628
Views
6
CrossRef citations to date
0
Altmetric
Review

Anthocyanin-Dietary Proteins Interaction and Its Current Applications in Food Industry

, &

References

  • Arapitsas, P.; Turner, C. Pressurized Solvent Extraction and Monolithic column-HPLC/DAD Analysis of Anthocyanins in Red Cabbage. Talanta. 2008, 74(5), 1218–1223. DOI: 10.1016/j.talanta.2007.08.029.
  • Khoo, H. E.; Azlan, A.; Tang, S. T.; Lim, S. M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food. Nutr. Res. 2017, 61, 1–21. DOI: 10.1080/16546628.2017.1361779.
  • Albuquerque, B. R.; Pinela, J.; Barros, L.; Oliveira, M. B. P. P.; Ferreira, I. C. F. R. Anthocyanin-rich Extract of Jabuticaba Epicarp as a Natural Colorant: Optimization of Heat- and Ultrasound-assisted Extractions and Application in a Bakery Product. Food. Chem. 2020, 316, 126364. DOI: 10.1016/j.foodchem.2020.126364.
  • Chung, C.; Rojanasasithara, T.; Mutilangi, W.; McClements, D. J. Enhanced Stability of Anthocyanin-based Color in Model Beverage Systems through Whey Protein Isolate Complexation. Food. Res. Int. 2015, 76, 761–768. DOI: 10.1016/j.foodres.2015.07.003.
  • Kim, S. Y.; Wi, H. R.; Choi, S.; Ha, T. J.; Lee, B. W.; Lee, M. Inhibitory Effect of Anthocyanin-rich Black Soybean Testa (Glycine Max (L.) Merr.) On the Inflammation-induced Adipogenesis in a DIO Mouse Model. J. Funct. Foods. 2015, 14, 623–633. DOI: 10.1016/j.jff.2015.02.030.
  • Sui, X. N.; Sun, H. N.; Qi, B. K.; Zhang, M.; Li, Y.; Jiang, L. Z. Functional and Conformational Changes to Soy Proteins Accompanying Anthocyanins: Focus on Covalent and Non-covalent Interactions. Food. Chem. 2018, 245, 871–878. DOI: 10.1016/j.foodchem.2017.11.090.
  • Thompson, K.; Pederick, W.; Santhakumar, A. B. Anthocyanins in Obesity-associated Thrombogenesis: A Review of the Potential Mechanism of Action. Food. Funct. 2016, 7(5), 2169–2178. DOI: 10.1039/c6fo00154h.
  • Attaribo, T.; Jiang, X. Z.; Huang, G. Q.; Zhang, B.; Xin, X. D.; Zhang, Y. Y.; Zhang, N.; Gui, Z. Z. Studies on the Interactional Characterization of Preheated Silkworm Pupae Protein (SPP) with Anthocyanins (C3G) and Their Effect on Anthocyanin Stability. Food. Chem. 2020, 326, 126904. DOI: 10.1016/j.foodchem.2020.126904.
  • Chi, J. P.; Ge, J.; Yue, X. Y.; Liang, J.; Sun, Y.; Gao, X. L.; Yue, P. X. Preparation of Nanoliposomal Carriers to Improve the Stability of Anthocyanins. LWI-Food. Sci. Technol. 2019, 109, 101–107. DOI: 10.1016/j.lwt.2019.03.070.
  • Mansour, M.; Salah, M.; Xu, X. Y. Effect of Microencapsulation Using Soy Protein Isolate and Gum Arabic as Wall Material on Red Raspberry Anthocyanin Stability, Characterization, and Simulated Gastrointestinal Conditions. Ultrason. Sonochem. 2020, 63, 104927. DOI: 10.1016/j.ultsonch.2019.104927.
  • Oancea, A. M.; Hasan, M.; Vasile, A. M.; Barbu, V.; Enachi, E.; Bahrim, G.; Rapeanu, G.; Silvi, S.; Stanciuc, N. Functional Evaluation of Microencapsulated Anthocyanins from Sour Cherries Skins Extract in Whey Proteins Isolate. LWT-Food. Sci. Technol. 2018, 95, 129–134. DOI: 10.1016/j.lwt.2018.04.083.
