165
Views
7
CrossRef citations to date
0
Altmetric
Review

Polyphenols and Posterior Segment Eye Diseases: Effects on Angiogenesis, Invasion, Migration and Epithelial-Mesenchymal Transition

&

References

  • Kaur, I. P.; Kakkar, S. Nanotherapy for Posterior Eye Diseases. J. Control. Release. 2014, 193, 100–112. DOI: 10.1016/j.jconrel.2014.05.031.
  • Suri, R.; Neupane, Y. R.; Mehra, N.; Jain, G. K.; Kohli, K. Sirolimus Loaded Polyol Modified Liposomes for the Treatment of Posterior Segment Eye Diseases. Med. Hypotheses. 2020, 136, 109518. DOI: 10.1016/j.mehy.2019.109518.
  • Huu, V. A. N.; Luo, J.; Zhu, J.; Zhu, J.; Patel, S.; Boone, A.; Mahmoud, E.; McFearin, C.; Olejniczak, J.; de Gracia Lux, C., et al. Light-Responsive Nanoparticle Depot to Control Release of a Small Molecule Angiogenesis Inhibitor in the Posterior Segment of the Eye. J. Control. Release. 2015, 200, 71–77. DOI: 10.1016/j.jconrel.2015.01.001.
  • Begum, G.; O’Neill, J.; Chaudhary, R.; Blachford, K.; Snead, D. R. J.; Berry, M.; Scott, R. A. H.; Logan, A.; Blanch, R. J. Altered Decorin Biology in Proliferative Vitreoretinopathy: A Mechanistic and Cohort Study. Invest. Ophthalmol. Vis. Sci. 2018, 59, 4929–4936. DOI: 10.1167/iovs.18-24299.
  • Agban, Y.; Thakur, S. S.; Mugisho, O. O.; Rupenthal, I. D. Depot Formulations to Sustain Periocular Drug Delivery to the Posterior Eye Segment. Drug Discov. Today. 2019, 24, 1458–1469. DOI: 10.1016/j.drudis.2019.03.023.
  • Carmeliet, P.; Jain, R. K. Molecular Mechanisms and Clinical Applications of Angiogenesis. Nature. 2011, 473, 298–307. DOI: 10.1038/nature10144.
  • Ribatti, D. Endogenous Inhibitors of Angiogenesis: A Historical Review. Leuk. Res. 2009, 33, 638–644. DOI: 10.1016/j.leukres.2008.11.019.
  • Darweesh, R. S.; Ayoub, N. M.; Nazzal, S. Gold Nanoparticles and Angiogenesis: Molecular Mechanisms and Biomedical Applications. Int. J. Nanomedicine. 2019, 14, 7643–7663. DOI: 10.2147/IJN.S223941.
  • Sulaiman, R. S.; Basavarajappa, H. D.; Corson, T. W. Natural Product Inhibitors of Ocular Angiogenesis. Exp. Eye Res. 2014, 129, 161–171. DOI: 10.1016/j.exer.2014.10.002.
  • Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J. C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M. A.; Alvarez-Sánchez, M. E. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front. Oncol. 2019, 9. DOI: 10.3389/fonc.2019.01370.
  • Shu, D. Y.; Butcher, E.; Saint-Geniez, M. EMT and EndMT: Emerging Roles in Age-Related Macular Degeneration. Int. J. Mol. Sci. 2020, 21, 4271. DOI: 10.3390/ijms21124271.
  • Agraval, H.; Yadav, U. C. S. MMP-2 and MMP-9 Mediate Cigarette Smoke Extract-Induced Epithelial-Mesenchymal Transition in Airway Epithelial Cells via EGFR/Akt/GSK3β/β-catenin Pathway: Amelioration by Fisetin. Chem. Biol. Interact. 2019, 314, 108846. DOI: 10.1016/j.cbi.2019.108846.
  • Chojnacka, K.; Lewandowska, U. Chemopreventive Effects of Polyphenol-Rich Extracts against Cancer Invasiveness and Metastasis by Inhibition of Type IV Collagenases Expression and Activity. J. Funct. Foods. 2018, 46, 295–311. DOI: 10.1016/j.jff.2018.05.001.
  • Chojnacka, K.; Lewandowska, U. The Antiangiogenic Activity of Polyphenol-Rich Extracts and Its Implication on Cancer Chemoprevention. Food Rev. Int. 2020, 36, 77–103. DOI: 10.1080/87559129.2019.1630634.
  • Leri, M.; Scuto, M.; Ontario, M. L.; Calabrese, V.; Calabrese, E. J.; Bucciantini, M.; Stefani, M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int. J. Mol. Sci. 2020, 21, 1250. DOI: 10.3390/ijms21041250.
  • Fraga, C. G.; Croft, K. D.; Kennedy, D. O.; Tomás-Barberán, F. A. The Effects of Polyphenols and Other Bioactives on Human Health. Food Funct. 2019, 10, 514–528. DOI: 10.1039/c8fo01997e.
  • Xu, Z.; Sun, T.; Li, W.; Sun, X. Inhibiting Effects of Dietary Polyphenols on Chronic Eye Diseases. J. Funct. Foods. 2017, 39, 186–197. DOI: 10.1016/j.jff.2017.10.031.
  • Ikonne, E. U.; Ikpeazu, V. O.; Ugbogu, E. A. The Potential Health Benefits of Dietary Natural Plant Products in Age Related Eye Diseases. Heliyon. 2020, 6, e04408. DOI: 10.1016/j.heliyon.2020.e04408.
  • Feng, J.; Song, D.; Jiang, S. Y.; Yang, X. H.; Ding, T. T.; Zhang, H.; Luo, J.; Liao, J.; Yin, Q. Quercetin Restrains TGF-β1-Induced Epithelial-Mesenchymal Transition by Inhibiting Twist1 and Regulating E-cadherin Expression. Biochem. Biophys. Res. Commun. 2018, 498, 132–138. DOI: 10.1016/j.bbrc.2018.02.044.
  • Yang, N.; Zhang, H.; Cai, X.; Shang, Y. Epigallocatechin-3-gallate Inhibits Inflammation and Epithelial‑Mesenchymal Transition through the PI3K/AKT Pathway via Upregulation of PTEN in Asthma. Int. J. Mol. Med. 2018, 41, 818–828. DOI: 10.3892/ijmm.2017.3292.
  • Cheung, N.; Mitchell, P.; Wong, T. Y. Diabetic Retinopathy. Lancet. 2010, 376, 124–136. DOI: 10.1016/S0140-6736(09)62124-3.
  • Zimmet, P.; Alberti, K. G.; Magliano, D. J.; Bennett, P. H. Diabetes Mellitus Statistics on Prevalence and Mortality: Facts and Fallacies. Nat. Rev. Endocrinol. 2016, 12, 616–622. DOI: 10.1038/nrendo.2016.105.
  • Sabanayagam, C.; Banu, R.; Chee, M. L.; Lee, R.; Wang, Y. X.; Tan, G.; Jonas, J. B.; Lamoureux, E. L.; Cheng, C.-Y.; Klein, B. E. K., et al. Incidence and Progression of Diabetic Retinopathy: A Systematic Review. Lancet Diabetes Endocrinol. 2018, 7, 140–149. DOI: 10.1016/S2213-8587(18)30128-1.
