1,225
Views
4
CrossRef citations to date
0
Altmetric
Review

Thermal processing of food: Challenges, innovations and opportunities. A position paper

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Appert, N.;. L’art de Conserver, Pendant Plusieurs Années, Toutes Les Substances Animals et Végétales; Chez Patris et Cie. Imprimeurs-Libraries: Paris, 1810.
  • Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave Food Processing — A Review. Food Res. Int. 2013, 52(1), pp. 243–261. DOI: 10.1016/j.foodres.2013.02.033.
  • Tang, J.;. Unlocking Potentials of Microwaves for Food Safety and Quality. J. Food Sci. 2015, 80(8), pp. E1776–E1793. DOI: 10.1111/1750-3841.12959.
  • Handbook of Microwave Technology for Food Applications; Datta, A.K., Anantheswaran, R.C., Eds.; CRC Press: Boca Raton, 2001. 10.1201/9781482270778.
  • Jaeger, H.; Roth, A.; Toep, S.; Holzhauser, T.; Engel, K.; Knorr, D.; Vogel, R. F.; Bandick, N.; Kulling, S.; Heinz, V., et al. Opinion on the Use of Ohmic Heating for the Treatment of Foods. Trends Food Sci. Technol. 2016, 55, pp. 84–97. DOI: 10.1016/j.tifs.2016.07.007.
  • Kaur, N.; Singh, A. K. Ohmic Heating: Concept and Applications - a Review. Crit. Rev. Food Sci. Nutr. 2016, 56(14), pp. 2338–2351. DOI: 10.1080/10408398.2013.835303.
  • Ohmic Heating in Food Processing; Ramaswamy, H., Marcotte, S., Sastry, M., Abdelrahim, K., S., Eds.; CRC Press: Boca Raton, 2014. 10.1201/b16605.
  • Reichert, J. E.; Bremke, H.; Baumgart, J. Zur Ermtlung Des Erhitzungseffektes Für Kochschinken (F-Wert). Die Fleischerei 1979, 30(8), pp. 624–633.
  • Dolan, K. D.;. Estimation of Kinetic Parameters for Nonisothermal Food Processes. J. Food Sci. 2003, 68(3), pp. 728–741. DOI: 10.1111/j.1365-2621.2003.tb08234.x.
  • Garre, A.; Clemente-carazo, M.; Fernández, P. S.; Lindqvist, R.; Egea, J. A.; Bioinactivation, F. E.; Free Web, A. Application for Modelling Isothermal and Dynamic Microbial Inactivation. Food Res. Int. 2018, 112(June), pp. 353–360. DOI: 10.1016/j.foodres.2018.06.057.
  • Valdramidis, V. P.; Geeraerd, A. H.; Van Impe, J. F. Stress-Adaptive Responses by Heat under the Microscope of Predictive Microbiology. J. Appl. Microbiol. 1922–1930, 2007(103). DOI: 10.1111/j.1365-2672.2007.03426.x.
  • Miller, F. A.; Ramos, B. F.; Gil, M. M.; Brandão, T. R. S.; Teixeira, P.; Silva, C. L. M. Heat Inactivation of Listeria Innocua in Broth and Food Products under Non-Isothermal Conditions. Food Control. 2011, 22(1), pp. 20–26. DOI: 10.1016/j.foodcont.2010.06.004.
  • Conesa, R.; Periago, P. M.; Esnoz, A. Prediction of Bacillus Subtilis Spore Survival after a Combined Non-Isothermal-Isothermal Heat Treatment. Eur. Food Res. Technol. 2003, 217(4), pp. 319–324. DOI: 10.1007/s00217-003-0749-5.
  • Huang, L.;. Determination of Thermal Inactivation Kinetics of Listeria Monocytogenes in Chicken Meats by Isothermal and Dynamic Methods Lihan Huang. Food Control. 2013, 33(2), pp. 484–488. DOI: 10.1016/j.foodcont.2013.03.049.
  • Bigelow, W. D.;. The Logarithmic Nature of Thermal Death Time Curves. J. Infect. Dis. 1921, 29(5), pp. 528–536. DOI: 10.1093/infdis/29.5.528.
  • Peleg, M.;. The Thermal Death Time Concept and Its Implications Revisited. Food Eng. Rev. 2021 January, 13(2), pp. 291–303. doi:10.1007/s12393-021-09279-8.
  • Miller, F. A.; Gil, M. M.; Brandão, T. R. S.; Teixeira, P.; Silva, C. L. M. Sigmoidal Thermal Inactivation Kinetics of Listeria Innocua in Broth: Influence of Strain and Growth Phase. Food Control. 2009, 20(12), pp. 1151–1157. DOI: 10.1016/j.foodcont.2009.03.007.
  • Geeraerd, A. H.; Herremans, C. H.; Impe, J. F. V. Structural Model Requirements to Describe Microbial Inactivation during a Mild Heat Treatment. Int. J. Food Microbiol. 2000, 59(3), pp. 185–209. DOI: 10.1016/S0168-1605(00)00362-7.
