407
Views
0
CrossRef citations to date
0
Altmetric
Review

Drivers and Barriers for Commercial Uptake of Edible Coatings for Fresh Fruits and Vegetables Industry- A Review

, , ORCID Icon, , & ORCID Icon

References

  • FAO. Fruit and Vegetables: An Overview on Socio-economical and Technical Issues; FAO Agricultural Services Bulletin 149: Rome, 2003.
  • FAO. The Future of Food and Agriculture Alternative Pathways to 2050. Supplementary material: Rome, 2018.
  • Yahaya, S.; Mardiyya, A. Review Of Post-Harvest Losses Of Fruits And Vegetables. Biomed. J. Sci. Tech. Res. 2019, 13(4),10192–10200.
  • Flores-López, M.; Cerqueira, M.; de Rodríguez, D.; Vicente, A. Perspectives On Utilization Of Edible Coatings And Nano-Laminate Coatings For Extension Of Postharvest Storage Of Fruits And Vegetables. Food Eng. Rev. 2015, 8(3), 292–305. DOI: 10.1007/s12393-015-9135-x.
  • Barbosa-Pereira, L.; Aurrekoetxea, G.; Angulo, I.; Paseiro-Losada, P.; Cruz, J. Development Of New Active Packaging Films Coated With Natural Phenolic Compounds To Improve The Oxidative Stability Of Beef. Meat Sci. 2014, 97(2), 249–254. DOI: 10.1016/j.meatsci.2014.02.006.
  • Janjarasskul, T.; Krochta, J. Edible Packaging Materials. Ann. Rev. Food Sci. Technol. 2010, 1(1), 415–448. DOI: 10.1146/annurev.food.080708.100836.
  • Kader, A. Quality Parameters of Fresh-cut Fruit and Vegetable Products. In Fresh-cut Fruits and Vegetables, LLC; Lamikanra, O. (Boca Raton: CRC Press), Ed.; 2002; pp. 11–20. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1541-4337.2007.00018 (accessed June 21, 2021).
  • Raybaudi-Massilia, R.; Vásquez, F.; Reyes, A.; Troncone, G.; Tapia, M. Novel Edible Coating Of Fresh-Cut Fruits: Application To Prevent Calcium And Vitamin D Deficiencies In Children. J. Sci. Res. Rep. 2015, 6(2), 142–156. DOI: 10.9734/JSRR/2015/15964.
  • Raghav, P.; Agarwal, N.; Saini, M. Edible Coating of Fruits and Vegetables: A Review. Int. J. Sci. Res. Mod. Educ. 2016, 1(1), 2455–5630. https://www.researchgate.net/publication/331298687_EDIBLE_COATING_OF_FRUITS_AND_VEGETABLES_A_REVIEW Accessed18 March 2021
  • Han, J. Protein-based Films and Coatings; CRC Press: Florida, 2002; pp 485–498.
  • Al-Tayyar, N.; Youssef, A.; Al-hindi, R. Antimicrobial Food Packaging Based On Sustainable Bio-Based Materials For Reducing Foodborne Pathogens: A Review. Food Chem. 2020, 310, 125915. DOI: 10.1016/j.foodchem.2019.125915.
  • Trajkovska Petkoska, A.; Daniloski, D.; D’Cunha, N.; Naumovski, N.; Broach, A. Edible Packaging: Sustainable Solutions And Novel Trends In Food Packaging. Food Res. Int. 2021, 140, 109981. DOI: 10.1016/j.foodres.2020.109981.
  • Aguirre-Joya, J.; Leon-Zapata, M.; Alvarez-Perez, O.; Torres- León, C.; Nieto-Oropeza, D.; Ventura-Sobrevilla, J.; Aguilar, M.; Ruelas-Chacón, X.; Ramos-Aguiñaga, M.; Aguilar, C. Food Packaging and Preservation; Academic Press: Cambridge, 2018; pp 1–61.
  • Sason, G.; Nussinovitch, A. Selective Protective Coating For Damaged Pomegranate Arils. Food Hydrocolloids. 2020, 103, 105647. DOI: 10.1016/j.foodhyd.2020.105647.