  • Cortez, R.; Luna-Vital, D. A.; Margulis, D.; de Mejia, E. G. Natural Pigments: Stabilization Methods of Anthocyanins for Food Applications. Compr. Rev. Food. Sci. F. 2017, 161, 180–198. DOI:10.1111/1541-4337.12244.
  • de Rosas, I.; Ponce, M. T.; Malovini, E.; Deis, L.; Cavagnaro, B.; Cavagnaro, P. Loss of Anthocyanins and Modification of the Anthocyanin Profiles in Grape Berries of Malbec and Bonarda Grown under High Temperature Conditions. Plant. Sci. 2017, 258, 137–145. DOI: 10.1016/j.plantsci.2017.01.015.
  • Lin, X. Y.; Li, S. N.; Yin, J. H.; Chang, F. D.; Wang, C.; He, X. W.; Huang, Q.; Zhang, B. Anthocyanin-loaded Double Pickering Emulsion Stabilized by Octenylsuccinate Quinoa Starch: Preparation, Stability and in Vitro Gastrointestinal Digestion. Int. J. Biol. Macromol. 2020, 152, 1233–1241. DOI: 10.1016/j.ijbiomac.2019.10.220.
  • Trouillas, P.; Sancho-Garcia, J. C.; De Freitas, V.; Gierschner, J.; Otyepka, M.; Dangles, O. Stabilizing and Modulating Color by Copigmentation: Insights from Review Theory and Experiment. Chem. Rev. 2016, 116(9), 4937–4982. DOI: 10.1021/acs.chemrev.5b00507.
  • Cavalcanti, R. N.; Santos, D. T.; Meireles, M. A. A. Non-thermal Stabilization Mechanisms of Anthocyanins in Model and Food systems-An Overview. Food. Res. Int. 2011, 44(2), 499–509. DOI: 10.1016/j.foodres.2010.12.007.
  • Wang, W. J.; Jung, J.; Zhao, Y. Y. Chitosan-cellulose Nanocrystal Microencapsulation to Improve Encapsulation Efficiency and Stability of Entrapped Fruit Anthocyanins. Carbohyd. Polym. 2017, 157, 1246–1253. DOI: 10.1016/j.carbpol.2016.11.005.
  • Quan, W.; He, W.; Qie, X.; Chen, Y.; Zeng, M.; Qin, F.; Chen, J.; He, Z. Effects of β-cyclodextrin, Whey Protein, and Soy Protein on the Thermal and Storage Stability of Anthocyanins Obtained from Purple-fleshed Sweet Potatoes. Food. Chem. 2020, 320, 126655. DOI: 10.1016/j.foodchem.2020.126655.
  • Chen, Z.; Wang, C.; Gao, X.; Chen, Y.; Kumar Santhanam, R.; Wang, C.; Xu, L.; Chen, H. Interaction Characterization of Preheated Soy Protein Isolate with cyanidin-3-O-glucoside and Their Effects on the Stability of Black Soybean Seed Coat Anthocyanins Extracts. Food. Chem. 2019, 271, 266–273. DOI: 10.1016/j.foodchem.2018.07.170.
  • He, Z. Y.; Xu, M. Z.; Zeng, M. M.; Qin, F.; Chen, J. Preheated Milk Proteins Improve the Stability of Grape Skin Anthocyanins Extracts. Food. Chem. 2016, 210, 221–227. DOI: 10.1016/j.foodchem.2016.04.116.
  • Fu, X. Z.; Belwal, T.; He, Y. H.; Xu, Y. Q.; Li, L.; Luo, Z. S. Interaction and Binding Mechanism of cyanidin-3-O-glucoside to Ovalbumin in Varying pH Conditions: A Spectroscopic and Molecular Docking Study. Food Chem. 2020, 320, 126616. DOI: 10.1016/j.foodchem.2020.126616.