  • Peleg, M.; Cole, M. B. Reinterpretation of Microbial Survival Curves Reinterpretation of Microbial Survival Curves. Crit. Rev. Food Sci. Nutr. 1998, 38(5), pp. 353–380. DOI: 10.1080/10408699891274246.
  • Mafart, P.; Couvert, O.; Gaillard, S.; Leguerinel, I. On Calculating Sterility in Thermal Preservation Methods: Application of the Weibull Frequency Distribution Model. Int. J. Food Microbiol. 2002, 72(1–2), pp. 107–113. DOI: 10.1016/S0168-1605(01)00624-9.
  • Van Boekel, M. A. J. S.;. On the Use of the Weibull Model to Describe Thermal Inactivation of Microbial Vegetative Cells. Int. J. Food Microbiol. 2002, 74(1–2), pp. 139–159. DOI: 10.1016/S0168-1605(01)00742-5.
  • Hassani, M.; Mañas, P.; Condón, S.; Pagán, R. Predicting Heat Inactivation of Staphylococcus Aureus under Nonisothermal Treatments at Different PH. Mol. Nutr. Food Res. 2006, 50(6), pp. 572–580. DOI: 10.1002/mnfr.200500171.
  • Kubo, M. T. K.; Rojas, M. L.; Curet, S.; Boillereaux, L.; Augusto, P. E. D. Peroxidase Inactivation Kinetics Is Affected by the Addition of Calcium Chloride in Fruit Beverages. LWT - Food Sci. Technol. 2018, 89, pp. 610–616. DOI: 10.1016/j.lwt.2017.11.045.
  • Adalberto, P. R.; Massabni, A. C.; Carmona, E. C.; Goulart, A. J.; Marques, D. P.; Monti, R. Effect of Divalent Metal Ions on the Activity and Stability of β-Galactosidase Isolated from Kluyveromyces Lactis. J. Basic Appl. Pharm. Sci. 2010, 31(3), pp. 143–150.
  • Matsui, K. N.; Granado, L. M.; de Oliveira, P. V.; Tadini, C. C. Peroxidase and Polyphenol Oxidase Thermal Inactivation by Microwaves in Green Coconut Water Simulated Solutions. LWT - Food Sci. Technol. 2007, 40(5), pp. 852–859. DOI: 10.1016/j.lwt.2006.03.019.
  • Guo, Q.; Sun, D.; Cheng, J.; Han, Z. Microwave Processing Techniques and Their Recent Applications in the Food Industry. Trends Food Sci. Technol. 2017, 67, pp. 236–247. DOI: 10.1016/j.tifs.2017.07.007.
  • Ramaswamy, H. S.; Koutchma, T.; Tajchakavit, S. Enhanced Thermal Effects under Microwave Heating Conditions. In Engineering and Food for the 21st Century; Welti-Chanes, J., Barbosa-Cánovas, G.V., Aguilera, J.M., Eds.; CRC Press: Boca Raton, FL, 2002.
  • Huang, K.; Yang, X.; Hua, W.; Jia, G.; Yang, L. Experimental Evidence of a Microwave Non-Thermal Effect in Electrolyte Aqueous Solutions. New J. Chem. 2009, 33(7), pp. 1486–1489. DOI: 10.1039/b821970b.
  • Kubo, M. T. K.; Siguemoto, É. S.; Funcia, E. S.; Augusto, P. E. D.; Curet, S.; Boillereaux, L.; Sastry, S. K.; Gut, J. A. W. Non-Thermal Effects of Microwave and Ohmic Processing on Microbial and Enzyme Inactivation: A Critical Review. Curr. Opin. Food Sci. 2020, 35, pp. 36–48. DOI: 10.1016/j.cofs.2020.01.004.
  • Kim, S. S.; Kang, D. H. Comparison of PH Effects on Ohmic Heating and Conventional Heating for Inactivation of Escherichia Coli O157: H7, Salmonella Enterica Serovar Typhimurium and Listeria Monocytogenes in Orange Juice. LWT - Food Sci. Technol. 2015, 64(2), pp. 860–866. DOI: 10.1016/j.lwt.2015.06.056.
  • Lee, S.-Y.; Sagong, H.-G.; Ryu, S.; Kang, D.-H. Effect of Continuous Ohmic Heating to Inactivate Escherichia Coli O157: H7,Salmonella Typhimurium and Listeria Monocytogenes in Orange Juice and Tomato Juice. J. Appl. Microbiol. 2012, 112(4), pp. 723–731. DOI: 10.1111/j.1365-2672.2012.05247.x.
  • Park, I.; Kang, D. Effect of Electropermeabilization by Ohmic Heating for Inactivation of Escherichia Coli O157: H7,Salmonella Enterica Serovar Typhimurium and Listeria Monocytogenes in Buffered Peptone Water and Apple Juice. Appl. Environ. Microbiol. 2013, 79(23), pp. 7122–7129. DOI: 10.1128/AEM.01818-13.