  • Ting, D. S. W.; Cheung, G. C. M.; Wong, T. Y. Diabetic Retinopathy: Global Prevalence, Major Risk Factors, Screening Practices and Public Health Challenges: A Review. Clin. Exp. Ophthalmol. 2016, 44, 260–277. DOI: 10.1111/ceo.12696.
  • Tsuda, T. Curcumin as a Functional Food-Derived Factor: Degradation Products, Metabolites, Bioactivity, and Future Perspectives. Food Funct. 2018, 9, 705–714. DOI: 10.1039/c7fo01242j.
  • Kowluru, R. A.; Kanwar, M. Effects of Curcumin on Retinal Oxidative Stress and Inflammation in Diabetes. Nutr. Metab. 2007, 4, 8. DOI: 10.1186/1743-7075-4-8.
  • Mrudula, T.; Suryanarayana, P.; Srinivas, P. N. B. S.; Reddy, G. B. Effect of Curcumin on Hyperglycemia-Induced Vascular Endothelial Growth Factor Expression in Streptozotocin-Induced Diabetic Rat Retina. Biochem. Biophys. Res. Commun. 2007, 361, 528–532. DOI: 10.1016/j.bbrc.2007.07.059.
  • Gupta, S. K.; Kumar, B.; Nag, T. C.; Agrawal, S. S.; Agrawal, R.; Agrawal, P.; Saxena, R.; Srivastava, S. Curcumin Prevents Experimental Diabetic Retinopathy in Rats through Its Hypoglycemic, Antioxidant, and Anti-Inflammatory Mechanisms. J. Ocul. Pharmacol. Ther. 2011, 27, 123–130. DOI: 10.1089/jop.2010.0123.
  • Li, J.; Wang, P.; Ying, J.; Chen, Z.; Yu, S. Curcumin Attenuates Retinal Vascular Leakage by Inhibiting Calcium/Calmodulin-Dependent Protein Kinase II Activity in Streptozotocin-Induced Diabetes. Cell. Physiol. Biochem. 2016, 39, 1196–1208. DOI: 10.1159/000447826.
  • Yang, F.; Yu, J.; Ke, F.; Lan, M.; Li, D.; Tan, K.; Ling, J.; Wang, Y.; Wu, K.; Li, D. Curcumin Alleviates Diabetic Retinopathy in Experimental Diabetic Rats. Ophthalmic Res. 2018, 60, 43–54. DOI: 10.1159/000486574.
  • Galiniak, S.; Aebisher, D.; Bartusik-Aebisher, D. Health Benefits of Resveratrol Administration. Acta Biochim. Pol. 2019, 66, 13–21. DOI: 10.18388/abp.2018_2749.
  • Breuss, J. M.; Atanasov, A. G.; Uhrin, P. Resveratrol and Its Effects on the Vascular System. International Journal of Molecular Sciences. 2019, 20(7), 1523. DOI: 10.3390/ijms20071523.
  • Losso, J. N.; Truax, R. E.; Richard, G. Trans-Resveratrol Inhibits Hyperglycemia-Induced Inflammation and Connexin Downregulation in Retinal Pigment Epithelial Cells. J. Agric. Food Chem. 2010, 58, 8246–8252. DOI: 10.1021/jf1012067.
  • Van Geest, R. J.; Klaassen, I.; Vogels, I. M. C.; Van Noorden, C. J. F.; Schlingemann, R. O. Differential TGF-β Signaling in Retinal Vascular Cells: A Role in Diabetic Retinopathy? Invest. Ophthalmol. Vis. Sci. 2010, 51, 1857–1865. DOI: 10.1167/iovs.09-4181.
  • Kowluru, R. A.; Santos, J. M.; Zhong, Q. Sirt1, a Negative Regulator of Matrix Metalloproteinase-9 in Diabetic Retinopathy. Invest. Ophthalmol. Vis. Sci. 2014, 55, 5653–5660. DOI: 10.1167/iovs.14-14383.
  • Kim, Y. H.; Kim, Y. S.; Roh, G. S.; Choi, W. S.; Cho, G. J. Resveratrol Blocks Diabetes Induced Early Vascular Lesions and Vascular Endothelial Growth Factor Induction in Mouse Retinas. Acta Ophthalmol. 2012, 90, e31–e37. DOI: 10.1111/j.1755-3768.2011.02243.x.
  • Yar, A. S.; Menevse, S.; Dogan, I.; Alp, E.; Ergin, V.; Cumaoglu, A.; Aricioglu, A.; Ekmekci, A.; Menevse, A. Investigation of Ocular Neovascularization–Related Genes and Oxidative Stress in Diabetic Rat Eye Tissues after Resveratrol Treatment. J. Med. Food. 2012, 15, 391–398. DOI: 10.1089/jmf.2011.0135.
  • Chen, Y.; Meng, J.; Li, H.; Wei, H.; Bi, F.; Liu, S.; Tang, K.; Guo, H.; Liu, W. Resveratrol Exhibits an Effect on Attenuating Retina Inflammatory Condition and Damage of Diabetic Retinopathy via PON1. Exp. Eye Res. 2019, 181, 356–366. DOI: 10.1016/j.exer.2018.11.023.
  • Liu, X.-Q.; Wu, B.-J.; Pan, W. H. T.; Zhang, X.-M.; Liu, J.-H.; Chen, -M.-M.; Chao, F.-P.; Chao, H.-M. Resveratrol Mitigates Rat Retinal Ischemic Injury: The Roles of Matrix Metalloproteinase-9, Inducible Nitric Oxide, and Heme Oxygenase-1. J. Ocul. Pharmacol. Ther. 2013, 29, 33–40. DOI: 10.1089/jop.2012.0141.
  • Aouiss, A.; Idrissi, D. A.; Kabine, M.; Zaid, Y. Update of Inflammatory Proliferative Retinopathy: Ischemia, Hypoxia and Angiogenesis. Curr. Res. Transl. Med. 2019, 67, 62–71. DOI: 10.1016/j.retram.2019.01.005.
  • Mathew, B.; Ravindran, S.; Liu, X.; Torres, L.; Chennakesavalu, M.; Huang, -C.-C.; Feng, L.; Zelka, R.; Lopez, J.; Sharma, M., et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles and Retinal Ischemia-Reperfusion. Biomaterials 2019, 197, 146–160. DOI: 10.1016/j.biomaterials.2019.01.016.
  • Lewandowska, U.; Szewczyk, K.; Hrabec, E.; Janecka, A.; Gorlach, S. Overview of Metabolism and Bioavailability Enhancement of Polyphenols. J. Agric. Food Chem. 2013, 61, 12183–12199. DOI: 10.1021/jf404439b.
  • Dong, Y.; Wan, G.; Yan, P.; Qian, C.; Li, F.; Peng, G. Fabrication of Resveratrol Coated Gold Nanoparticles and Investigation of Their Effect on Diabetic Retinopathy in Streptozotocin Induced Diabetic Rats. J. Photochem. Photobiol. B. 2019, 195, 51–57. DOI: 10.1016/j.jphotobiol.2019.04.012.
