. DOI: 10.1186/s13104-020-05082-6.
  • Damasiewicz-Bodzek, A.; Łabuz-Roszak, B.; Kumaszka, B.; Tyrpień-Golder, K. Carboxymethyllysine and Carboxyethyllysine in Multiple Sclerosis Patients. Arch. Med. Sci. 2020. DOI: 10.5114/aoms.2020.95654.
  • Xu, S. N.; Zhou, X.; Zhu, C. J.; Qin, W.; Zhu, J.; Zhang, K. L.; Li, H. J.; Xing, L.; Lian, K.; Li, C. X., et al. Nϵ-Carboxymethyl-Lysine Deteriorates Vascular Calcification in Diabetic Atherosclerosis Induced by Vascular Smooth Muscle Cell-Derived Foam Cells. Front. Pharmacol. 2020, 11, 1–12. DOI: 10.3389/fphar.2020.00626.
  • Wang, Y. X.; Xu, H.; Liu, X.; Liu, L.; Wu, Y. N.; Gong, Z. Y. Studies on Mechanism of Free Nε-(carboxymethyl)lysine-induced Toxic Injury in Mice. J. Biochem. Mol. Toxicol. 2019, 33(7), 1–10. DOI: 10.1002/jbt.22322.
  • Hady, H. A.; Khamis, S. S. A.; Elbarbary, H.; Khodeer, S. A.; Kasem, H. E. Study of Association between Carboxymethyllysine and Circulating Soluble Receptor for Advanced Glycation End Products and Cardiovascular Dysfunction in Nondiabetic Chronic Kidney Disease. Menoufia Med. J. 2017, S663–671. DOI: 10.4103/1110-2098.218252.
  • Wu, Y.; Li, Y.; Zheng, L.; Wang, P.; Liu, Y.; Wu, Y.; Gong, Z. Y. The Neurotoxicity of Nε-(carboxymethyl)lysine in Food Processing by a Study Based on Animal and Organotypic Cell Culture. Ecotoxicol. Environ. Saf. 2020, 190, 110077. DOI: 10.1016/j.ecoenv.2019.110077.
  • Khan, H.; Khan, M. S.; Ahmad, S. The in Vivo and in Vitro Approaches for Establishing a Link between Advanced Glycation End Products and Lung Cancer. J. Cell. Biochem. 2018, 119(11), 9099–9109. DOI: 10.1002/jcb.27170.
  • Konopka, C.; Paton, A.; Skokowska, A.; Rowles, J.; Erdman, J.; Dobrucka, I.; Dobrucki, L. Examining the Role of Dietary Advanced Gycation End Products in Prostate Cancer Using Molecular Imaging Techniques (OR04-08-19). Curr. Dev. Nutr. 2019, 3(Supplement_1), 420. DOI: 10.1093/cdn/nzz030.or04-08-19.
  • Li, R. L.; Zhao, W. W.; Gao, B. Y. Advanced Glycation End Products Induce Neural Tube Defects through Elevating Oxidative Stress in Mice. Neural Regen. Res. 2018, 13(8), 1368–1374. DOI: 10.4103/1673-5374.235249.
  • ALJahdali, N.; Gadonna-Widehem, P.; Delayre-Orthez, C.; Marier, D.; Garnier, B.; Carbonero, F.; Anton, P. M. Repeated Oral Exposure to N ε-Carboxymethyllysine, a Maillard Reaction Product, Alleviates Gut Microbiota Dysbiosis in Colitic Mice. Dig. Dis. Sci. 2017, 62(12), 3370–3384. DOI: 10.1007/s10620-017-4767-8.
  • Roncero-Ramos, I.; Niquet-Léridon, C.; Strauch, C.; Monnier, V. M.; Tessier, F. J.; Navarro, M. P.; Delgado-Andrade, C. An Advanced Glycation End Product (Age)-rich Diet Promotes nε-carboxymethyl-lysine Accumulation in the Cardiac Tissue and Tendons of Rats. J. Agric. Food Chem. 2014, 62(25), 6001–6006. DOI: 10.1021/jf501005n.
  • Wang, Z.; Yan, J.; Li, L.; Liu, N.; Liang, Y.; Yuan, W.; Chen, X. Effects of Nε-carboxymethyl-Lysine on ERS-mediated Apoptosis in Diabetic Atherosclerosis. Int. J. Cardiol. 2014, 172(3), e478–e483. DOI: 10.1016/j.ijcard.2014.01.031.
  • Adamopoulos, C.; Mihailidou, C.; Grivaki, C.; Papavassiliou, K. A.; Kiaris, H.; Piperi, C.; Papavassiliou, A. G. Systemic Effects of AGEs in ER Stress Induction in Vivo. Glycoconj. J. 2016, 33(4), 537–544. DOI: 10.1007/s10719-016-9680-4.
  • Wada, Y.; Lönnerdal, B. Effects of Different Industrial Heating Processes of Milk on Site-specific Protein Modifications and Their Relationship to in Vitro and in Vivo Digestibility. J. Agric. Food Chem. 2014, 62(18), 4175–4185. DOI: 10.1021/jf501617s.
  • Li, M.; Zeng, M.; He, Z.; Zheng, Z.; Qin, F.; Tao, G.; Zhang, S.; Chen, J. Increased Accumulation of Protein-bound N (Carboxymethyl)lysine in Tissues of Healthy Rats after Chronic Oral N (Carboxymethyl)lysine. J. Agric. Food Chem. 2015, 63(5), 1658–1663. DOI: 10.1021/jf505063t.
  • Wang, Z.; Jiang, Y.; Liu, N.; Ren, L.; Zhu, Y.; An, Y.; Chen, D. Advanced Glycation End-product N e{open}-carboxymethyl-Lysine Accelerates Progression of Atherosclerotic Calcification in Diabetes. Atherosclerosis. 2012, 221(2), 387–396. DOI: 10.1016/j.atherosclerosis.2012.01.019.