  • Kubo, M. T. K.; Dos Reis, B. H. G.; Sato, L. N. I.; Gut, J. A. W. Microwave and Conventional Thermal Processing of Soymilk: Inactivation Kinetics of Lipoxygenase and Trypsin Inhibitors Activity. LWT - Food Sci. Technol. 2021, December 2020, 145, p. 111275. DOI: 10.1016/j.lwt.2021.111275.
  • Funcia, E. S.; Gut, J. A. W.; Sastry, S. K. Effect of Electric Field on Pectinesterase Inactivation during Orange Juice Pasteurization by Ohmic Heating. Food Bioprocess Technol. 2020, 13(7), pp. 1206–1214. DOI: 10.1007/s11947-020-02478-x.
  • Lespinard, A. R.; Arballo, J. R.; Badin, E. E.; Mascheroni, R. H. Comparative Study between Conventional and Microwave‐assisted Pasteurization of Packaged Milk by Finite Element Modeling. J. Food Process. Preserv. 2019, 43(11), p. e14207. DOI: 10.1111/jfpp.14207.
  • Heldman, D. R.;. Prediction Models for Thermophysical Properties of Foods. In Food Processing Operations Modeling Design and Analysis; Irudayaraj, J., Ed.; Marcel Dekker. New York, 2002, pp. 1–24.
  • Nesvadba, P.;. Thermal Properties of Unfrozen Foods. In Engineering Properties of Foods; Rao, M.A., Rizvi, S.S.H., Datta, A.K., Eds.; CRC Press: Boca Raton, 2005.
  • ASHRAE. Thermal Properties of Foods. In ASHRAE Handbook 2006 Refrigeration; Owen, M.S., Ed.; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, 2006.
  • Rao, M. A.;. Rheological Properties of Fluid Foods. In Engineering Properties of Foods; Rao, M.A., Rizvi, S.S.H., Datta, A.K. Eds.; CRC Press: Boca Raton, 2005. DOI: 10.1201/9781420028805.
  • Choi, Y.; Okos, M. Effect of Temperature and Composition on the Thermal Properties of Foods. In Food Engineering and Process Applications: Transport Phenomena; Le Maguer, M., Jelen, P., Eds.; Elsevier Applied Science Publishers: London, 1986; pp. 93–101.
  • Phinney, D. M.; Frelka, J. C.; Heldman, D. R. Composition-Based Prediction of Temperature-Dependent Thermophysical Food Properties: Reevaluating Component Groups and Prediction Models. J. Food Sci. 2017, 82(1), pp. 6–15. DOI: 10.1111/1750-3841.13564.
  • Datta, A. K.; Sumnu, G.; Raghavan, G. S. V. Dielectric Properties of Foods. In Engineering Properties of Foods; Rao, M.A., Rizvi, S.S.H., Datta, A.K., Eds.; CRC Press: Boca Raton, 2005; pp. 501–565. DOI: 10.1201/9781420028805.
  • Miura, N.; Yagihara, S.; Mashimo, S. Microwave Dielectric Properties of Solid and Liquid Foods Investigated by Time-Domain Reflectometry. J. Food Sci. 2003, 68(4), pp. 1396–1403. DOI: 10.1111/j.1365-2621.2003.tb09656.x.
  • Venkatesh, M. S.; Raghavan, G. S. V. An Overview of Microwave Processing and Dielectric Properties of Agri-Food Materials. Biosyst. Eng. 2004, 88(1), pp. 1–18. DOI: 10.1016/j.biosystemseng.2004.01.007.
  • Sastry, S. K.;. Electrical Conductivity of Foods. In Engineering Properties of Foods; Rao, M.A., Rizvi, S.S.H., Datta, A.K., Eds.; CRC Press: Boca Raton, 2005; pp. 461–500. DOI: 10.1201/9781420028805.
  • Dagerskog, M.; Osterstrom, L. Infrared Radiation for Food Processing I. A Study of the Fundamental Properties of Infrared Radiation. LWT - Food Sci. Technol. 1979, 12, pp. 237–242.
  • Ginzburg, A. S.;. Appilcation of Infra-Red Radiation in Food Processing; Leonard Hill Books: London, 1969.
  • Il’yasov, S. G.; Krasnikov, V. V. Physical Principles of Infrared Irradiation of Foods, 1st ed. ed.; Hemisphere Publishing Corporation: New York, 1991.
  • Almeida, M.; Torrance, K. E.; Datta, A. K. Measurement of Optical Properties of Foods in Near- and Mid-Infrared Radiation. Int. J. Food Prop. 2006, 9(4), pp. 651–664. DOI: 10.1080/10942910600853667.
  • Datta, A. K.; Almeida, M. Properties Relevant to Infrared Heating of Foods. In Engineering Properties of Foods; Rao, M.A., Rizvi, S.S.H., Datta, A.K., Eds.; CRC Press: Boca Raton, 2005.
  • Ahmed, J.; Thomas, L.; Mulla, M. Dielectric and Microstructural Properties of High-Pressure Treated Hummus in the Selected Packaging Materials. LWT - Food Sci. Technol. 2020, September 2019, 118, p. 108885. DOI: 10.1016/j.lwt.2019.108885.