  • Rugina, D.; Ghiman, R.; Focsan, M.; Tabaran, F.; Copaciu, F.; Suciu, M.; Pintea, A.; Astilean, S. Resveratrol-Delivery Vehicle with Anti-VEGF Activity Carried to Human Retinal Pigmented Epithelial Cells Exposed to High-Glucose Induced Conditions. Colloids Surf. B. Biointerfaces. 2019, 181, 66–75. DOI: 10.1016/j.colsurfb.2019.04.022.
  • Imran, M.; Salehi, B.; Sharifi-Rad, J.; Gondal, T. A.; Saeed, F.; Imran, A.; Shahbaz, M.; Fokou, P. V. T.; Arshad, M. U.; Khan, H., et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules 2019, 24, 2277. DOI: 10.3390/molecules24122277.
  • Chin, H.-K.; Horng, C.-T.; Liu, Y.-S.; Lu, -C.-C.; Su, C.-Y.; Chen, P.-S.; Chiu, H.-Y.; Tsai, F.-J.; Shieh, P.-C.; Yang, J.-S. Kaempferol Inhibits Angiogenic Ability by Targeting VEGF Receptor-2 and Downregulating the PI3K/AKT, MEK and ERK Pathways in VEGF-Stimulated Human Umbilical Vein Endothelial Cells. Oncol. Rep. 2018, 39, 2351–2357. DOI: 10.3892/or.2018.6312.
  • Luo, H.; Rankin, G. O.; Juliano, N.; Jiang, B.-H.; Chen, Y.-C. Kaempferol Inhibits VEGF Expression and in Vitro Angiogenesis through a Novel ERK-NFκB-cMyc-p21 Pathway. Food Chem. 2012, 130, 321–328. DOI: 10.1016/j.foodchem.2011.07.045.
  • Xu, X. H.; Zhao, C.; Peng, Q.; Xie, P.; Liu, Q. H. Kaempferol Inhibited VEGF and PGF Expression and in Vitro Angiogenesis of HRECs under Diabetic-Like Environment. Braz. J. Med. Biol. Res. 2017, 50. DOI: 10.1590/1414-431X20165396.
  • Wu, Y.; Zhang, Q.; Zhang, R. Kaempferol Targets Estrogen‑Related Receptor α and Suppresses the Angiogenesis of Human Retinal Endothelial Cells under High Glucose Conditions. Exp. Ther. Med. 2017, 14, 5576–5582. DOI: 10.3892/etm.2017.5261.
  • Bie, B.; Sun, J.; Guo, Y.; Li, J.; Jiang, W.; Yang, J.; Huang, C.; Li, Z. Baicalein: A Review of Its Anti-Cancer Effects and Mechanisms in Hepatocellular Carcinoma. Biomed. Pharmacother. 2017, 93, 1285–1291. DOI: 10.1016/j.biopha.2017.07.068.
  • Dai, C.; Jiang, S.; Chu, C.; Xin, M.; Song, X.; Zhao, B. Baicalin Protects Human Retinal Pigment Epithelial Cell Lines against High Glucose-Induced Cell Injury by Up-Regulation of MicroRNA-145. Exp. Mol. Pathol. 2019, 106, 123–130. DOI: 10.1016/j.yexmp.2019.01.002.
  • Chao, H.-M.; Chuang, M.-J.; Liu, J.-H.; Liu, X.-Q.; Ho, L.-K.; Pan, W. H. T.; Zhang, X.-M.; Liu, C.-M.; Tsai, S.-K.; Kong, C.-W., et al. Baicalein Protects against Retinal Ischemia by Antioxidation, Antiapoptosis, Downregulation of HIF-1α, VEGF, and MMP-9 and Upregulation of HO-1. J. Ocul. Pharmacol. Ther 2013, 29, 539–549. DOI: 10.1089/jop.2012.0179.
  • Rashidi, B.; Malekzadeh, M.; Goodarzi, M.; Masoudifar, A.; Mirzaei, H. Green Tea and Its Anti-Angiogenesis Effects. Biomed. Pharmacother. 2017, 89, 949–956. DOI: 10.1016/j.biopha.2017.01.161.
  • Zhang, L.; Zhang, Z. K.; Liang, S. Epigallocatechin-3-gallate Protects Retinal Vascular Endothelial Cells from High Glucose Stress in Vitro via the MAPK/ERK-VEGF Pathway. Genet. Mol. Res. 2016, 15. DOI: 10.4238/gmr.15027874.
  • Du, J.; Wang, Y.; Tu, Y.; Guo, Y.; Sun, X.; Xu, X.; Liu, X.; Wang, L.; Qin, X.; Zhu, M., et al. A Prodrug of Epigallocatechin-3-gallate Alleviates High Glucose-Induced Proangiogenic Factor Production by Inhibiting the ROS/TXNIP/NLRP3 Inflammasome Axis in Retinal Müller Cells. Exp. Eye Res 2020, 196, 108065. DOI: 10.1016/j.exer.2020.108065.
  • Wang, D.; Wang, L.; Gu, J.; Yang, H.; Liu, N.; Lin, Y.; Li, X.; Shao, C. Scutellarin Inhibits High Glucose–Induced and Hypoxia-Mimetic Agent–Induced Angiogenic Effects in Human Retinal Endothelial Cells through Reactive Oxygen Species/Hypoxia-Inducible Factor-1α/Vascular Endothelial Growth Factor Pathway. J. Cardiovasc. Pharmacol. 2014, 64, 218–227. DOI: 10.1097/FJC.0000000000000109.
  • Wu, J.; Ke, X.; Wang, W.; Zhang, H.; Ma, N.; Fu, W.; Zhao, M.; Gao, X.; Hao, X.; Zhang, Z. Aloe-Emodin Suppresses Hypoxia-Induced Retinal Angiogenesis via Inhibition of HIF-1α/VEGF Pathway. Int. J. Bio. Sci. 2016, 12, 1363–1371. DOI: 10.7150/ijbs.16334.
  • Kang, M.-K.; Park, S.-H.; Kim, Y.-H.; Lee, E.-J.; Antika, L. D.; Kim, D. Y.; Choi, Y.-J.; Kang, Y.-H. Dietary Compound Chrysin Inhibits Retinal Neovascularization with Abnormal Capillaries in Db/db Mice. Nutrients. 2016, 8, 782. DOI: 10.3390/nu8120782.
  • Wu, J.; Ke, X.; Ma, N.; Wang, W.; Fu, W.; Zhang, H.; Zhao, M.; Gao, X.; Hao, X.; Zhang, Z. Formononetin, an Active Compound of Astragalus Membranaceus (Fisch) Bunge, Inhibits Hypoxia-Induced Retinal Neovascularization via the HIF-1α/VEGF Signaling Pathway. Drug Des. Devel. Ther. 2016, 10, 3071–3081. DOI: 10.2147/DDDT.S114022.
  • Long, L.; Li, Y.; Yu, S.; Li, X.; Hu, Y.; Long, T.; Wang, L.; Li, W.; Ye, X.; Ke, Z., et al. Scutellarin Prevents Angiogenesis in Diabetic Retinopathy by Downregulating VEGF/ERK/FAK/Src Pathway Signaling. J. Diabetes Res. 2019, 2019, 1–17. DOI: 10.1155/2019/4875421.