  • Ren, C.; Xiong, W. F.; Peng, D. F.; He, Y.; Zhou, P. Y.; Li, J.; Li, B. Effects of Thermal Sterilization on Soy Protein Isolate/polyphenol Complexes: Aspects of Structure, in Vitro Digestibility and Antioxidant Activity. Food. Res. Int. 2018, 112, 284–290. DOI: 10.1016/j.foodres.2018.06.034.
  • Dumitrascu, L.; Stanciuc, N.; Grigore-Gurgu, L.; Aprodu, I. Investigation on the Interaction of Heated Soy Proteins with Anthocyanins from Cornelian Cherry Fruits. Spectrochim. Acta. A. 2020, 231, 118114. DOI: 10.1016/j.saa.2020.118114.
  • He, Z. Y.; Xu, M. Z.; Zeng, M. M.; Qin, F.; Chen, J. Interactions of Milk α- and β- Casein with malvidin-3-O-glucoside and Their Effects on the Stability of Grape Skin Anthocyanin Extracts. Food. Chem. 2016, 199, 314–322. DOI: 10.1016/j.foodchem.2015.12.035.
  • He, Z. Y.; Zhu, H. D.; Xu, M. Z.; Zeng, M. M.; Qin, F.; Chen, J. Complexation of Bovine β-lactoglobulin with malvidin-3-O-glucoside and Its Effect on the Stability of Grape Skin Anthocyanin Extracts. Food. Chem. 2016, 209, 234–240. DOI: 10.1016/j.foodchem.2016.04.048.
  • Khalifa, I.; Nie, R. Z.; Ge, Z. Z.; Li, K. K.; Li, C. M. Understanding the Shielding Effects of Whey Protein on Mulberry Anthocyanins: Insights from Multispectral and Molecular Modelling Investigations. Int. J. Biol. Macromol. 2018, 119, 116–124. DOI: 10.1016/j.ijbiomac.2018.07.117.
  • Khalifa, I.; Peng, J. M.; Jia, Y. Y.; Li, J.; Zhu, W.; Xu, Y. J.; Li, C. M. Anti-glycation and Anti-hardening Effects of Microencapsulated Mulberry Polyphenols in High-protein-sugar Ball Models through Binding with Some Glycation Sites of Whey Proteins. Int. J. Biol. Macromol. 2019, 123, 10–19. DOI: 10.1016/j.ijbiomac.2018.11.016.
  • Jiang, L.; Liu, Y.; Li, L.; Qi, B.; Ju, M.; Xu, Y.; Zhang, Y.; Sui, X. Covalent Conjugates of Anthocyanins to Soy Protein: Unravelling Their Structure Features and in Vitro Gastrointestinal Digestion Fate. Food Res. Int. 2019, 120, 603–609. DOI: 10.1016/j.foodres.2018.11.011.
  • Condurache, N. N.; Aprodu, I.; Grigore-Gurgu, L.; Petre, B. A.; Enachi, E.; Rapeanu, G.; Bahrim, G. E.; Stanciuc, N. Fluorescence Spectroscopy and Molecular Modeling of Anthocyanins Binding to Bovine Lactoferrin Peptides. Food. Chem. 2020, 318, 126508. DOI: 10.1016/j.foodchem.2020.126508.
  • Zang, Z.; Chou, S.; Tian, J.; Lang, Y.; Shen, Y.; Ran, X.; Gao, N.; Li, B. Effect of Whey Protein Isolate on the Stability and Antioxidant Capacity of Blueberry Anthocyanins: A Mechanistic and in Vitro Simulation Study. Food. Chem. 2021, 336, 127700. DOI: 10.1016/j.foodchem.2020.127700.
  • Gong, S. X.; Yang, C. Y.; Zhang, J. H.; Yu, Y.; Gu, X. Z.; Li, W. H.; Wang, Z. W. Study on the Interaction Mechanism of Purple Potato Anthocyanins with Casein and Whey Protein. Food. Hydrocolloid. 2021, 111, 106223. DOI: 10.1016/j.foodhyd.2020.106223.
  • Meng, Y. Y.; Hao, L. L.; Tan, Y.; Yang, Y. Z.; Liu, L. B.; Li, C.; Du, P. Noncovalent Interaction of cyanidin-3-O-glucoside with Whey Protein Isolate and β-lactoglobulin: Focus on Fluorescence Quenching and Antioxidant Properties. LWT-Food. Sci. Technol. 2021, 137, 110386. DOI: 10.1016/j.lwt.2020.110386.