  • Realini, C.; Marcos, B. Active And Intelligent Packaging Systems For A Modern Society. Meat Sci. 2014, 98(3), 404–419. DOI: 10.1016/j.meatsci.2014.06.031.
  • Cheng, S.; Wang, B.; Weng, Y. Antioxidant And Antimicrobial Edible Zein/Chitosan Composite Films Fabricated By Incorporation Of Phenolic Compounds And Dicarboxylic Acids. LWT - Food Sci. Technol. 2015, 63(1), 115–121. DOI: 10.1016/j.lwt.2015.03.030.
  • Vital, A.; Guerrero, A.; Kempinski, E.; Monteschio, J.; Sary, C.; Ramos, T.; Campo, M.; Prado, I. Consumer Profile And Acceptability Of Cooked Beef Steaks With Edible And Active Coating Containing Oregano And Rosemary Essential Oils. Meat Sci. 2018, 143, 153–158. DOI: 10.1016/j.meatsci.2018.04.035.
  • López Aguayo, M.; Grande Burgos, M.; Pérez Pulido, R.; Gálvez, A.; Lucas López, R. Effect Of Different Activated Coatings Containing Enterocin AS-48 Against Listeria Monocytogenes On Apple Cubes. Innovative Food Sci. Emerg. Technol. 2016, 35, 177–183. DOI: 10.1016/j.ifset.2016.05.006.
  • Arismendi, N.; Vargas, M.; López, M.; Barría, Y.; Zapata, N. Promising Antimicrobial Activity Against The Honey Bee Parasite Nosema Ceranae By Methanolic Extracts From Chilean Native Plants And Propolis. J. Apic. Res. 2018, 57(4), 522–535. DOI: 10.1080/00218839.2018.1453006.
  • Vanderroost, M.; Ragaert, P.; Devlieghere, F.; De Meulenaer, B. Intelligent Food Packaging: The Next Generation. Trends Food Sci. Technol. 2014, 39(1), 47–62. DOI: 10.1016/j.tifs.2014.06.009.
  • Zambrano-Zaragoza, M.; González-Reza, R.; Mendoza-Muñoz, N.; Miranda-Linares, V.; Bernal-Couoh, T.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Nanosystems In Edible Coatings: A Novel Strategy For Food Preservation. Int. J. Mol. Sci. 2018, 19(3), 705. DOI: 10.3390/ijms19030705.
  • Quirós-Sauceda, A.; Ayala-Zavala, J.; Olivas, G.; González-Aguilar, G. Edible Coatings As Encapsulating Matrices For Bioactive Compounds: A Review. J. Food Sci. Technol. 2014, 51(9), 1674–1685. DOI: 10.1007/s13197-013-1246-x.
  • Suput, D.; Lazic, V.; Popovic, S.; Hromis, N. Edible Films And Coatings: Sources, Properties And Application. Food Feed Res. 2015, 42(1), 11–22. DOI: 10.5937/FFR1501011S.
  • Han, J.; Ruiz-Garcia, L.; Qian, J.; Yang, X. Food Packaging: A Comprehensive Review And Future Trends. Compr. Rev. Food Sci. Food Saf. 2018, 17(4), 860–877. DOI: 10.1111/1541-4337.12343.
  • Suhag, R.; Kumar, N.; Petkoska, A.; Upadhyay, A. Film Formation And Deposition Methods Of Edible Coating On Food Products: A Review. Food Res. Int. 2020, 136, 109582. DOI: 10.1016/j.foodres.2020.109582.
  • Pavlath, A.; Orts, W. Edible Films and Coatings: Why, What, and How? In Edible Films and Coatings for Food Applications, 1st ed.; Embuscado, M., Huber, K., Eds.; Springer: NY, 2009; pp 1–25.
  • Donhowe, I.; Fennema, O. The Effects of Plasticizers on Crystallinity, Permeability, and Mechanical Properties of Methylcellulose Films. J. Food Process. Preserv. 1993, 17(4), 247–257. DOI: 10.1111/j.1745-4549.1993.tb00729.x.
  • Warriner, K.; Huber, A.; Namvas, A.; Fan, W.; Dinfield, K. Recent Advance in Microbial Safety of Fresh Fruits and Vegetables. Adv. Food Nutr. Res. J. 2009, 57, 155–208. (accessed June 20, 2021).