  • Liao, Z.-Y.; Liang, I.-C.; Li, H.-J.; Wu, -C.-C.; Lo, H.-M.; Chang, D.-C.; Hung, C.-F. Chrysin Inhibits High Glucose-Induced Migration on Chorioretinal Endothelial Cells via VEGF and VEGFR Down-Regulation. Int. J. Mol. Sci. 2020, 21, 5541. DOI: 10.3390/ijms21155541.
  • Kang, M.-K.; Lee, E.-J.; Kim, Y.-H.; Kim, D. Y.; Oh, H.; Kim, S.-I.; Kang, Y.-H. Chrysin Ameliorates Malfunction of Retinoid Visual Cycle through Blocking Activation of AGE-RAGE-ER Stress in Glucose-Stimulated Retinal Pigment Epithelial Cells and Diabetic. Eyes. Nutrients. 2018, 10. DOI: 10.3390/nu10081046.
  • Chung, H. K.; Choi, S. M.; Ahn, B. O.; Kwak, H. H.; Kim, J. H.; Kim, W. B. Efficacy of Troxerutin on Streptozotocin-induced Rat Model in the Early Stage of Diabetic Retinopathy. Arzneimittelforschung. 2005, 55, 573–580. DOI: 10.1055/s-0031-1296907.
  • Shin, J. Y.; Sohn, J.; Park, K. H. Chlorogenic Acid Decreases Retinal Vascular Hyperpermeability in Diabetic Rat Model. J. Korean Med. Sci. 2013, 28, 608–613. DOI: 10.3346/jkms.2013.28.4.608.
  • Cui, J.; Gong, R.; Hu, S.; Cai, L.; Chen, L. Gambogic Acid Ameliorates Diabetes-Induced Proliferative Retinopathy through Inhibition of the HIF-1α/VEGF Expression via Targeting PI3K/AKT Pathway. Life Sci. 2018, 192, 293–303. DOI: 10.1016/j.lfs.2017.11.007.
  • Mei, X.; Zhou, L.; Zhang, T.; Lu, B.; Sheng, Y.; Ji, L. Chlorogenic Acid Attenuates Diabetic Retinopathy by Reducing VEGF Expression and Inhibiting VEGF-Mediated Retinal Neoangiogenesis. Vascul. Pharmacol. 2018, 101, 29–37. DOI: 10.1016/j.vph.2017.11.002.
  • Shanmuganathan, S.; Angayarkanni, N. Chebulagic Acid and Chebulinic Acid Inhibit TGF-β1 Induced Fibrotic Changes in the Chorio-Retinal Endothelial Cells by Inhibiting ERK Phosphorylation. Microvasc. Res. 2019, 121, 14–23. DOI: 10.1016/j.mvr.2018.09.001.
  • Elgayar, S. A. M.; Eltony, S. A.; Sayed, A. A.; Abdel-Rouf, M. M. Genistein Treatment Confers Protection against Gliopathy and Vasculopathy of the Diabetic Retina in Rats. Ultrastruct. Pathol. 2015, 39, 385–394. DOI: 10.3109/01913123.2015.1045664.
  • Zhang, H.-T.; Shi, K.; Baskota, A.; Zhou, F.-L.; Chen, Y.-X.; Tian, H.-M. Silybin Reduces Obliterated Retinal Capillaries in Experimental Diabetic Retinopathy in Rats. Eur. J. Pharmacol. 2014, 740, 233–239. DOI: 10.1016/j.ejphar.2014.07.033.
  • Zhang, T.; Ouyang, H.; Mei, X.; Lu, B.; Yu, Z.; Chen, K.; Wang, Z.; Ji, L. Erianin Alleviates Diabetic Retinopathy by Reducing Retinal Inflammation Initiated by Microglia Cells via Inhibiting Hyperglycemia-Mediated ERK1/2–NF-kB Signaling Pathway. FASEB J. 2019, 33, 11776–11790. DOI: 10.1096/fj.201802614RRR.
  • Kim, Y. S.; Kim, J.; Kim, K. M.; Jung, D. H.; Choi, S.; Kim, C.-S.; Kim, J. S. Myricetin Inhibits Advanced Glycation End Product (Age)-induced Migration of Retinal Pericytes through Phosphorylation of ERK1/2, FAK-1, and Paxillin in Vitro and in Vivo. Biochem. Pharmacol. 2015, 93, 496–505. DOI: 10.1016/j.bcp.2014.09.022.
  • Pennington, K. L.; DeAngelis, M. M. Epidemiology of Age-Related Macular Degeneration (AMD): Associations with Cardiovascular Disease Phenotypes and Lipid Factors. Eye Vis. (Lond). 2016, 3. DOI: 10.1186/s40662-016-0063-5.
  • Lindekleiv, H.; Erke, M. G. Projected Prevalence of Age-Related Macular Degeneration in Scandinavia 2012–2040. Acta Ophthalmol. 2013, 91, 307–311. DOI: 10.1111/j.1755-3768.2012.02399.x.
  • Jonas, J. B.; Cheung, C. M. G.; Panda-Jonas, S. Updates on the Epidemiology of Age-Related Macular Degeneration. Asia Pac. J. Ophthalmol. 2017, 6, 493–497. DOI: 10.22608/APO.2017251.
  • Zhu, C.; Dong, Y.; Liu, H.; Ren, H.; Cui, Z. Hesperetin Protects against H2O2-Triggered Oxidative Damage via Upregulation of the Keap1-Nrf2/HO-1 Signal Pathway in ARPE-19 Cells. Biomed. Pharmacother. 2017, 88, 124–133. DOI: 10.1016/j.biopha.2016.11.089.
  • Oh, J. H.; Oh, J.; Togloom, A.; Kim, S.-W.; Huh, K. Effects of Ginkgo Biloba Extract on Cultured Human Retinal Pigment Epithelial Cells under Chemical Hypoxia. Curr. Eye Res. 2013, 38, 1072–1082. DOI: 10.3109/02713683.2013.804093.
  • Hernández-Zimbrón, L. F.; Zamora-Alvarado, R.; Ochoa-de La Paz, L.; Velez-Montoya, R.; Zenteno, E.; Gulias-Cañizo, R.; Quiroz-Mercado, H.; Gonzalez-Salinas, R. Age-Related Macular Degeneration: New Paradigms for Treatment and Management of AMD. Oxid. Med. Cell. Longev. 2018, 2018, 1–14. DOI: 10.1155/2018/8374647.
  • Grunwald, J. E.; Daniel, E.; Huang, J.; Ying, G.-S.; Maguire, M. G.; Toth, C. A.; Jaffe, G. J.; Fine, S. L.; Blodi, B.; Klein, M. L., et al. Risk of Geographic Atrophy in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology 2014, 121, 150–161. DOI: 10.1016/j.ophtha.2013.08.015.
  • Maguire, M. G.; Martin, D. F.; Ying, G.-S.; Jaffe, G. J.; Daniel, E.; Grunwald, J. E.; Toth, C. A.; Ferris, F. L., 3rd; Fine, S. L. Five-Year Outcomes with Anti-Vascular Endothelial Growth Factor Treatment of Neovascular Age-Related Macular Degeneration: The Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology. 2016, 123, 1751–1761. DOI: 10.1016/j.ophtha.2016.03.045.