  • Ajayi, O. M.; Martindale, W.; Swainson, M. Impact of Salt and Sugar Reformulation on Processing Parameters for Orange Juice and Tomatoes Using Ohmic Heating. Br. Food J. 2019, 122(1), pp. 75–86. DOI: 10.1108/BFJ-12-2018-0821.
  • Auksornsri, T.; Tang, J.; Tang, Z.; Lin, H.; Songsermpong, S. Dielectric Properties of Rice Model Food Systems Relevant to Microwave Sterilization Process. Innov. Food Sci. Emerg. Technol. 2017 September, 2018(45), pp. 98–105. doi:10.1016/j.ifset.2017.09.002.
  • Fadavi, A.; Salari, S. Ohmic Heating of Lemon and Grapefruit Juices under Vacuum Pressure - Comparison of Electrical Conductivity and Heating Rate. J. Food Sci. 2019, 84(10), pp. 2868–2875. DOI: 10.1111/1750-3841.14802.
  • Jeong, S.; Ryu, S.; Kang, D. Salt Content Dependent Dielectric Properties of Pistachios Relevant to Radio-Frequency Pasteurization. Sci. Rep. 2019, 9(1), p. 2400. DOI: 10.1038/s41598-019-38987-9.
  • Kasler, D. R.; Sastry, S. K. Effects of Frequency on the Electrical Conductivity of Whole Shell Egg Components. J. Food Process Eng. 2019, 42(4), pp. 1–9. DOI: 10.1111/jfpe.13056.
  • Kubo, M. T. K.; Curet, S.; Augusto, P. E. D.; Boillereaux, L. Artificial Neural Network for Prediction of Dielectric Properties Relevant to Microwave Processing of Fruit Juice. J. Food Process Eng. 2018, 41(6), p. e12815. DOI: 10.1111/jfpe.12815.
  • Polak, T.; Polak, A.; Poklar, N. U.; Segatin, N. Electrical Admittance and Dielectric Properties of Whipping Cream. J. Food Eng. 2020, 278, p. 109942. DOI: 10.1016/j.jfoodeng.2020.109942.
  • Gulati, T.; Datta, A. K. Enabling Computer-Aided Food Process Engineering: Property Estimation Equations for Transport Phenomena-Based Models. J. Food Eng. 2013, 116(2), pp. 483–504. DOI: 10.1016/j.jfoodeng.2012.12.016.
  • Sánchez‐Romero, M. A.; García‐Coronado, P.; Rivera‐Bautista, C.; González‐García, R.; Grajales‐Lagunes, A.; Abud‐Archila, M.; Ruiz‐Cabrera, M. A. Experimental Data and Predictive Equation of the Specific Heat Capacity of Fruit Juice Model Systems Measured with Differential Scanning Calorimetry. J. Food Sci. 2021, 86(5), pp. 1946–1962. DOI: 10.1111/1750-3841.15693.
  • Ros-Polski, V.; Schmidt, F. L.; Vitali, A. A.; Marsaioli, A.; Raghavan, G. S. V. Rheological Analysis of Sucrose Solution at High Temperatures Using a Microwave-Heated Pressurized Capillary Rheometer. J. Food Sci. 2014, 79(4), pp. E540–E545. DOI: 10.1111/1750-3841.12398.
  • Krokida, M. K.; Zogzas, N. P.; Maroulis, Z. B. Heat Transfer Coefficient in Food Processing: Compilation of Literature Data. Int. J. Food Prop. 2002, 5(2), pp. 435–450. DOI: 10.1081/JFP-120005796.
  • Zogzas, N. P.; Krokida, M. K.; Michailidis, P. A.; Maroulis, Z. B. Literature Data of Heat Transfer Coefficients in Food Processing. Int. J. Food Prop. 2002, 5(2), pp. 391–417. DOI: 10.1081/JFP-120005794.
  • Liu, S.; Ulugun, B.; DeFlorio, W.; Arcot, Y.; Yegin, Y.; Salazar, K. S.; Castillo, A.; Taylor, T. M.; Cisneros-Zevallos, L.; Akbulut, M. Development of Durable and Superhydrophobic Nanodiamond Coating on Aluminum Surfaces for Improved Hygiene of Food Contact Surfaces. J. Food Eng. 2021, June 2020, 298, p. 110487. DOI: 10.1016/j.jfoodeng.2021.110487.
  • Kwok, K. C.; Liang, H. H.; Niranjan, K. Optimizing Conditions for Thermal Processes of Soy Milk. J. Agric. Food Chem. 2002, 50(17), pp. 4834–4838. DOI: 10.1021/jf020182b.
  • Abakarov, A.; Sushkov, Y.; Almonacid, S.; Simpson, R. Multiobjective Optimization Approach: Thermal Food Processing. J. Food Sci. 2009, 74(9), pp. E471–E487. DOI: 10.1111/j.1750-3841.2009.01348.x.
  • Steuer, R. E.;. Multiple Criteria Optimization: Theory, Computation and Application; John Wiley & Sons: New York, 1985.