  • Zhang, Y.; Chen, S.; Qi, B. K.; Sui, X. N.; Jiang, L. Z. Complexation of Thermally-denatured Soybean Protein Isolate with Anthocyanins and Its Effect on the Protein Structure and in Vitro Digestibility. Food Res. Int. 2018, 106, 619–625. DOI: 10.1016/j.foodres.2018.01.040.
  • Li, T.; Wang, L.; Chen, Z. X.; Zhang, X. X.; Zhu, Z. Y. Functional Properties and Structural Changes of Rice Proteins with Anthocyanins Complexation. Food. Chem. 2020, 331, 127336. DOI: 10.1016/j.foodchem.2020.127336.
  • Li, X. F.; Chen, L. Y.; Hua, Y. F.; Chen, Y. M.; Kong, X. Z.; Zhang, C. M. Effect of Preheating-induced Denaturation during Protein Production on the Structure and Gelling Properties of Soybean Proteins. Food. Hydrocolloid. 2020, 105, 105846. DOI: 10.1016/j.foodhyd.2020.105846.
  • Lajnaf, R.; Picart-Palmade, L.; Cases, E.; Attia, H.; Marchesseau, S.; Ayadi, M. A. The Foaming Properties of Camel and Bovine Whey: The Impact of pH and Heat Treatment. Food. Chem. 2018, 240, 295–303. DOI: 10.1016/j.foodchem.2017.07.064.
  • Adrar, N. S.; Madani, K.; Adrar, S. Impact of the Inhibition of Proteins Activities and the Chemical Aspect of Polyphenols-proteins Interactions. Pharmanutrition. 2019, 7, 100142. DOI: 10.1016/j.phanu.2019.100142.
  • Ozdal, T.; Capanoglu, E.; Altay, F. A Review on Protein-phenolic Interactions and Associated Changes. Food. Res. Int. 2013, 51(2), 954–970. DOI: 10.1016/j.foodres.2013.02.009.
  • Liu, P.; Li, W. R.; Hu, Z. Z.; Qin, X. G.; Liu, G. Isolation, Purification, Identification, and Stability of Anthocyanins from Lycium Ruthenicum Murr. LWT-Food. Sci. Technol. 2020, 126, 109334. DOI: 10.1016/j.lwt.2020.109334.
  • Zorenc, Z.; Veberic, R.; Stampar, F.; Koron, D.; Mikulic-Petkovsek, M. Thermal Stability of Primary and Secondary Metabolites in Highbush Blueberry (Vaccinium Corymbosum L.) Purees. LWT-Food. Sci. Technol. 2017, 76, 79–86. DOI: 10.1016/j.lwt.2016.10.048.
  • Fernandes, A.; Rocha, M. A. A.; Santos, L. M. N. B. F.; Bras, J.; Oliveira, J.; Mateus, N.; de Freitas, V. Blackberry Anthocyanins: β-Cyclodextrin Fortification for Thermal and Gastrointestinal Stabilization. Food. Chem. 2018, 245, 426–431. DOI: 10.1016/j.foodchem.2017.10.109.
  • Anantharaman, A.; Subramanian, B.; Chandrasekaran, R.; Seenivasan, R.; Siva, R. Colorants and Cancer: A Review. Ind. Crop. Prod. 2014, 53, 167–186. DOI: 10.1016/j.indcrop.2013.12.025.
  • Weber, F.; Boch, K.; Schieber, A. Influence of Copigmentation on the Stability of Spray Dried Anthocyanins from Blackberry. LWT-Food. Sci. Technol. 2017, 75, 72–77. DOI: 10.1016/j.lwt.2016.08.042.
  • Aramwit, P.; Bang, N.; Srichana, T. The Properties and Stability of Anthocyanins in Mulberry Fruits. Food Res. Int. 2010, 43(4), 1093–1097. DOI: 10.1016/j.foodres.2010.01.022.