  • Bardak, H.; Uguz, A. C.; Bardak, Y. Curcumin Regulates Intracellular Calcium Release and Inhibits Oxidative Stress Parameters, VEGF, and Caspase-3/-9 Levels in Human Retinal Pigment Epithelium Cells. Physiology International. 2017, 104(4), 301–315. DOI: 10.1556/2060.104.2017.4.3.
  • Hollborn, M.; Chen, R.; Wiedemann, P.; Reichenbach, A.; Bringmann, A.; Kohen, L. Cytotoxic Effects of Curcumin in Human Retinal Pigment Epithelial Cells. PLoS One. 2013, 8, e59603. DOI: 10.1371/journal.pone.0059603.
  • Xie, P.; Zhang, W. W.; Yuan, S.; Chen, Z.; Yang, Q.; Yuan, D. Q.; Wang, F.; Liu, Q. H. Suppression of Experimental Choroidal Neovascularization by Curcumin in Mice. PLoS One. 2012, 7. DOI: 10.1371/journal.pone.0053329.
  • Dugas, B.; Charbonnier, S.; Baarine, M.; Ragot, K.; Delmas, D.; Ménétrier, F.; Lherminier, J.; Malvitte, L.; Khalfaoui, T.; Bron, A., et al. Effects of Oxysterols on Cell Viability, Inflammatory Cytokines, VEGF, and Reactive Oxygen Species Production on Human Retinal Cells: Cytoprotective Effects and Prevention of VEGF Secretion by Resveratrol. Eur. J. Nutr. 2010, 49, 435–446. DOI: 10.1007/s00394-010-0102-2.
  • Nagineni, C. N.; Raju, R.; Nagineni, K. K.; Kommineni, V. K.; Cherukuri, A.; Kutty, R. K.; Hooks, J. J.; Detrick, B. Resveratrol Suppresses Expression of VEGF by Human Retinal Pigment Epithelial Cells: Potential Nutraceutical for Age-related Macular Degeneration. Aging Dis. 2014, 5, 88–100. DOI: 10.14366/AD.2014.050088.
  • Lee, C. S.; Choi, E. Y.; Lee, S. C.; Koh, H. J.; Lee, J. H.; Chung, J. H. Resveratrol Inhibits Hypoxia-Induced Vascular Endothelial Growth Factor Expression and Pathological Neovascularization. Yonsei Med. J. 2015, 56, 1678–1685. DOI: 10.3349/ymj.2015.56.6.1678.
  • Seong, H.; Ryu, J.; Jeong, J. Y.; Chung, I. Y.; Han, Y.-S.; Hwang, S. H.; Park, J. M.; Kang, S. S.; Seo, S. W. Resveratrol Suppresses Vascular Endothelial Growth Factor Secretion via Inhibition of CXC-Chemokine Receptor 4 Expression in ARPE-19 Cells. Mol. Med. Rep. 2015, 12, 1479–1484. DOI: 10.3892/mmr.2015.3518.
  • Hao, X.-N.; Wang, W.-J.; Chen, J.; Zhou, Q.; Qu, Y.-X.; Liu, X.-Y.; Xu, W. Effects of Resveratrol on ARPE-19 Cell Proliferation and Migration Regulating the Expression of Proliferating Cell Nuclear Antigen, P21, P27 and p38MAPK/MMP-9. Int. J. Ophthalmol. 2016, 9, 1725–1731. DOI: 10.18240/ijo.2016.12.04.
  • Kanavi, M. R.; Darjatmoko, S.; Wang, S.; Azari, A. A.; Farnoodian, M.; Kenealey, J. D.; van Ginkel, P. R.; Albert, D. M.; Sheibani, N.; Polans, A. S. The Sustained Delivery of Resveratrol or a Defined Grape Powder Inhibits New Blood Vessel Formation in a Mouse Model of Choroidal Neovascularization. Molecules. 2014, 19, 17578–17603. DOI: 10.3390/molecules191117578.
  • Nagai, N.; Kubota, S.; Tsubota, K.; Ozawa, Y. Resveratrol Prevents the Development of Choroidal Neovascularization by Modulating AMP-Activated Protein Kinase in Macrophages and Other Cell Types. J. Nutr. Biochem. 2014, 25, 1218–1225. DOI: 10.1016/j.jnutbio.2014.05.015.
  • Hua, J.; Guerin, K. I.; Chen, J.; Michán, S.; Stahl, A.; Krah, N. M.; Seaward, M. R.; Dennison, R. J.; Juan, A. M.; Hatton, C. J., et al. Resveratrol Inhibits Pathologic Retinal Neovascularization in Vldlr(-/-) Mice. Invest. Ophthalmol. Vis. Sci. 2011, 52, 2809–2816. DOI: 10.1167/iovs.10-6496.
  • Chen, R.; Hollborn, M.; Grosche, A.; Reichenbach, A.; Wiedemann, P.; Bringmann, A.; Kohen, L. Effects of the Vegetable Polyphenols Epigallocatechin-3-gallate, Luteolin, Apigenin, Myricetin, Quercetin, and Cyanidin in Primary Cultures of Human Retinal Pigment Epithelial Cells. Mol. Vis. 2014, 20, 242–258.
  • Sasore, T.; Reynolds, A. L.; Kennedy, B. N. Targeting the PI3K/Akt/mTOR Pathway in Ocular Neovascularization. Adv. Exp. Med. Biol. 2014, 801, 805–811. DOI: 10.1007/978-1-4614-3209-8_101.
  • Busch, M.; Wasmuth, S.; Spital, G.; Lommatzsch, A.; Pauleikhoff, D. Activation of the ERK1/2-MAPK Signaling Pathway by Complement Serum in UV-POS-Pretreated ARPE-19 Cells. Ophthalmologica. 2018, 239, 215–224. DOI: 10.1159/000486404.
  • Lee, M.; Yun, S.; Lee, H.; Yang, J. Quercetin Mitigates Inflammatory Responses Induced by Vascular Endothelial Growth Factor in Mouse Retinal Photoreceptor Cells through Suppression of Nuclear Factor Kappa B. Int. J. Mol. Sci. 2017, 18, 2497. DOI: 10.3390/ijms18112497.
  • Vavilala, D. T.; Ponnaluri, V. K. C.; Kanjilal, D.; Mukherji, M. Evaluation of Anti-HIF and Anti-Angiogenic Properties of Honokiol for the Treatment of Ocular Neovascular Diseases. PLoS One. 2014, 9. DOI: 10.1371/journal.pone.0113717.
  • Paeng, S. H.; Jung, W.-K.; Park, W. S.; Lee, D.-S.; Kim, G.-Y.; Choi, Y. H.; Seo, S.-K.; Jang, W. H.; Choi, J. S.; Lee, Y.-M., et al. Caffeic Acid Phenethyl Ester Reduces the Secretion of Vascular Endothelial Growth Factor through the Inhibition of the ROS, PI3K and HIF-1α Signaling Pathways in Human Retinal Pigment Epithelial Cells under Hypoxic Conditions. Int. J. Mol. Med. 2015, 35, 1419–1426. DOI: 10.3892/ijmm.2015.2116.
  • Wang, Y.; Zhao, L.; Wang, C.; Hu, J.; Guo, X.; Zhang, D.; Wu, W.; Zhou, F.; Ji, B. Protective Effect of Quercetin and Chlorogenic Acid, Two Polyphenols Widely Present in Edible Plant Varieties, on Visible Light-Induced Retinal Degeneration in Vivo. J. Funct. Foods. 2017, 33, 103–111. DOI: 10.1016/j.jff.2017.02.034.