  • Lee, J.; Hyon, J. Y.; Min, J. Y.; Huh, Y. H.; Kim, H. J.; Lee, H.; Yun, S. H.; Choi, C. W.; Jeong Ha, S.; Park, J., et al. Mitochondrial Carnitine Palmitoyltransferase 2 Is Involved in Nε-(carboxymethyl)-lysine-mediated Diabetic Nephropathy. Pharmacol. Res. 2020, 152, 104600. DOI: 10.1016/j.phrs.2019.104600.
  • Assar, S. H.; Moloney, C.; Lima, M.; Magee, R.; Ames, J. M. Determination of N ε-(carboxymethyl)lysine in Food Systems by Ultra Performance Liquid Chromatography-mass Spectrometry. Amino Acids. 2009, 36(2), 317–326. DOI: 10.1007/s00726-008-0071-4.
  • Zhang, Q.; Wang, Y.; Fu, L. Dietary Advanced Glycation End-products: Perspectives Linking Food Processing with Health Implications. Compr. Rev. Food Sci. Food Saf. 2020, 19(5), 2559–2587. DOI: 10.1111/1541-4337.12593.
  • Wang, Y. X.; Xu, H.; Liu, X.; Liu, L.; Wu, Y. N.; Gong, Z. Y. Studies on Mechanism of Free Nε-(carboxymethyl)lysine-induced Toxic Injury in Mice. J. Biochem. Mol. Toxicol. 2019, 33(7), 7. DOI: 10.1002/jbt.22322.
  • Murata, N.; Azuma, M.; Yamauchi, K.; Miyake, H.; Tanaka, R.; Shibata, T. Phlorotannins Remarkably Suppress the Formation of N ε-(Carboxymethyl)lysine in a Collagen-Glyoxal Environment. Nat. Prod. Commun. 2020, 15, 7. DOI: 10.1177/1934578X20941655.
  • Van Schaftingen, E.; Collard, F.; Wiame, E.; Veiga-Da-Cunha, M. Enzymatic Repair of Amadori Products. Amino Acids. 2012, 42(4), 1143–1150. DOI: 10.1007/s00726-010-0780-3.
  • Sergi, D.; Boulestin, H.; Campbell, F. M.; Williams, L. M. The Role of Dietary Advanced Glycation End Products in Metabolic Dysfunction. Mol. Nutr. Food Res. 2021, 65(1), 1–11. DOI: 10.1002/mnfr.201900934.
  • Smitherman, P. K.; Townsend, A. J.; Kute, T. E.; Morrow, C. S. Role of Multidrug Resistance Protein 2 (MRP2, ABCC2) in Alkylating Agent Detoxification: MRP2 Potentiates Glutathione S-Transferase A1-1-Mediated Resistance to Chlorambucil Cytotoxicity. J. Pharmacol. Exp. Ther. 2004, 308(1), 260–267. DOI: 10.1124/jpet.103.057729.
  • Richarme, G.; Mihoub, M.; Dairou, J.; Chi Bui, L.; Leger, T.; Lamouri, A. Parkinsonism-associated Protein DJ-1/park7 Is a Major Protein Deglycase that Repairs Methylglyoxal- and Glyoxal-glycated Cysteine, Arginine, and Lysine Residues. J. Biol. Chem. 2015, 290(3), 1885–1897. DOI: 10.1074/jbc.M114.597815.
  • Thornalley, P. J.; Glyoxalase, I. Structure, Function and a Critical Role in the Enzymatic Defence against Glycation. Biochem. Soc. Trans. 2003, 31(6), 1343–1348. DOI: 10.1042/bst0311343.
  • Distler, M. G.; Palmer, A. A. Role of Glyoxalase 1 (Glo1) and Methylglyoxal (MG) in Behavior: Recent Advances and Mechanistic Insights. Front. Genet. 2012, 3, 1–10. DOI: 10.3389/fgene.2012.00250.
  • Rabbani, N.; Thornalley, P. J. Methylglyoxal, Glyoxalase 1 and the Dicarbonyl Proteome. Amino Acids. 2012, 42(4), 1133–1142. DOI: 10.1007/s00726-010-0783-0.
  • Byun, K.; Yoo, Y. C.; Son, M.; Lee, J.; Jeong, G. B.; Park, Y. M.; Salekdeh, G. H.; Lee, B. Advanced Glycation End-products Produced Systemically and by Macrophages: A Common Contributor to Inflammation and Degenerative Diseases. Pharmacol. Ther. 2017, 177, 44–55. DOI: 10.1016/j.pharmthera.2017.02.030.
  • Rabbani, N.; Thornalley, P. J. Dicarbonyls Linked to Damage in the Powerhouse: Glycation of Mitochondrial Proteins and Oxidative Stress. Biochem. Soc. Trans. 2008, 36(5), 1045–1050. DOI: 10.1042/BST0361045.
  • Nagai, R.; Unno, Y.; Hayashi, M. C.; Masuda, S.; Hayase, F.; Kinae, N.; Horiuchi, S. Peroxynitrite Induces Formation of Nε-(carboxymethyl)lysine by the Cleavage of Amadori Product and Generation of Glucosone and Glyoxal from Glucose: Novel Pathways for Protein Modification by Peroxynitrite. Diabetes. 2002, 51(9), 2833–2839. DOI: 10.2337/diabetes.51.9.2833.
  • Mera, K.; Nagai, R.; Haraguchi, N.; Fujiwara, Y.; Araki, T.; Sakata, N.; Otagiri, M. Hypochlorous Acid Generates Nε-(carboxymethyl)lysine from Amadori Products. Free Radic. Res. 2007, 41(6), 713–718. DOI: 10.1080/10715760701332425.