  • Pascall, M.; Lin, S. The Application of Edible Polymeric Films and Coatings in the Food Industry. J. Food Process. Technol. 2012, 4(2). DOI: 10.4172/2157-7110.1000e116.
  • Prasad, N.; Batra, E. Edible Coating (The Future of Packaging): Cheapest and Alternative Source to Extend the Post-harvest Changes: A Review. Asian J. Biochem. Pharm. Res. 2015, 5(3), 2231–2560. (accessed 20 June, 2021).
  • Sumimoto, M. Paper and Paperboard Containers. In Food Packaging; Kadoya, T., Ed.; San Diego: Academic Press, 2012; pp 53–83.
  • Cheng, G.; Baldwin, E. Edible Coatings and Films to Improve Food Quality; CRC Press: Boca Raton, 2011; pp 383–417.
  • Hernandez, E. Edible Coating from Lipids and Resins. In Edible Coatings and Films to Improve Food Quality; Krochta, J.M., Balwin, E., and Niperos-Carriedo, M., Eds.; Lancaster: Technomic Publishing Company, 1994; pp. 279–303. (accessed June 20, 2021).
  • Ladanyia, M.; Ladaniya, M. Citrus Fruit. Elsevier Science, 2010.
  • Ramana Rao, T.; Baraiya, N.; Vyas, P.; Patel, D. Composite Coating of Alginate-olive Oil Enriched with Antioxidants Enhances Postharvest Quality and Shelf Life of Ber Fruit (Ziziphus Mauritiana Lamk. Var. Gola). J. Food Sci. Technol. 2015, 53(1), 748–756. DOI: 10.1007/s13197-015-2045-3.
  • Chiabrando, V.; Giacalone, G. 2017. Quality Evaluation of Blueberries Coated with Chitosan and Sodium Alginate during Postharvest Storage. Int. Food Res. J. 241, 4, 553–1561 http://ifrj.upm.edu.my/24%2004%202017/29.pdf (accessed June 21, 2021).
  • Amanatidou, A.; Slump, R. A.; Gorris, L. G. M.; Smid, E. J. High Oxygen and High Carbon Dioxide Modified Atmospheres for Shelf-life Extension of Minimally Processed Carrots. J. Food Sci. 2000, 65, 61–66. DOI: 10.1111/j.1365-2621.2000.tb15956.x.
  • Díaz-Mula, H.; Serrano, M.; Valero, D. Alginate Coatings Preserve Fruit Quality and Bioactive Compounds during Storage of Sweet Cherry Fruit. Food Bioprocess. Technol. 2011, 5(8), 2990–2997. DOI: 10.1007/s11947-011-0599-2.
  • Robles-Sánchez, R.; Rojas-Graü, M.; Odriozola-Serrano, I.; González-Aguilar, G.; Martin-Belloso, O. Influence of Alginate-based Edible Coating as Carrier of Antibrowning Agents on Bioactive Compounds and Antioxidant Activity in Fresh-cut Kent Mangoes. LWT - Food Sci. Technol. 2013, 50(1), 240–246. DOI: 10.1016/j.lwt.2012.05.021.
  • Maftoonazad, N.; Ramaswamy, H.; Marcotte, M. Shelf-life Extension of Peaches through Sodium Alginate and Methyl Cellulose Edible Coatings. Int. J. Food Sci. Technol. 2008, 43(6), 951–957. DOI: 10.1111/j.1365-2621.2006.01444.x.
  • Moraes, K.; Fagundes, C.; Melo, M.; Andreani, P.; Monteiro, A. Conservation of Williams Pear Using Edible Coating with Alginate and Carrageenan. Food Sci. Technol. 2012, 32(4), 679–684. DOI: 10.1590/s0101-20612012005000106.
  • Azarakhsh, N.; Osman, A.; Ghazali, H.; Tan, C.; Mohd Adzahan, N. Lemongrass Essential Oil Incorporated Into Alginate-Based Edible Coating For Shelf-Life Extension And Quality Retention Of Fresh-Cut Pineapple. Postharvest. Biol. Technol. 2014, 88, 1–7. DOI: 10.1016/j.postharvbio.2013.09.004.