  • Du, W.; An, Y.; He, X.; Zhang, D.; He, W. Protection of Kaempferol on Oxidative Stress-Induced Retinal Pigment Epithelial Cell Damage. Oxid. Med. Cell. Longev. 2018, 2018, 1–14. DOI: 10.1155/2018/1610751.
  • Wang, Y.; Qi, W.; Huo, Y.; Song, G.; Sun, H.; Guo, X.; Wang, C. Cyanidin-3-glucoside Attenuates 4-Hydroxynonenal- and Visible Light-Induced Retinal Damage in Vitro and in Vivo. Food Funct. 2019, 10, 2871–2880. DOI: 10.1039/c9fo00273a.
  • Kim, J.; Lee, Y. M.; Jung, W.; Park, S.-B.; Kim, C.-S.; Kim, J. S. Aster Koraiensis Extract and Chlorogenic Acid Inhibit Retinal Angiogenesis in a Mouse Model of Oxygen-Induced Retinopathy. Evid. Based Complement. Alternat. Med. 2018. DOI: 10.1155/2018/6402650.
  • Wang, Y.; Zhang, D.; Liu, Y. X.; Wang, D.; Liu, J.; Ji, B. P. The Protective Effects of Berry-Derived Anthocyanins against Visible Light-Induced Damage in Human Retinal Pigment Epithelial Cells. J. Sci. Food Agric. 2015, 95, 936–944. DOI: 10.1002/jsfa.6765.
  • Park, H.; Lee, D.-S.; Yim, M.-J.; Choi, Y. H.; Park, S.; Seo, S.-K.; Choi, J. S.; Jang, W. H.; Yea, S. S.; Park, W. S., et al. 3,3ʹ-Diindolylmethane Inhibits VEGF Expression through the HIF-1α and NF-κB Pathways in Human Retinal Pigment Epithelial Cells under Chemical Hypoxic Conditions. Int. J. Mol. Med. 2015, 36, 301–308. DOI: 10.3892/ijmm.2015.2202.
  • Shanmuganathan, S.; Angayarkanni, N. Chebulagic Acid Chebulinic Acid and Gallic Acid, the Active Principles of Triphala, Inhibit TNFα Induced Pro-Angiogenic and Pro-Inflammatory Activities in Retinal Capillary Endothelial Cells by Inhibiting P38, ERK and NFkB Phosphorylation. Vascul. Pharmacol. 2018, 108, 23–35. DOI: 10.1016/j.vph.2018.04.005.
  • Lee, H. S.; Jun, J.-H.; Jung, E.-H.; Koo, B. A.; Kim, Y. S. Epigalloccatechin-3-gallate Inhibits Ocular Neovascularization and Vascular Permeability in Human Retinal Pigment Epithelial and Human Retinal Microvascular Endothelial Cells via Suppression of MMP-9 and VEGF Activation. Molecules. 2014, 19, 12150–12172. DOI: 10.3390/molecules190812150.
  • Cheng, S.-C.; Wu, Y.-H.; Huang, W.-C.; Pang, J.-H. S.; Huang, T.-H.; Cheng, C.-Y. Anti-Inflammatory Property of Quercetin through Downregulation of ICAM-1 and MMP-9 in TNF-α-Activated Retinal Pigment Epithelial Cells. Cytokine. 2019, 116, 48–60. DOI: 10.1016/j.cyto.2019.01.001.
  • Chen, Y.; Li, -X.-X.; Xing, N.-Z.; Cao, X.-G. Quercetin Inhibits Choroidal and Retinal Angiogenesis in Vitro. Graefes Arch. Clin. Exp. Ophthalmol. 2008, 246, 373–378. DOI: 10.1007/s00417-007-0728-9.
  • Lee, I.-S.; Kim, Y. S.; Jung, S.-H.; Yu, S. Y.; Kim, J.-H.; Sun, H.; Kim, J. S. Lignans from the Stems and Leaves of Brandisia Hancei and Their Effects on VEGF-Induced Vascular Permeability and Migration of HRECs and DLAV Formation in Zebrafish. Biosci. Biotechnol. Biochem. 2015, 79, 581–586. DOI: 10.1080/09168451.2014.991687.
  • Li, F.; Bai, Y.; Zhao, M.; Huang, L.; Li, S.; Li, X.; Chen, Y. Quercetin Inhibits Vascular Endothelial Growth Factor-Induced Choroidal and Retinal Angiogenesis in Vitro. Ophthalmic Res. 2015, 53, 109–116. DOI: 10.1159/000369824.
  • Zou, Y.; Chiou, G. C. Y. Apigenin Inhibits Laser-Induced Choroidal Neovascularization and Regulates Endothelial Cell Function. J. Ocul. Pharmacol. Ther. 2006, 22, 425–430. DOI: 10.1089/jop.2006.22.425.
  • Jhanji, V.; Liu, H.; Law, K.; Lee, V. Y.-W.; Huang, S.-F.; Pang, C.-P.; Yam, G. H.-F. Isoliquiritigenin from Licorice Root Suppressed Neovascularisation in Experimental Ocular Angiogenesis Models. Br. J. Ophthalmol. 2011, 95, 1309–1315. DOI: 10.1136/bjophthalmol-2011-300110.
  • Zhuang, P.; Shen, Y.; Lin, B. Q.; Zhang, W. Y.; Chiou, G. C. Y. Effect of Quercetin on Formation of Choroidal Neovascularization (CNV) in Age-Related Macular Degeneration(AMD). Eye. Sci. 2011, 26, 23–29. DOI: 10.3969/j.issn.1000-4432.2011.01.006.
  • Song, J. H.; Kim, Y. H.; Lee, S. C.; Kim, M. H.; Lee, J. H. Inhibitory Effect of Chrysin (5,7-dihydroxyflavone) on Experimental Choroidal Neovascularization in Rats. Ophthalmic Res. 2016, 56, 49–55. DOI: 10.1159/000444929.
  • Xu, J.; Tu, Y.; Wang, Y.; Xu, X.; Sun, X.; Xie, L.; Zhao, Q.; Guo, Y.; Gu, Y.; Du, J., et al. Prodrug of Epigallocatechin-3-gallate Alleviates Choroidal Neovascularization via Down-Regulating HIF-1α/VEGF/VEGFR2 Pathway and M1 Type Macrophage/Microglia Polarization. Biomed. Pharmacother. 2020, 121, 109606. DOI: 10.1016/j.biopha.2019.109606.
  • Ishikawa, K.; He, S.; Terasaki, H.; Nazari, H.; Zhang, H.; Spee, C.; Kannan, R.; Hinton, D. R. Resveratrol Inhibits Epithelial-Mesenchymal Transition of Retinal Pigment Epithelium and Development of Proliferative Vitreoretinopathy. Sci. Rep. 2015, 5. DOI: 10.1038/srep16386.
  • Idrees, S.; Sridhar, J.; Kuriyan, A. E. Proliferative Vitreoretinopathy: A Review. Int. Ophthalmol. Clin. 2019, 59, 221–240. DOI: 10.1097/IIO.0000000000000258.