  • Fujiwara, Y.; Kiyota, N.; Tsurushima, K.; Yoshitomi, M.; Mera, K.; Sakashita, N.; Takeya, M.; Ikeda, T.; Araki, T.; Nohara, T., et al. Natural Compounds Containing a Catechol Group Enhance the Formation of Nε-(carboxymethyl)lysine of the Maillard Reaction. Free Radic. Biol. Med. 2011, 50(7), 883–891. DOI: 10.1016/j.freeradbiomed.2010.12.033.
  • Nagai, R.; Ikeda, K.; Higashi, T.; Sano, H.; Jinnouchi, Y.; Araki, T.; Horiuchi, S. Hydroxyl Radical Mediates N(ε)-(carboxymethyl)lysine Formation from Amadori Product. Biochem. Biophys. Res. Commun. 1997, 234(1), 167–172. DOI: 10.1006/bbrc.1997.6608.
  • Salum, E.; Kals, J.; Kampus, P.; Salum, T.; Zilmer, K.; Aunapuu, M.; Arend, A.; Eha, J.; Zilmer, M. Vitamin D Reduces Deposition of Advanced Glycation End-products in the Aortic Wall and Systemic Oxidative Stress in Diabetic Rats. Diabetes Res. Clin. Pract. 2013, 100(2), 243–249. DOI: 10.1016/j.diabres.2013.03.008.
  • Irani, M.; Minkoff, H.; Seifer, D. B.; Merhi, Z. Vitamin D Increases Serum Levels of the Soluble Receptor for Advanced Glycation End Products in Women with PCOS. J. Clin. Endocrinol. Metab. 2014, 99(5), 886–890. DOI: 10.1210/jc.2013-4374.
  • Cervantes-Laurean, D.; Schramm, D. D.; Jacobson, E. L.; Halaweish, I.; Bruckner, G. G.; Boissonneault, G. A. Inhibition of Advanced Glycation End Product Formation on Collagen by Rutin and Its Metabolites. J. Nutr. Biochem. 2006, 17(8), 531–540. DOI: 10.1016/j.jnutbio.2005.10.002.
  • Delatour, T.; Hegele, J.; Parisod, V.; Richoz, J.; Maurer, S.; Steven, M.; Buetler, T. Analysis of Advanced Glycation Endproducts in Dairy Products by Isotope Dilution Liquid Chromatography-electrospray Tandem Mass Spectrometry. The Particular Case of Carboxymethyllysine. J. Chromatogr. A. 2009, 1216(12), 2371–2381. DOI: 10.1016/j.chroma.2009.01.011.
  • Sun, X.; Tang, J.; Wang, J.; Rasco, B. A.; Lai, K.; Huang, Y. Formation of Advanced Glycation Endproducts in Ground Beef under Pasteurisation Conditions. Food Chem. 2015, 172, 802–807. DOI: 10.1016/j.foodchem.2014.09.129.
  • Fenaille, F.; Parisod, V.; Visani, P.; Populaire, S.; Tabet, J. C.; Guy, P. A. Modifications of Milk Constituents during Processing: A Preliminary Benchmarking Study. Int. Dairy J. 2006, 16(7), 728–739. DOI: 10.1016/j.idairyj.2005.08.003.
  • Drusch, S.; Faist, V.; Erbersdobler, H. F. Determination of N(ε)-carboxymethyllysine in Milk Products by a Modified Reversed-phase HPLC Method. Food Chem. 1999, 65(4), 547–553. DOI: 10.1016/S0308-8146(98)00244-1.
  • Hull, G. L. J.; Woodside, J. V.; Ames, J. M.; Cuskelly, G. J. N(ε)-(carboxymethyl)lysine Content of Foods Commonly Consumed in a Western Style Diet. Food Chem. 2012, 131(1), 170–174. DOI: 10.1016/j.foodchem.2011.08.055.
  • Charissou, A.; Ait-Ameur, L.; Birlouez-Aragon, I. Evaluation of a Gas Chromatography/mass Spectrometry Method for the Quantification of Carboxymethyllysine in Food Samples. J. Chromatogr. A. 2007, 1140(1–2), 189–194. DOI: 10.1016/j.chroma.2006.11.066.
  • Troise, A. D.; Fiore, A.; Wiltafsky, M.; Fogliano, V. Quantification of Nε-(2-Furoylmethyl)-l-lysine (Furosine), Nε-(Carboxymethyl)-l-lysine (CML), Nε-(Carboxyethyl)-l-lysine (CEL) and Total Lysine through Stable Isotope Dilution Assay and Tandem Mass Spectrometry. Food Chem. 2015, 188, 357–364. DOI: 10.1016/j.foodchem.2015.04.137.
  • Wellner, A.; Nußpickel, L.; Henle, T. Glycation Compounds in Peanuts. Eur. Food Res. Technol. 2012, 234(3), 423–429. DOI: 10.1007/s00217-011-1649-8.
  • Zhang, G.; Huang, G.; Xiao, L.; Mitchell, A. E. Determination of Advanced Glycation Endproducts by LC-MS/MS in Raw and Roasted Almonds (Prunus Dulcis). J. Agric. Food Chem. 2011, 59(22), 12037–12046. DOI: 10.1021/jf202515k.
  • Dalle-donne, I.; Rossi, R.; Giustarini, D.; Gagliano, N.; Lusini, L.; Milzani, A.; Di Simplicio, P.; Colombo, R. Actin Carbonylation: From a Simple Marker of Protein Oxidation to Relevant Signs of Severe Functional Impairment. Science. 2001, 31(9), 1075–1083. DOI: 10.1016/S0891-5849(01)00690-6.