  • Andersson, J.; A Survey of Multiobjective Optimization in Engineering Design, LiTH-IKP-R-1097; Linköping, 2000.
  • Simpson, R.; Ramirez, C.; Jiménez, D.; Almonacid, S.; Nuñez, H.; Angulo, A. Simultaneous Multi-Product Sterilization: Revisited, Explored, and Optimized. J. Food Eng. 2018 March, 2019(241), pp. 149–158. doi:10.1016/j.jfoodeng.2018.08.007.
  • Wei, Q.; Liu, T.; Sun, D. Advanced Glycation End-Products (Ages) in Foods and Their Detecting Techniques and Methods: A Review. Trends Food Sci. Technol. 2018, 82(September), pp. 32–45. DOI: 10.1016/j.tifs.2018.09.020.
  • Djekic, I.; Mujčinović, A.; Nikolić, A.; Jambrak, A. R.; Papademas, P.; Feyissa, A. H.; Kansou, K.; Thomopoulos, R.; Breisen, H.; Kavallieratos, N. G., et al. Cross-European Initial Survey on the Use of Mathematical Models in Food Industry. J. Food Eng. 2019, 261, December 2018 pp. 109–116. 10.1016/j.jfoodeng.2019.06.007.
  • Verboven, P.; Defraeye, T.; Datta, A. K.; Nicolai, B. Digital Twins of Food Process Operations: The Next Step for Food Process Models? Curr. Opin. Food Sci. 2020, 35, pp. 79–87. DOI: 10.1016/j.cofs.2020.03.002.
  • Berto, M. I.; Vitali, A. A. Real Time Control in a Conventional Sterilization Process. Braz. J. Food Technol. 2008, 11(4), pp. 252–262.
  • Saguy, I.; Karel, M. Optimal Retort Temperature Profile for Optimizing Thiamin Retention in Conduction-Type Heating Canned Foods. J. Food Sci. 1979, 44(5), pp. 1485–1490. DOI: 10.1111/j.1365-2621.1979.tb06468.x.
  • Almonacid-Merino, S. F.; Simpson, R.; Torres, J. A. Time-Variable Retort Temperature Profiles for Cylindrical Cans: Batch Process Time, Energy Consumption, and Quality Retention Model. J. Food Process Eng. 1993, 16(4), pp. 271–287. DOI: 10.1111/j.1745-4530.1993.tb00321.x.
  • Balsa-Canto, E.; Alonso, A. A.; Banga, J. R.; Novel, A. Efficient and Reliable Method for Thermal Process Design and Optimization. Part I: Theory. J. Food Eng. 2002, 523, pp. 227–234. DOI:10.1016/S0260-8774(01)00110-8.
  • Banga, J. R.; Perez-Martin, R. I.; Gallardo, J. M.; Casares, J. J. Optimization of the Thermal Processing of Conduction-Heated Canned Foods: Study of Several Objective Functions. J. Food Eng. 1991, 14(1), pp. 25–51. DOI: 10.1016/0260-8774(91)90052-T.
  • Durance, T. D.;. Improving Canned Food Quality with Variable Retort Temperature Processes. Trends Food Sci. Technol. 1997, 8(4), pp. 113–118. DOI: 10.1016/S0924-2244(97)01010-8.
  • Erdogdu, F.; Balaban, M. O. Nonlinear Constrained Optimization of Thermal Processing: I. Development of a Modified Algorithm of Complex Method. J. Food Process Eng. 2002, 25(1), pp. 1–22. DOI: 10.1111/j.1745-4530.2002.tb00553.x.
  • Erdogdu, F.; Balaban, M. O. Complex Method for Nonlinear Constrained Multi-Criteria (Multi-objective Function) Optimization of Thermal Processing. J. Food Process Eng. 2003, 26(4), pp. 357–375. DOI: 10.1111/j.1745-4530.2003.tb00607.x.
  • Silva, C.; Hendrickx, M.; Oliveira, F.; Tobback, P. Critical Evaluation of Commonly Used Objective Functions to Optimize Overall Quality and Nutrient Retention of Heat-Preserved Foods. J. Food Eng. 1992, 17(4), pp. 241–258. DOI: 10.1016/0260-8774(92)90043-6.
  • Simpson, R.; Almonacid, S.; Mitchell, M. Mathematical Model Development, Experimental Validation and Process Optimization: Retortable Pouches Packed with Seafood in Cone Frustum Shape. J. Food Eng. 2004, 63(2), pp. 153–162. DOI: 10.1016/S0260-8774(03)00294-2.
  • Simpson, R.; Jiménez, D.; Almonacid, S.; Nuñez, H.; Pinto, M.; Ramírez, C.; Vega-Castro, O.; Fuentes, L.; Angulo, A. Assessment and Outlook of Variable Retort Temperature Profiles for the Thermal Processing of Packaged Foods: Plant Productivity, Product Quality, and Energy Consumption. J. Food Eng. 2020, November 2019, 275, p. 109839. DOI: 10.1016/j.jfoodeng.2019.109839.