  • Tosi, G. M.; Marigliani, D.; Romeo, N.; Toti, P. Disease Pathways in Proliferative Vitreoretinopathy: An Ongoing Challenge. J. Cell. Physiol. 2014, 229, 1577–1583. DOI: 10.1002/jcp.24606.
  • Xiao, W.; Chen, X.; Liu, X.; Luo, L.; Ye, S.; Liu, Y. Trichostatin A, a Histone Deacetylase Inhibitor, Suppresses Proliferation and Epithelial-Mesenchymal Transition in Retinal Pigment Epithelium Cells. J. Cell. Mol. Med. 2014, 18, 646–655. DOI: 10.1111/jcmm.12212.
  • Chen, C.-L.; Chen, Y.-H.; Tai, M.-C.; Liang, C.-M.; Lu, D.-W.; Chen, J.-T. Resveratrol Inhibits Transforming Growth Factor-β2-Induced Epithelial-to-Mesenchymal Transition in Human Retinal Pigment Epithelial Cells by Suppressing the Smad Pathway. Drug Des. Devel. Ther. 2017, 11, 163–173. DOI: 10.2147/DDDT.S126743.
  • Shanmuganathan, S.; Sumantran, V. N.; Angayarkanni, N. Epigallocatechin Gallate & Curcumin Prevent Transforming Growth Factor Beta 1-Induced Epithelial to Mesenchymal Transition in ARPE-19 Cells. Indian J. Med. Res. 2017, 146, S85–S96. DOI: 10.4103/ijmr.IJMR_1583_15.
  • Zhou, X.; Kuang, X.; Long, C.; Liu, W.; Tang, Y.; Liu, L.; Liu, H.; He, J.; Huang, Z.; Fan, Y., et al. Curcumin Inhibits Proliferation and Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells via Multiple Pathways. Curr. Mol. Med. 2017, 17, 312–319. DOI: 10.2174/1566524017666171106115655.
  • Zhang, J.; Zhou, N.; Zhang, B.; Ma, J. Effect of Biodegradable Scleral Plugs Containing Curcumin on Proliferative Vitreoretinopathy. Ophthalmic Res. 2018, 59, 30–36. DOI: 10.1159/000450553.
  • Cai, W.; Yu, D.; Fan, J.; Liang, X.; Jin, H.; Liu, C.; Zhu, M.; Shen, T.; Zhang, R.; Hu, W., et al. Quercetin Inhibits Transforming Growth Factor β1-Induced Epithelial–Mesenchymal Transition in Human Retinal Pigment Epithelial Cells via the Smad Pathway. Drug Des. Devel. Ther 2018, 12, 4149–4161. DOI: 10.2147/DDDT.S185618.
  • Sivasankar, S.; Lavanya, R.; Brindha, P.; Angayarkanni, N. Aqueous and Alcoholic Extracts of Triphala and Their Active Compounds Chebulagic Acid and Chebulinic Acid Prevented Epithelial to Mesenchymal Transition in Retinal Pigment Epithelial Cells, by Inhibiting SMAD-3 Phosphorylation. PLoS One. 2015, 10. DOI: 10.1371/journal.pone.0120512.
  • Lin, H.-Y.; Chen, Y.-S.; Wang, K.; Chien, H.-W.; Hsieh, Y.-H.; Yang, S.-F. Fisetin Inhibits Epidermal Growth Factor-Induced Migration of ARPE-19 Cells by Suppression of AKT Activation and Sp1-Dependent MMP-9 Expression. Mol. Vis. 2017, 23, 900–910.
  • Maheshwari, A.; Finger, P. T. Cancers of the Eye. Cancer Metastasis Rev. 2018, 37, 677–690. DOI: 10.1007/s10555-018-9762-9.
  • Kaliki, S.; Shields, C. L. Uveal Melanoma: Relatively Rare but Deadly Cancer. Eye (Lond). 2017, 31, 241–257. DOI: 10.1038/eye.2016.275.
  • Ortiz, M. V.; Dunkel, I. J. Retinoblastoma. J. Child Neurol. 2016, 31, 227–236. DOI: 10.1177/0883073815587943.
  • Fabian, I. D.; Onadim, Z.; Karaa, E.; Duncan, C.; Chowdhury, T.; Scheimberg, I.; Ohnuma, S.-I.; Reddy, M. A.; Sagoo, M. S. The Management of Retinoblastoma. Oncogene. 2018, 37, 1551–1560. DOI: 10.1038/s41388-017-0050-x.
  • Rao, R.; Honavar, S. G. Retinoblastoma. Indian J. Pediatr. 2017, 84, 937–944. DOI: 10.1007/s12098-017-2395-0.
  • Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.-P.; Li, S.; Chen, Y.-M.; Li, H.-B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients. 2016, 8. DOI: 10.3390/nu8080515.
  • Caban, M.; Owczarek, K.; Chojnacka, K.; Lewandowska, U. Overview of Polyphenols and Polyphenol-Rich Extracts as Modulators of IGF-1, IGF-1R, and IGFBP Expression in Cancer Diseases. J. Funct. Foods. 2019, 52, 389–407. DOI: 10.1016/j.jff.2018.11.003.
  • Sareen, D.; van Ginkel, P. R.; Takach, J. C.; Mohiuddin, A.; Darjatmoko, S. R.; Albert, D. M.; Polans, A. S. Mitochondria as the Primary Target of Resveratrol-Induced Apoptosis in Human Retinoblastoma Cells. Invest. Ophthalmol. Vis. Sci. 2006, 47, 3708–3716. DOI: 10.1167/iovs.06-0119.
  • Xue, C.; Chen, Y.; Hu, D.-N.; Iacob, C.; Lu, C.; Huang, Z. Chrysin Induces Cell Apoptosis in Human Uveal Melanoma Cells via Intrinsic Apoptosis. Oncol. Lett. 2016, 12, 4813–4820. DOI: 10.3892/ol.2016.5251.
  • Chen, L.-X.; He, Y.-J.; Zhao, S.-Z.; Wu, J.-G.; Wang, J.-T.; Zhu, L.-M.; Lin, -T.-T.; Sun, B.-C.; Li, X.-R. Inhibition of Tumor Growth and Vasculogenic Mimicry by Curcumin through Down-Regulation of the EphA2/PI3K/MMP Pathway in a Murine Choroidal Melanoma Model. Cancer Biol. Ther. 2011, 11, 229–235. DOI: 10.4161/cbt.11.2.13842.
  • Li, Y.; Sun, W.; Han, N.; Zou, Y.; Yin, D. Curcumin Inhibits Proliferation, Migration, Invasion and Promotes Apoptosis of Retinoblastoma Cell Lines through Modulation of miR-99a and JAK/STAT Pathway. BMC Cancer. 2018, 18. DOI: 10.1186/s12885-018-5130-y.
  • Sreenivasan, S.; Krishnakumar, S. Synergistic Effect of Curcumin in Combination with Anticancer Agents in Human Retinoblastoma Cancer Cell Lines. Curr. Eye Res. 2015, 40, 1153–1165. DOI: 10.3109/02713683.2014.987870.
  • Yu, X.; Zhong, J.; Yan, L.; Li, J.; Wang, H.; Wen, Y.; Zhao, Y. Curcumin Exerts Antitumor Effects in Retinoblastoma Cells by Regulating the JNK and P38 MAPK Pathways. Int. J. Mol. Med. 2016, 38, 861–868. DOI: 10.3892/ijmm.2016.2676.