  • Kang, D. C.; Zou, Y. H.; Cheng, Y. P.; Xing, L. J.; Zhou, G. H.; Zhang, W. G. Effects of Power Ultrasound on Oxidation and Structure of Beef Proteins during Curing Processing. Ultrason. Sonochem. 2016, 33, 47–53. DOI: 10.1016/j.ultsonch.2016.04.024.
  • Jiao, Y.; He, J.; He, Z.; Gao, D.; Qin, F.; Xie, M.; Zeng, M.; Chen, J. Formation of Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine during Black Tea Processing. Food Res. Int. 2019, 121, 738–745. DOI: 10.1016/j.foodres.2018.12.051.
  • Li, Y.; Li, L.; Lund, M. N.; Li, B.; Hu, Y.; Zhang, X. Kinetic Investigation of the Trapping of Nε-(carboxymethyl)lysine by 4-methylbenzoquinone: A New Mechanism to Control Nε-(carboxymethyl)lysine Levels in Foods. Food Chem. 2018, 244, 25–28. DOI: 10.1016/j.foodchem.2017.09.144.
  • Deo, P.; Chern, C.; Peake, B.; Tan, S. Y. Non-nutritive Sweeteners are in Concomitant with the Formation of Endogenous and Exogenous Advanced Glycation End-products. Int. J. Food Sci. Nutr. 2020, 71(6), 706–714. DOI: 10.1080/09637486.2020.1712683.
  • Wu, Q.; Zhao, K.; Chen, Y.; Xiao, J.; Zhou, M.; Li, D.; Feng, N.; Wang, C. Ethanol as an Accelerator for the Formation of Advanced Glycation End Products in Glucose-lysine Solution. Lwt. 2020, 124, 109135. DOI: 10.1016/j.lwt.2020.109135.
  • Wang, Y.; Hu, H.; McClements, D. J.; Nie, S.; Shen, M.; Li, C.; Huang, Y.; Chen, J.; Zeng, M.; Xie, M. Effect of Fatty Acids and Triglycerides on the Formation of Lysine-derived Advanced Glycation End-products in Model Systems Exposed to Frying Temperature. RSC Adv. 2019, 9(27), 15162–15170. DOI: 10.1039/c9ra01410a.
  • Song, Y. H.; Liu, L.; Zhao, Y. B.; Bai, B.; Yang, Y.; Zhao, X. Effects of Oleic Acid on the Formation and Kinetics of Nε-(carboxymethyl)lysine. Lwt. 2019, 115, 108160. DOI: 10.1016/j.lwt.2019.05.058.
  • Prosser, C. G.; Carpenter, E. A.; Hodgkinson, A. J. N ε -carboxymethyllysine in Nutritional Milk Formulas for Infants. Food Chem. 2019, 274, 886–890. DOI: 10.1016/j.foodchem.2018.09.069.
  • Jiao, Y.; He, J.; Li, F.; Tao, G.; Zhang, S.; Zhang, S.; Qin, F.; Zeng, M.; Chen, J. Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine in Tea and the Factors Affecting Their Formation. Food Chem. 2017, 232, 683–688. DOI: 10.1016/j.foodchem.2017.04.059.
  • Sun, X.; Tang, J.; Wang, J.; Rasco, B. A.; Lai, K.; Huang, Y. Formation of N ε-carboxymethyllysine and N ε-carboxyethyllysine in Ground Beef during Heating as Affected by Fat, Nitrite and Erythorbate. J. Food Meas. Charact. 2017, 11(1), 320–328. DOI: 10.1007/s11694-016-9400-6.
  • Niu, L.; Sun, X.; Tang, J.; Wang, J.; Rasco, B. A.; Lai, K.; Huang, Y. Free and Protein-bound Nε-carboxymethyllysine and Nε-carboxyethyllysine in Fish Muscle: Biological Variation and Effects of Heat Treatment. J. Food Compos. Anal. 2017, 57, 56–63. DOI: 10.1016/j.jfca.2016.12.017.
  • Yu, L.; Chai, M.; Zeng, M.; He, Z.; Chen, J. Effect of Lipid Oxidation on the Formation of N ε -carboxymethyl-lysine and N ε -carboxyethyl-lysine in Chinese-style Sausage during Storage. Food Chem. 2018, 269, 466–472. DOI: 10.1016/j.foodchem.2018.07.051.
  • Park, H. Y.; Oh, M. J.; Park, Y.; Kim, Y. N ε-(carboxymethyl)lysine Formation from the Maillard Reaction of Casein and Different Reducing Sugars. Food Sci. Biotechnol. 2020, 29(4), 487–491. DOI: 10.1007/s10068-019-00689-3.
  • Li, Y.; Xue, C.; Quan, W.; Qin, F.; Wang, Z.; He, Z.; Zeng, M.; Chen, J. Assessment the Influence of Salt and Polyphosphate on Protein Oxidation and Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine Formation in Roasted Beef Patties. Meat Sci. 2021, 177, 108489. DOI: 10.1016/j.meatsci.2021.108489.
  • Jiang, Y.; Qin, R.; Jia, C.; Rong, J.; Hu, Y.; Liu, R. Hydrocolloid Effects on Nε-carboxymethyllysine and Acrylamide of Deep-fried Fish Nuggets. Food Biosci. 2021, 39, 100797. DOI: 10.1016/j.fbio.2020.100797.
  • Zeng, L.; Ding, H.; Hu, X.; Zhang, G.; Gong, D. Galangin Inhibits α-glucosidase Activity and Formation of Non-enzymatic Glycation Products. Food Chem. 2019, 271, 70–79. DOI: 10.1016/j.foodchem.2018.07.148.