  • Simpson, R.; Internal Report; Vlaardingen, The Netherlands, 2010.
  • Simpson, R.; Teixeira, A.; Almonacid, S. Advances with Intelligent On-Line Retort Control and Automation in Thermal Processing of Canned Foods. Food control . 2007, 18(7), pp. 821–833. doi:10.1016/j.foodcont.2006.04.006
  • Franco, A. P.; Yamamoto, L. Y.; Tadini, C. C.; Gut, J. A. W. Dielectric Properties of Green Coconut Water Relevant to Microwave Processing: Effect of Temperature and Field Frequency. J. Food Eng. 2015, 155, pp. 69–78. DOI: 10.1016/j.jfoodeng.2015.01.011.
  • Guo, W.; Llave, Y.; Jin, Y.; Fukuoka, M.; Sakai, N. Mathematical Modeling of Ohmic Heating of Two-Component Foods with Non-Uniform Electric Properties at High Frequencies. Innov. Food Sci. Emerg. Technol. 2017, 39, pp. 63–78. DOI: 10.1016/j.ifset.2016.11.005.
  • Icier, F.; Ilicali, C. The Effects of Concentration on Electrical Conductivity of Orange Juice Concentrates during Ohmic Heating. Eur. Food Res. Technol. 2005, 220(3–4), pp. 406–414. DOI: 10.1007/s00217-004-1043-x.
  • Poojitha, P.; Athmaselvi, K. A. Influence of Sucrose Concentration on Electric Conductivity of Banana Pulp during Ohmic Heating. Food Sci. Technol. Int. 2018, 24(8), pp. 664–672. DOI: 10.1177/1082013218787069.
  • Poças, M. F. F.;. 2003. Recent Developments in Can Design. In Encyclopedia of Food Sciences and Nutrition, Caballero, B., Trugo, L., Finglas, P., Eds., pp. 832–841. Academic Press: doi:10.1016/B0-12-227055-X/00161-9.
  • Zhang, H.; Bhunia, K.; Munoz, N.; Li, L.; Dolgovskij, M.; Rasco, B.; Tang, J.; Sablani, S. S. Linking Morphology Changes to Barrier Properties of Polymeric Packaging for Microwave-Assisted Thermal Sterilized Food. J. Appl. Polym. Sci. 2017, 45481, pp. 1–10. DOI: 10.1002/app.45481.
  • Struller, C. F.; Kelly, P. J.; Copeland, N. J. Aluminum Oxide Barrier Coatings on Polymer Fi Lms for Food Packaging Applications. Surf. Coat. Technol. 2014, 241, pp. 130–137. DOI: 10.1016/j.surfcoat.2013.08.011.
  • Dhawan, S.; Varney, C.; Barbosa-Canovas, G. V.; Tang, J.; Selim, F.; Sablani, S. S. The Impact of Microwave-Assisted Thermal Sterilization on the Morphology, Free Volume, and Gas Barrier Properties of Multilayer Polymeric Films. J. Appl. Polym. Sci. 2014, 40376, pp. 1–8. DOI: 10.1002/app.40376.
  • Cocker, R.;. The Regulation of Hygiene in Food Processing: An Introduction. In Hygiene in Food Processing; Lelieveld, H.L.M., Mostert, M.A., Holah, J., White, B., Eds.; Woodhead Publishing: Cambridge, 2003; pp. 5–21.
  • EU legislation. Regulation (EC) No 852/2004 of the European Parliament and of the Council of 29 April 2004 on the Hygiene of Foodstuffs. Off. J. Eur. Union. 2004, pp. L139 1–54.
  • Koopmans, M.; Duizer, E. Foodborne Viruses: An Emerging Problem. Int. J. Food Microbiol. 2004, 90(1), pp. 23–41. DOI: 10.1016/S0168-1605(03)00169-7.
  • Peng, J.; Tang, J.; Barrett, D. M.; Sablani, S. S.; Powers, J. R.; Powers, J. R. Thermal Pasteurization of Ready-to-Eat Foods and Vegetables: Critical Factors for Process Design and Effects on Quality. Crit. Rev. Food Sci. Nutr. 2017, 57(14), pp. 2970–2995. DOI: 10.1080/10408398.2015.1082126.
  • US Food and Drug Administration. Guide to Inspections of Aspectic Processing and Packaging for the Food Industry https://www.fda.gov/downloads/ICECI/Inspections/InspectionGuides/ucm091740.pdf. 30/05/2019
  • US Food and Drug Administration. Code of Federal Regulation 21; the Office of the Federal Register National Archives and Records Administration: Washington, USA, 1998.
  • Esty, J. R.; Meyer, K. F. The Heat Resistance of the Spores of B. Botulinus and Allied Anaerobes. J. Infect. Dis. 1922, 31(6), pp. 650–664. DOI: 10.1093/infdis/31.6.650.
  • Peleg, M.;. It’s Time to Revise Thermal Processing Theories. Food Technol. 2006, 60(7), p. 92.