  • Chao, S.-C.; Huang, S.-C.; Hu, D.-N.; Lin, H.-Y. Subtoxic Levels of Apigenin Inhibit Expression and Secretion of VEGF by Uveal Melanoma Cells via Suppression of ERK1/2 and PI3K/Akt Pathways. Evid. Based Complement. Alternat. Med. 2013. DOI: 10.1155/2013/817674.
  • Chang, C.-W.; Hsieh, Y.-H.; Yang, W.-E.; Yang, S.-F.; Chen, Y.; Hu, D.-N. Epigallocatechingallate Inhibits Migration of Human Uveal Melanoma Cells via Downregulation of Matrix Metalloproteinase-2 Activity and ERK1/2 Pathway. BioMed. Res. Int. 2014, 2014, 1–9. DOI: 10.1155/2014/141582.
  • Song, W.; Zhao, X.; Xu, J.; Zhang, H. Quercetin Inhibits Angiogenesis-Mediated Human Retinoblastoma Growth by Targeting Vascular Endothelial Growth Factor Receptor. Oncol. Lett. 2017, 14, 3343–3348. DOI: 10.3892/ol.2017.6623.
  • Wang, L.; Chen, N.; Cheng, H. Fisetin Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis in Retinoblastoma Cells. Oncol. Lett. 2020, 20, 1239–1244. DOI: 10.3892/ol.2020.11679.
  • Lin, H.-J.; Su, -C.-C.; Lu, H.-F.; Yang, J.-S.; Hsu, S.-C.; Ip, S.-W.; Wu, -J.-J.; Li, Y.-C.; Ho, -C.-C.; Wu, -C.-C., et al. Curcumin Blocks Migration and Invasion of Mouse-Rat Hybrid Retina Ganglion Cells (N18) through the Inhibition of MMP-2, −9, FAK, Rho A and Rock-1 Gene Expression. Oncol. Rep. 2010, 23, 665–670.
  • Weinreb, R. N.; Aung, T.; Medeiros, F. A. The Pathophysiology and Treatment of Glaucoma: A Review. JAMA. 2014, 311, 1901–1911. DOI: 10.1001/jama.2014.3192.
  • Molokhia, S. A.; Thomas, S. C.; Garff, K. J.; Mandell, K. J.; Wirostko, B. M. Anterior Eye Segment Drug Delivery Systems: Current Treatments and Future Challenges. J. Ocul. Pharmacol. Ther. 2013, 29, 92–105. DOI: 10.1089/jop.2012.0241.
  • Pascolini, D.; Mariotti, S. P. Global Estimates of Visual Impairment: 2010. Br. J. Ophthalmol. 2012, 96, 614–618. DOI: 10.1136/bjophthalmol-2011-300539.
  • Izzotti, A.; Ceccaroli, C.; Longobardi, M. G.; Micale, R. T.; Pulliero, A.; Maestra, S. L.; Saccà, S. C. Molecular Damage in Glaucoma: From Anterior to Posterior Eye Segment. The MicroRNA Role. Microrna. 2015, 4, 3–17. DOI: 10.2174/2211536604666150707124640.
  • Rabesandratana, O.; Goureau, O.; Orieux, G. Pluripotent Stem Cell-Based Approaches to Explore and Treat Optic Neuropathies. Front. Neurosci. 2018, 12. DOI: 10.3389/fnins.2018.00651.
  • Jang, H.; Choi, Y.; Ahn, H. R.; Jung, S. H.; Lee, C. Y. Effects of Phenolic Acid Metabolites Formed after Chlorogenic Acid Consumption on Retinal Degeneration in Vivo. Mol. Nutr. Food Res. 2015, 59, 1918–1929. DOI: 10.1002/mnfr.201400897.
  • Luo, H.; Zhuang, J.; Hu, P.; Ye, W.; Chen, S.; Pang, Y.; Li, N.; Deng, C.; Zhang, X. Resveratrol Delays Retinal Ganglion Cell Loss and Attenuates Gliosis-Related Inflammation from Ischemia-Reperfusion Injury. Invest. Ophthalmol. Vis. Sci. 2018, 59, 3879–3888. DOI: 10.1167/iovs.18-23806.
  • Lin, C.; Wu, X. Curcumin Protects Trabecular Meshwork Cells From Oxidative Stress. Invest. Ophthalmol. Vis. Sci. 2016, 57, 4327–4332. DOI: 10.1167/iovs.16-19883.
  • Burugula, B.; Ganesh, B. S.; Chintala, S. K. Curcumin Attenuates Staurosporine-Mediated Death of Retinal Ganglion Cells. Invest. Ophthalmol. Vis. Sci. 2011, 52, 4263–4273. DOI: 10.1167/iovs.10-7103.
  • Rubina, K. A.; Sysoeva, V. Y.; Zagorujko, E. I.; Tsokolaeva, Z. I.; Kurdina, M. I.; Parfyonova, Y. V.; Tkachuk, V. A. Increased Expression of uPA, uPAR, and PAI-1 in Psoriatic Skin and in Basal Cell Carcinomas. Arch. Dermatol. Res. 2017, 309, 433–442. DOI: 10.1007/s00403-017-1738-z.
  • Li, S.; Wei, X.; He, J.; Tian, X.; Yuan, S.; Sun, L. Plasminogen Activator Inhibitor-1 in Cancer Research. Biomed. Pharmaother. 2018, 105, 83–94. DOI: 10.1016/j.biopha.2018.05.119.
  • Mazzolani, F. Pilot Study of Oral Administration of a Curcumin-Phospholipid Formulation for Treatment of Central Serous Chorioretinopathy. Clin. Ophthalmol. 2012, 6, 801–806. DOI: 10.2147/OPTH.S31859.
  • Steigerwalt, R.; Nebbioso, M.; Appendino, G.; Belcaro, G.; Ciammaichella, G.; Cornelli, U.; Luzzi, R.; Togni, S.; Dugall, M.; Cesarone, M. R., et al. Meriva®, a Lecithinized Curcumin Delivery System, in Diabetic Microangiopathy and Retinopathy. Panminerva. Med. 2012, 54, 11–16.
  • Mazzolani, F.; Togni, S. Oral Administration of a Curcumin-Phospholipid Delivery System for the Treatment of Central Serous Chorioretinopathy: A 12-Month Follow-Up Study. Clin. Ophthalmol. 2013, 7, 939–945. DOI: 10.2147/OPTH.S45820.
  • Mazzolani, F.; Togni, S.; Giacomelli, L.; Eggenhoffner, R.; Franceschi, F. Oral Administration of a Curcumin-Phospholipid Formulation (Meriva®) for Treatment of Chronic Diabetic Macular Edema: A Pilot Study. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3617–3625. DOI: 10.26355/eurrev_201806_15189.
  • Subramani, M.; Ponnalagu, M.; Krishna, L.; Jeyabalan, N.; Chevour, P.; Sharma, A.; Jayadev, C.; Shetty, R.; Begum, N.; Archunan, G., et al. Resveratrol Reverses the Adverse Effects of Bevacizumab on Cultured ARPE-19 Cells. Sci. Rep. 2017, 7, DOI: 10.1038/s41598-017-12496-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.