  • Grunwald, S.; Krause, R.; Bruch, M.; Henle, T.; Brandsch, M. Transepithelial Flux of Early and Advanced Glycation Compounds across Caco-2 Cell Monolayers and Their Interaction with Intestinal Amino Acid and Peptide Transport Systems. Br. J. Nutr. 2006, 95(6), 1221–1228. DOI: 10.1079/bjn20061793.
  • Liu, H.; Chen, X.; Zhang, D.; Wang, J.; Wang, S.; Sun, B. Effects of Highland Barley Bran Extract Rich in Phenolic Acids on the Formation of N ε-Carboxymethyllysine in a Biscuit Model. J. Agric. Food Chem. 2018, 66(66), 1916–1922. DOI: 10.1021/acs.jafc.7b04957.
  • Chen, G.; Madl, R. L.; Smith, J. S. Cereal Bran Extracts Inhibit the Formation of Advanced Glycation Endproducts in a Bovine Serum Albumin/glucose Model. Cereal Chem. 2018, 95(5), 625–633. DOI: 10.1002/cche.10070.
  • Justino, A. B.; Miranda, N. C.; Franco, R. R.; Martins, M. M.; Silva, N. M. D.; Espindola, F. S. Annona Muricata Linn. Leaf as a Source of Antioxidant Compounds with in Vitro Antidiabetic and Inhibitory Potential against α-amylase,α-glucosidase, Lipase, Non-enzymatic Glycation and Lipid Peroxidation. Biomed. Pharmacother. 2018, 100, 83–92. DOI: 10.1016/j.biopha.2018.01.172.
  • Adisakwattana, S.; Thilavech, T.; Sompong, W.; Pasukamonset, P. Interaction between Ascorbic Acid and Gallic Acid in a Model of Fructse-mediated Protein Glycation and Oxidation. Electron. J. Biotechnol. 2017, 27, 32–36. DOI: 10.1016/j.ejbt.2017.03.004.
  • Mildner-Szkudlarz, S.; Siger, A.; Szwengiel, A.; Przygoński, K.; Wojtowicz, E.; Zawirska-Wojtasiak, R. Phenolic Compounds Reduce Formation of Nε-(carboxymethyl)lysine and Pyrazines Formed by Maillard Reactions in a Model Bread System. Food Chem. 2017, 231, 175–184. DOI: 10.1016/j.foodchem.2017.03.126.
  • Banan, P.; Ali, A. Preventive Effect of Phenolic Acids on in Vitro Glycation. Ann. Phytomedicine An Int. J. 2016, 5(2), 97–102. DOI: 10.21276/ap.2016.5.2.12.
  • Adisakwattana, S.; Sompong, W.; Meeprom, A.; Ngamukote, S.; Yibchok-Anun, S. Cinnamic Acidand Its Derivatives Inhibit Fructose-mediated Protein Glycation. Int. J. Mol. Sci. 2012, 13(2), 1778–1789. DOI: 10.3390/ijms13021778.
  • Silván, J. M.; Assar, S. H.; Srey, C.; Dolores Del Castillo, M.; Ames, J. M. Control of the Maillard Reaction by Ferulic Acid. Food Chem. 2011, 128(1), 208–213. DOI: 10.1016/j.foodchem.2011.03.047.
  • Kim, J.; Jeong, I. H.; Kim, C. S.; Lee, Y. M.; Kim, J. M.; Kim, J. S. Chlorogenic Acid Inhibits the Formation of Advanced Glycation End Products and Associated Protein Cross-linking. Arch. Pharm. Res. 2011, 34(3), 495–500. DOI: 10.1007/s12272-011-0319-5.
  • Tsuji-Naito, K.; Saeki, H.; Hamano, M. Inhibitory Effects of Chrysanthemum Species Extracts on Formation of Advanced Glycation End Products. Food Chem. 2009, 116(4), 854–859. DOI: 10.1016/j.foodchem.2009.03.042.
  • Manmei, L.; Zhong, L.; Zhulin, Z.; Lin, M. Inhibitory Effects of Curcumin Derivatives on Nonenzymatic Glucosylation in Vitro. Front. Chem. China. 2006, 2, 227–231. DOI: 10.1007/s11458-006-0012-2.
  • Zhu, R.; Hong, M.; Zhuang, C.; Zhang, L.; Wang, C.; Liu, J.; Duan, Z.; Shang, F.; Hu, F.; Li, T., et al. Pectin Oligosaccharides from Hawthorn (Crataegus Pinnatifida Bunge. Var. Major) Inhibit the Formation of Advanced Glycation End Products in Infant Formula Milk Powder. Food Funct. 2019, 10(12), 8081–8093. DOI: 10.1039/c9fo01041f.
  • Zhao, D.; Le, T. T.; Larsen, L. B.; Li, L.; Qin, D.; Su, G.; Li, B. Effect of Glycation Derived from α-dicarbonyl Compounds on the in Vitro Digestibility of β-casein and β-lactoglobulin: A Model Study with Glyoxal, Methylglyoxal and Butanedione. Food Res. Int. 2017, 102, 313–322. DOI: 10.1016/j.foodres.2017.10.002.
  • Delgado-Andrade, C.; Tessier, F. É. J.; Niquet-Leridon, C.; Seiquer, I.; Navarro, M. P. Study of the Urinary and Faecal Excretion of Ne-carboxymethyllysine in Young Human Volunteers. Amino Acids. 2012, 43(2), 595–602. DOI: 10.1007/s00726-011-1107-8.
  • Huang, J.; Ren, J.; Tao, G.; Chen, Y.; Yao, S.; Han, D.; Qiu, R. Maize Bran Feruloylated Oligosaccharides Inhibited AGEs Formation in Glucose/amino Acids and glucose/BSA Models. Food Res. Int. 2019, 122, 443–449. DOI: 10.1016/j.foodres.2019.04.040.