  • Codex Alimentarius Commission. Principles for the Establishment and Application of Microbiological Criteria for Foods. CAC/ GL 21–1997. Joint FAO/WHO Food Standards Programme, Codex Committee on Food Hygiene. Food and Agriculture Organization of the United Nations. General requirements (food hygiene), supplement to vol. 1B-1997: Rome 1997.
  • ICMSF - International Commission on Microbiological Specifications for Foods. A Simplified Guide to Understanding and Using Food Safety Objectives and Performance Objectives. In Ensuring Global Food Safety; Boisrobert, Stjepanovic, C.E., Oh, A., Lelieveld, H. L. M., S., Eds.; Academic Press: San Diego, 2010; pp. 91–98. 10.1016/B978-0-12-374845-4.00004-7.
  • Cole, M. B.; Tompkin, R. B. Microbiological Performance Objectives and Criteria. In Improving the Safety of Fresh Meat; Sofos, J.N., Ed.; Woodhead Publishing Ltd: Cambridge, 2005; pp. 673–695. DOI: 10.1533/9781845691028.2.673.
  • Zwietering, M. H.; van Asselt, E. D. The Range of Microbial Risks in Food Processing. In Handbook of Hygiene Control in the Food Industry; Lelieveld, H.L.M., Mostert, M.A., Holah, J., Eds.; Woodhead Publishing Limited: Cambridge, 2005; pp. 31–45. DOI: 10.1016/B978-0-08-100155-4.00004-2.
  • Anderson, N. M.; Larkin, J. W.; Cole, M. B.; Skinner, G. E.; Whiting, R. C.; Gorris, L. G. M.; Rodriguez, A.; Buchanan, R.; Stewart, C. M.; Hanlin, J. H., et al. Food Safety Objective Approach for Controlling Clostridium Botulinum Growth and Toxin Production in Commercially Sterile Foods. Journal of Food Protection . 2011, 74(11),pp. 1956–1989. DOI:10.4315/0362-028X.JFP-11-082.
  • Li, S.; Ziara, R. M. M.; Dvorak, B.; Subbiah, J. Assessment of Water and Energy Use at Process Level in the U.S. Beef Packing Industry: Case Study in a Typical U.S. Large-Size Plant. J. Food Process Eng. 2018, 41(8), pp. 1–10. DOI: 10.1111/jfpe.12919.
  • Berteli, M. N.; Vitali, A. A.; Marsaioli, A.; Berto, M. I. The Analysis of an Alternative Approach to the Venting Process in Retorts Operating under Steam Pressure. J. Food Eng. 2012, 109(3), pp. 388–398. DOI: 10.1016/j.jfoodeng.2011.11.014.
  • Atuonwu, J. C.; Leadley, C.; Bosman, A.; Tassou, S. A.; Lopez-Quiroga, E.; Fryer, P. J. Comparative Assessment of Innovative and Conventional Food Preservation Technologies: Process Energy Performance and Greenhouse Gas Emissions. Innov. Food Sci. Emerg. Technol. September 2018, 50, pp. 174–187. DOI: 10.1016/j.ifset.2018.09.008.
  • Augusto, P. E. D.; Cristianini, M. Numerical Simulation of Packed Liquid Food Thermal Process Using Computational Fluid Dynamics (CFD). Int. J. Food Eng. 2011, 7(4), p. 4. DOI: 10.2202/1556-3758.2418.
  • Pratap Singh, A.; Yen, P. P.; Ramaswamy, H. S.; Singh, A. Recent Advances in Agitation Thermal Processing. Curr. Opin. Food Sci. 2018, 23, pp. 90–96. DOI: 10.1016/j.cofs.2018.07.001.
  • Cowell, N. D.;. More Light on the Dawn of Canning. Food Technol. 2007, 61(5), pp. 40–45.
  • Erdogdu, F.;. Mathematical Approaches for Use of Analytical Solutions in Experimental Determination of Heat and Mass Transfer Parameters. J. Food Eng. 2005, 68(2), pp. 233–238. DOI: 10.1016/j.jfoodeng.2004.05.038.
  • Tutar, M.; Erdogdu, F. Numerical Simulation for Heat Transfer and Velocity Field Characteristics of Two-Phase Flow Systems in Axially Rotating Horizontal Cans. J. Food Eng. 2012, 111(2), pp. 366–385. DOI: 10.1016/j.jfoodeng.2012.02.008.
  • Erdogdu, F.; Tutar, M.; Øines, S.; Barreno, I.; Dagbjorn, S. Food and Bioproducts Processing Determining the Optimal Shaking Rate of A Reciprocal Agitation Sterilization System for Liquid Foods: A Computational Approach With. Food Bioprod. Process. 2016, 100, pp. 512–524. DOI: 10.1016/j.fbp.2016.07.012.
  • Vatankhah, H.; Zamindar, N.; Shahedi, M. Geometry Simplification of Wrinkled Wall Semi-Rigid Aluminum Containers in Heat Transfer Simulation. J. Agric. Sci. Technol. 2016, 18, pp. 123–133.