  • Zheng, H.; Lu, H. F. Use of Kinetic, Weibull and PLSR Models to Predict the Retention of Ascorbic Acid, Total Phenols and Antioxidant Activity during Storage of Pasteurized Pineapple Juice. LWT-Food. Sci. Technol. 2011, 445, 1273–1281. DOI:10.1016/j.lwt.2010.12.023.
  • Lang, Y. X.; Li, E. H.; Meng, X. J.; Tian, J. L.; Ran, X. L.; Zhang, Y.; Zang, Z. H.; Wang, W. S.; Li, B. Protective Effects of Bovine Serum Albumin on Blueberry Anthocyanins under Illumination Conditions and Their Mechanism Analysis. Food. Res. Int. 2019, 122, 487–495. DOI: 10.1016/j.foodres.2019.05.021.
  • Braga, A. R. C.; Murador, D. C.; Mesquita, L. M. D.; de Rosso, V. V. Bioavailability of Anthocyanins: Gaps in Knowledge, Challenges and Future Research. J. Food. Compos. Anal. 2018, 68, 31–40. DOI: 10.1016/j.jfca.2017.07.031.
  • Kamiloglu, S.; Pasli, A. A.; Ozcelik, B.; Van Camp, J.; Capanoglu, E. Colour Retention, Anthocyanin Stability and Antioxidant Capacity in Black Carrot (Daucus Carota) Jams and Marmalades: Effect of Processing, Storage Conditions and in Vitro Gastrointestinal Digestion. J. Funct. Foods. 2015, 13, 1–10. DOI: 10.1016/j.jff.2014.12.021.
  • Ribnicky, D. M.; Roopchand, D. E.; Oren, A.; Grace, M.; Poulev, A.; Lila, M. A.; Havenaar, R.; Raskin, I. Effects of a High Fat Meal Matrix and Protein Complexation on the Bioaccessibility of Blueberry Anthocyanins Using the TNO Gastrointestinal Model (TIM-1). Food. Chem. 2014, 142, 349–357. DOI: 10.1016/j.foodchem.2013.07.073.
  • Wu, Y.; Han, Y. B.; Tao, Y.; Li, D. D.; Xie, G. J.; Show, P. L.; Lee, S. Y. In Vitro Gastrointestinal Digestion and Fecal Fermentation Reveal the Effect of Different Encapsulation Materials on the Release, Degradation and Modulation of Gut Microbiota of Blueberry Anthocyanin Extract. Food. Res. Int. 2020, 132, 109098. DOI: 10.1016/j.foodres.2020.109098.
  • Ju, M. N.; Zhu, G.; Huang, G.; Shen, X. C.; Zhang, Y.; Jiang, L. Z.; Sui, X. N. A Novel Pickering Emulsion Produced Using Soy Protein-anthocyanin Complex Nanoparticles. Food. Hydrocolloid. 2020, 99, 105329. DOI: 10.1016/j.foodhyd.2019.105329.
  • Anuyahong, T.; Chusak, C.; Adisakwattana, S. Incorporation of Anthocyanin-rich Riceberry Rice in Yogurts: Effect on Physicochemical Properties, Antioxidant Activity and in Vitro Gastrointestinal Digestion. LWT-Food. Sci. Technol. 2020, 129, 109571. DOI: 10.1016/j.lwt.2020.109571.
  • Bilek, S. E.; Yilmaz, F. M.; Ozkan, G. The Effects of Industrial Production on Black Carrot Concentrate Quality and Encapsulation of Anthocyanins in Whey Protein Hydrogels. Food. Bioprod. Process. 2017, 102, 72–80. DOI: 10.1016/j.fbp.2016.12.001.
  • Pineda-Vadillo, C.; Nau, F.; Guerin-Dubiard, C.; Jardin, J.; Lechevalier, V.; Sanz-Buenhombre, M.; Guadarrama, A.; Toth, T.; Csavajda, E.; Hingyi, H., et al. The Food Matrix Affects the Anthocyanin Profile of Fortified Egg and Dairy Matrices during Processing and in Vitro Digestion. Food. Chem. 2017, 214, 486–496. DOI: 10.1016/j.foodchem.2016.07.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.