  • Tagliazucchi, D.; Martini, S.; Conte, A. Protocatechuic and 3,4-Dihydroxyphenylacetic Acids Inhibit Protein Glycation by Binding Lysine through a Metal-Catalyzed Oxidative Mechanism. J. Agric. Food Chem. 2019, 67(28), 7821–7831. DOI: 10.1021/acs.jafc.9b02357.
  • Shi, F.; Bai, B.; Ma, S.; Ji, S.; Liu, L. The Inhibitory Effects of γ-glutamylcysteine Derivatives from Fresh Garlic on Glycation Radical Formation. Food Chem. 2016, 194, 538–544. DOI: 10.1016/j.foodchem.2015.07.140.
  • Liu, X.; Shao, W.; Luo, M.; Bian, J.; Yu, D. G. Electrospun Blank Nanocoating for Improved Sustained Release Profiles from Medicated Gliadin Nanofibers. Nanomaterials. 2018, 8. DOI: 10.3390/nano8040184.
  • Yu, P.; Xu, X. B.; Yu, S. J. Inhibitory Effect of Sugarcane Molasses Extract on the Formation of Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine. Food Chem. 2017, 221, 1145–1150. DOI: 10.1016/j.foodchem.2016.11.045.
  • Teng, J.; Li, Y.; Yu, W.; Zhao, Y.; Hu, X.; Tao, N. P.; Wang, M. Naringenin, a Common Flavanone, Inhibits the Formation of AGEs in Bread and Attenuates AGEs-induced Oxidative Stress and Inflammation in RAW264.7 Cells. Food Chem. 2018, 269, 35–42. DOI: 10.1016/j.foodchem.2018.06.126.
  • He, J.; Zeng, M.; Zheng, Z.; He, Z.; Chen, J. Simultaneous Determination of Nε-(carboxymethyl) Lysine and Nε-(carboxyethyl) Lysine in Cereal Foods by LC-MS/MS. Eur. Food Res. Technol. 2014, 238, 367–374. DOI: 10.1007/s00217-013-2085-8.
  • Sakač, M. B.; Dilas, S. M.; Jovanov, P. T. The Influence of Polyphenols on the Formation of Free Radicals Detected in Maillard Reaction Model Systems. Food Nutr. Res. 2018.
  • Yap, H. Y. Y.; Tan, N. H.; Ng, S. T.; Tan, C. S.; Fung, S. Y. Inhibition of Protein Glycation by Tiger Milk Mushroom [Lignosus Rhinocerus (Cooke) Ryvarden] and Search for Potential Anti-diabetic Activity-related Metabolic Pathways by Genomic and Transcriptomic Data Mining. Front. Pharmacol. 2018, 9, 1–12. DOI: 10.3389/fphar.2018.00103.
  • Muñiz, A.; Garcia, A. H.; Pérez, R. M.; García, E. V.; González, D. E. In Vitro Inhibitory Activity of Acca Sellowiana Fruit Extract on End Products of Advanced Glycation. Diabetes Ther. 2018, 9(1), 67–74. DOI: 10.1007/s13300-017-0335-7.
  • Mestry, S. N.; Gawali, N. B.; Gursahani, M. S.; Pai, S. A.; Dhodi, J. B.; Juvekar, A. R. Inhibition of Advanced Glycation End Products by Punica Granatum Linn. Leaves and Its Antioxidant Activity. Orient. Pharm. Exp. Med. 2018, 18(2), 97–105. DOI: 10.1007/s13596-018-0309-y.
  • Liu, H.; Wang, C.; Qi, X.; Zou, J.; Sun, Z. Antiglycation and Antioxidant Activities of Mogroside Extract from Siraitia Grosvenorii (Swingle) Fruits. J. Food Sci. Technol. 2018, 55(5), 1880–1888. DOI: 10.1007/s13197-018-3105-2.
  • Muñiz, A.; Garcia, E.; Gonzalez, D.; Zuñiga, L. Antioxidant Activity and in Vitro Antiglycation of the Fruit of Spondias Purpurea. Evidence-based Complement. Altern. Med. 2018, 2018. DOI: 10.1155/2018/5613704.
  • Perez-Gutierrez, R. M.; Muñiz-Ramirez, A.; Campoy, A. H. G.; Flores, J. M. M.; Flores, S. O. Polyphenols of Leaves of Apium Graveolens Inhibit in Vitro Protein Glycation and Protect RINm5F Cells against Methylglyoxal-induced Cytotoxicity. Funct. Foods Heal. Dis. 2018, 8, 193–211. DOI: 10.31989/ffhd.v8i3.399.
  • Navarro, M.; Morales, F. J. Evaluation of an Olive Leaf Extract as a Natural Source of Antiglycative Compounds. Food Res. Int. 2017, 92, 56–63. DOI: 10.1016/j.foodres.2016.12.017.
  • Malakul, W.; Pengnet, S. Inhibitory Effect of 6 - Shogaol on Fructose - Induced Protein Glycation and Oxidation in Vitro. NUJST. 2017, 1–9.
  • Cömert, E. D.; Akıllıoğlu, H. G.; Gökmen, V. Mitigation of Ovalbumin Glycation in Vitro by Its Treatment with Green Tea Polyphenols. Eur. Food Res. Technol. 2017, 243(1), 11–19. DOI: 10.1007/s00217-016-2717-x.
  • Li, X.; Liu, G. J.; Zhang, W.; Zhou, Y. L.; Ling, T. J.; Wan, X. C.; Bao, G. H. Novel Flavoalkaloids from White Tea with Inhibitory Activity against the Formation of Advanced Glycation End Products. J. Agric. Food Chem. 2018, 66(18), Issue. DOI: 10.1021/acs.jafc.8b00650.