  • Varma, M. N.; Kannan, A. Enhanced Food Sterilization through Inclination of the Container Walls and Geometry Modifications. Int. J. Heat Mass Transf. 2005, 48(18), pp. 3753–3762. DOI: 10.1016/j.ijheatmasstransfer.2005.03.024.
  • Varma, M. N.; Kannan, A. CFD Studies on Natural Convective Heating of Canned Food in Conical and Cylindrical Containers. J. Food Eng. 2006, 77, pp. 1024–1036. DOI: 10.1016/j.jfoodeng.2005.07.035.
  • Karaduman, M.; Uyar, R.; Erdogdu, F. Toroid Cans – An Experimental and Computational Study for Process Innovation. J. Food Eng. 2012, 111(1), pp. 6–13. DOI: 10.1016/j.jfoodeng.2012.02.009.
  • Van Droogenbroeck, B.; Altin, O.; Coskun, E.; De Paepe, E.; Erdogdu, F. Toroidal Cans for Thermal Processing of Liquid and Solid-Liquid Mixtures under Static and End-over-End Rotation. Innov. Food Sci. Emerg. Technol. 2021, November 2020, 67, p. 102554. DOI: 10.1016/j.ifset.2020.102554.
  • Wang, L.; Sun, D. W. Recent Developments in Numerical Modelling of Heating and Cooling Processes in the Food Industry - A Review. Trends Food Sci. Technol. 2003, 14(10), pp. 408–423. DOI: 10.1016/S0924-2244(03)00151-1.
  • Zhong, Q.; Sandeep, K. P.; Swartzel, K. R. Continuous Flow Radio Frequency Heating of Particulate Foods. Innov. Food Sci. Emerg. Technol. 2004, 5(4), pp. 475–483. DOI: 10.1016/j.ifset.2004.07.004.
  • Ito, R.; Fukuoka, M.; Hamada-Sato, N. Innovative Food Processing Technology Using Ohmic Heating and Aseptic Packaging for Meat. Meat Sci. 2014, 96(2), pp. 675–681. DOI: 10.1016/j.meatsci.2013.10.012.
  • Siguemoto, É. S.; Purgatto, E.; Hassimotto, N. M. A.; Gut, J. A. W. Comparative Evaluation of Flavour and Nutritional Quality after Conventional and Microwave-Assisted Pasteurization of Cloudy Apple Juice. Lwt. 2018 December, 2019(111), pp. 853–860. doi:10.1016/j.lwt.2019.05.111.
  • Topcam, H.; Erdogdu, F. Designing System Cavity Geometry and Optimizing Process Variables for Continuous Flow Microwave Processing. Food Bioprod. Process. 2021, 127, pp. 295–308. DOI: 10.1016/j.fbp.2021.03.006.
  • Gómez-López, V. M.; Pataro, G.; Tiwari, B.; Gozzi, M.; Meireles, M. Á. A.; Wang, S.; Guamis, B.; Pan, Z.; Ramaswamy, H.; Sastry, S., et al. Guidelines on Reporting Treatment Conditions for Emerging Technologies in Food Processing. Crit. Rev. Food Sci. Nutr. 2021, pp. 1–25. DOI: 10.1080/10408398.2021.1895058.
  • Villamiel, M.; Garcia-Perez, J. V.; Montilla, A.; Cárcel, J. A., and Benedito, J., Eds. Ultrasound in Food Processing: Recent Advances; : John Wiley & Sons: West Sussex,West Sussex, 2017.
  • Rojas, M. L.; Trevilin, J. H.; Funcia, E. D. S.; Gut, J. A. W.; Augusto, P. E. D. Using Ultrasound Technology for the Inactivation and Thermal Sensitization of Peroxidase in Green Coconut Water. Ultrason. Sonochem. 2017, 36, pp. 173–181. DOI: 10.1016/j.ultsonch.2016.11.028.
  • Tremarin, A.; Canbaz, E. A.; Brandão, T. R. S.; Silva, C. L. M. Modelling Alicyclobacillus Acidoterrestris Inactivation in Apple Juice Using Thermosonication Treatments. LWT - Food Sci. Technol. 2018 July, 2019(102), pp. 159–163. doi:10.1016/j.lwt.2018.12.027.
  • Das, M. J.; Das, A. J.; Chakraborty, S.; Baishya, P.; Ramteke, A.; Deka, S. C. Effects of Microwave Combined with Ultrasound Treatment on the Pasteurization and Nutritional Properties of Bottle Gourd (Lagenaria Siceraria) Juice. J. Food Process. Preserv. 2020, 44(12), p. 12. DOI: 10.1111/jfpp.14904.
  • El-Mashad, H. M.; Pan, Z. Application of Induction Heating in Food Processing and Cooking. Food Eng. Rev. 2017, 9(2), pp. 82–90. DOI: 10.1007/s12393-016-9156-0.
  • Wang, G.; Wan, Z.; Yang, X. Induction Heating by Magnetic Microbeads for Pasteurization of Liquid Whole Eggs. J. Food Eng. April 2020, 284, p. 110079. DOI: 10.1016/j.jfoodeng.2020.110079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.