  • Fernandez-Gomez, B.; Nitride, C.; Ullate, M.; Mamone, G.; Ferranti, P.; Del Castillo, M. D. Inhibitors of Advanced Glycation End Products from Coffee Bean Roasting By-product. Eur. Food Res. Technol. 2018, 244(6), 1101–1110. DOI: 10.1007/s00217-017-3023-y.
  • Wang, Y.; Liu, H.; Zhang, D.; Liu, J.; Wang, J.; Wang, S.; Sun, B. Baijiu Vinasse Extract Scavenges Glyoxal and Inhibits the Formation of Nε-carboxymethyllysine in Dairy Food. Molecules. 2019, 24, 8. DOI: 10.3390/molecules24081526.
  • Ou, J.; Huang, J.; Wang, M.; Ou, S. Effect of Rosmarinic Acid and Carnosic Acid on AGEs Formation in Vitro. Food Chem. 2017, 221, 1057–1061. DOI: 10.1016/j.foodchem.2016.11.056.
  • Račkauskienė, I.; Pukalskas, A.; Fiore, A.; Troise, A. D.; Venskutonis, P. R. Phytochemical-Rich Antioxidant Extracts of Vaccinium Vitis-idaea L. Leaves Inhibit the Formation of Toxic Maillard Reaction Products in Food Models. J. Food Sci. 2019, 84(12), 3494–3503. DOI: 10.1111/1750-3841.14805.
  • Khalifa, I.; Xia, D.; Dutta, K.; Peng, J.; Jia, Y.; Li, C. Mulberry Anthocyanins Exert anti-AGEs Effects by Selectively Trapping Glyoxal and Structural-dependently Blocking the Lysyl Residues of β-lactoglobulins. Bioorg. Chem. 2020, 96, 103615. DOI: 10.1016/j.bioorg.2020.103615.
  • Prestel, S.; de Falco, B.; Blidi, S.; Fiore, A.; Sturrock, K. Evaluation of the Effect of Berry Extracts on Carboxymethyllysine and Lysine in Ultra-high Temperature Treated Milk. Food Res. Int. 2020, 130, 108923. DOI: 10.1016/j.foodres.2019.108923.
  • Zhang, D.; Wang, Y.; Liu, H. Corn Silk Extract Inhibit the Formation of Nε-carboxymethyllysine by Scavenging Glyoxal/methyl Glyoxal in a Casein Glucose-fatty Acid Model System. Food Chem. 2020, 309, 125708. DOI: 10.1016/j.foodchem.2019.125708.
  • Wu, Q.; Luo, Q.; Xiao, J.; Tang, S.; Chen, Y.; Shen, Y.; Xu, N.; Zhou, M.; Hu, Y.; Wang, C., et al. Catechin-iron as a New Inhibitor to Control Advanced Glycation End-products Formation during Vinegar Storage. Lwt. 2019, 112, 108245. DOI: 10.1016/j.lwt.2019.06.012.
  • Li, H.; Wu, C. J.; Tang, X. Y.; Yu, S. J. Insights into the Regulation Effects of Certain Phenolic Acids on 2,3-Dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one Formation in a Microaqueous Glucose-Proline System. J. Agric. Food Chem. 2019, 67(32), 9050–9059. DOI: 10.1021/acs.jafc.9b01182.
  • Guo, Y.; Lv, J.; Zhang, Y.; Zhao, Y.; Bai, B.; Liu, L. Inhibitory Activity of Pigments in Tomato on AGEs of Food Simulation System in Accelerated Storage Condition. J. Food Process. Preserv. 2019, 43(10), 1–9. DOI: 10.1111/jfpp.14155.
  • Henle, T. AGEs in Foods: Do They Play a Role in Uremia? Kidney Int. Suppl. 2003, 63(84), 145–147. DOI: 10.1046/j.1523-1755.63.s84.16.x.
  • Chen, J.; Waqas, K.; Tan, R. C.; Voortman, T.; Ikram, M. A.; Nijsten, T. E. C.; De Groot, L. C. P. G. M.; Uitterlinden, A. G.; Zillikens, M. C. The Association between Dietary and Skin Advanced Glycation End Products: The Rotterdam Study. Am. J. Clin. Nutr. 2020, 112(1), 129–137. DOI: 10.1093/ajcn/nqaa117.
  • Foroumandi, E.; Alizadeh, M.; Kheirouri, S. Dietary Quality Index Is Negatively Associated with Serum Advanced Glycation End Products in Healthy Adults. Clin. Nutr. ESPEN. 2020, 36, 111–115. DOI: 10.1016/j.clnesp.2020.01.007.
  • Yuan, Y.; Sun, H.; Sun, Z. Advanced Glycation End Products (Ages) Increase Renal Lipid Accumulation: A Pathogenic Factor of Diabetic Nephropathy (DN). Lipids Health Dis. 2017, 16(1), 1–9. DOI: 10.1186/s12944-017-0522-6.
  • Li, M.; Zeng, M.; He, Z.; Zheng, Z.; Qin, F.; Tao, G.; Zhang, S.; Chen, J. Effects of Long-Term Exposure to Free Nε-(Carboxymethyl)lysine on Rats Fed a High-Fat Diet. J. Agric. Food Chem. 2015, 63(51), 10995–11001. DOI: 10.1021/acs.jafc.5b05750.
  • Zhao, D.; Li, L.; Le, T. T.; Larsen, L. B.; Su, G.; Liang, Y.; Li, B. Digestibility of Glyoxal-Glycated β-Casein and β-Lactoglobulin and Distribution of Peptide-Bound Advanced Glycation End Products in Gastrointestinal Digests. J. Agric. Food Chem. 2017, 65(28), 5778–5788. DOI: 10.1021/acs.jafc.7b01951.
  • Liang, Z.; Chen, X.; Li, L.; Li, B.; Yang, Z. The Fate of Dietary Advanced Glycation End Products in the Body: From Oral Intake to Excretion. Crit. Rev. Food Sci. Nutr. 2019, 1–17. DOI: 10.1080/10408398.2019.1693958.
  • Foerster, A.; Henle, T. Glycation in Food and Metabolic Transit of Dietary AGEs (Advanced Glycation End-products): Studies on the Urinary Excretion of Pyrraline. Biochem. Soc. Trans. 2003, 31(6), 1383–1385. DOI: 10.1042/bst0311383.
  • Hellwig, M.; Matthes, R.; Peto, A.; Löbner, J.; Henle, T. N-ε-fructosyllysine and N-ε-carboxymethyllysine, but Not Lysinoalanine, are Available for Absorption after Simulated Gastrointestinal Digestion. Amino Acids. 2014, 46(2), 289–299. DOI: 10.1007/s00726-013-1501-5.
  • Alamir, I.; Niquet-Leridon, C.; Jacolot, P.; Rodriguez, C.; Orosco, M.; Anton, P. M.; Tessier, F. J. Digestibility of Extruded Proteins and Metabolic Transit of N ε -carboxymethyllysine in Rats. Amino Acids. 2013, 44(6), 1441–1449. DOI: 10.1007/s00726-012-1427-3.
  • Guilbaud, A.; Howsam, M.; Niquet-Léridon, C.; Delguste, F.; Fremont, M.; Lestavel, S.; Maboudou, P.; Garat, A.; Schraen, S.; Onraed, B., et al. The Effect of Lactobacillus Fermentum ME-3 Treatment on Glycation and Diabetes Complications. Mol. Nutr. Food Res. 2020, 64(6), 1901018. DOI: 10.1002/mnfr.201901018.
  • Martinez-Saez, N.; Fernandez-Gomez, B.; Cai, W.; Uribarri, J.; Del Castillo, M. D. In Vitro Formation of Maillard Reaction Products during Simulated Digestion of Meal-resembling Systems. Food Res. Int. 2019, 118, 72–80. DOI: 10.1016/j.foodres.2017.09.056.
  • Scheijen, J. L. J. M.; Hanssen, N. M. J.; van Greevenbroek, M. M.; Van der Kallen, C. J.; Feskens, E. J. M.; Stehouwer, C. D. A.; Schalkwijk, C. G. Dietary Intake of Advaned Glycation Endproducts Is Associated with Higher Levels of Advanced Glycation Endproducts in Plasma and Urine: The CODAM Study. Clin. Nutr. 2018, 37(3), 919–925. DOI: 10.1016/j.clnu.2017.03.019.
  • Yuan, X.; Zhao, J.; Qu, W.; Zhang, Y.; Jia, B.; Fan, Z.; He, Q.; Li, J. Accumulation and Effects of Dietary Advanced Glycation End Products on the Gastrointestinal Tract in Rats. Int. J. Food Sci. Technol. 2018, 53(10), 2273–2281. DOI: 10.1111/ijfs.13817.
  • Cordova, R.; Knaze, V.; Viallon, V.; Rust, P.; Schalkwijk, C. G.; Weiderpass, E.; Wagner, K. H.; Mayen-Chacon, A. L.; Aglago, E. K.; Dahm, C. C., et al. Dietary Intake of Advanced Glycation End Products (Ages) and Changes in Body Weight in European Adults. Eur. J. Nutr. 2020, 59(7), 2893–2904. DOI: 10.1007/s00394-019-02129-8.
  • Kim, Y.; Keogh, J. B.; Deo, P.; Clifton, P. M. Differential Effects of Dietary Patterns on Advanced Glycation End Products: A Randomized Crossover Study. Nutrients. 2020, 12(6), 1767. DOI: 10.3390/nu12061767.
  • Gupta, R. K.; Gupta, K.; Sharma, A.; Das, M.; Ansari, I. A.; Dwivedi, P. D. Maillard Reaction in Food Allergy: Pros and Cons. Crit. Rev. Food Sci. Nutr. 2018, 58(2), 208–226. DOI: 10.1080/10408398.2016.1152949.
  • Tang, Y.; Chen, A. Curcumin Eliminates the Effect of Advanced Glycation End-products (Ages) on the Divergent Regulation of Gene Expression of Receptors of AGEs by Interrupting Leptin Signaling. Lab. Investig. 2014, 94(5), 503–516. DOI: 10.1038/labinvest.2014.42.
  • Hellwig, M.; Auerbach, C.; Müller, N.; Samuel, P.; Kammann, S.; Beer, F.; Gunzer, F.; Henle, T. Metabolization of the Advanced Glycation End Product N-ϵ-Carboxymethyllysine (CML) by Different Probiotic E. Coli Strains. J. Agric. Food Chem. 2019, 67(7), 1963–1972. DOI: 10.1021/acs.jafc.8b06748.
  • Bui, T. P. N.; Troise, A. D.; Fogliano, V.; De Vos, W. M. Anaerobic Degradation of N-ϵ-Carboxymethyllysine, a Major Glycation End-Product, by Human Intestinal Bacteria. J. Agric. Food Chem. 2019, 67(23), 6594–6602. DOI: 10.1021/acs.jafc.9b02208.
  • Martens, R. J. H.; Broers, N. J. H.; Canaud, B.; Christiaans, M. H. L.; Cornelis, T.; Gauly, A.; Hermans, M. M. H.; Konings, C. J. A. M.; Van Der Sande, F. M.; Scheijen, J. L. J. M., et al. Relations of Advanced Glycation Endproducts and Dicarbonyls with Endothelial Dysfunction and Low-grade Inflammation in Individuals with End-stage Renal Disease in the Transition to Renal Replacement Therapy: A Cross-sectional Observational Study. PLoS ONE.2019, 14(8), 1–18. DOI: 10.1371/journal.pone.0221058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.