  • Valero, D.; Díaz-Mula, H.; Zapata, P.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M. Effects of Alginate Edible Coating on Preserving Fruit Quality in Four Plum Cultivars during Postharvest Storage. Postharvest. Biol. Technol. 2013, 77, 1–6. DOI: 10.1016/j.postharvbio.2012.10.011.
  • Guerreiro, A.; Gago, C.; Faleiro, M.; Miguel, M.; Antunes, M. Raspberry Fresh Fruit Quality As Affected By Pectin- And Alginate-Based Edible Coatings Enriched With Essential Oils. Sci. Hortic. 2015, 194, 138–146. DOI: 10.1016/j.scienta.2015.08.004.
  • Zapata, P.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Valero, D.; Serrano, M. Use of Alginate or Zein as Edible Coatings to Delay Postharvest Ripening Process and to Maintain Tomato (Solanum Lycopersicon Mill) Quality. J. Sci. Food Agric. 2008, 88, 1287–1293. DOI: 10.1002/jsfa.3220.
  • Sogvar, O.; Koushesh Saba, M.; Emamifar, A. Aloe Vera and Ascorbic Acid Coatings Maintain Postharvest Quality and Reduce Microbial Load of Strawberry Fruit. Postharvest. Biol. Technol. 2016, 114, 29–35. DOI: 10.1016/j.postharvbio.2015.11.019.
  • Maqbool, M.; Ali, A.; Alderson, P.; Mohamed, M.; Siddiqui, Y.; Zahid, N. Postharvest Application of Gum Arabic and Essential Oils for Controlling Anthracnose and Quality of Banana and Papaya during Cold Storage. Postharvest. Biol. Technol. 2011, 62(1), 71–76. DOI: 10.1016/j.postharvbio.2011.04.002.
  • Murmu, S.; Mishra, H. The Effect of Edible Coating Based on Arabic Gum, Sodium Caseinate and Essential Oil of Cinnamon and Lemon Grass on Guava. Food Chem. 2018, 245, 820–828. DOI: 10.1016/j.foodchem.2017.11.104.
  • Khaliq, G.; Muda Mohamed, M.; Ali, A.; Ding, P.; Ghazali, H. Effect of Gum Arabic Coating Combined with Calcium Chloride on Physico-chemical and Qualitative Properties of Mango (Mangifera Indica L.) Fruit during Low Temperature Storage. Sci. Hortic. 2015, 190(190), 187–194. DOI: 10.1016/j.scienta.2015.04.020.
  • Mahfoudhi, N.; Hamdi, S. Use of Almond Gum and Gum Arabic as Novel Edible Coating to Delay Postharvest Ripening and to Maintain Sweet Cherry (P Runus Avium) Quality during Storage. J. Food Process. Preserv. 2014, 39(6), 1499–1508. DOI: 10.1111/jfpp.12369.
  • Ali, A.; Maqbool, M.; Ramachandran, S.; Alderson, P. Gum Arabic as a Novel Edible Coating for Enhancing Shelf-life and Improving Postharvest Quality of Tomato (Solanum Lycopersicum L.) Fruit. Postharvest. Biol. Technol. 2010, 58(1), 42–47. DOI: 10.1016/j.postharvbio.2010.05.005.
  • Hashemi, S. M. B.; Khaneghah, M. M. Characterization of Novel Basil-seed Gum Active Edible Films and Coatings Containing Oregano Essential Oil. Prog. Org. Coat. 2017, 110, 35–41. DOI: 10.1016/j.porgcoat.2017.04.041.
  • Saowakon, K.; Deewatthanawong, R.; Khurnpoon, L. Effect of Carboxymethyl Cellulose as Edible Coating on Postharvest Quality of Rambutan Fruit under Ambient Temperature. Int. J. Agr. Technol. 2017, 13(7.1), 1449–1457 https://www.researchgate.net/publication/347325855_Effect_of_Carboxymethyl_Cellulose_as_Edible_Coating_on_Postharvest_Quality_of_Rambutan_Fruit_under_Ambient_Temperature (accessed June 21, 2021).
  • Ribeiro, C.; Vicente, A.; Teixeira, J.; Miranda, C. Optimization of Edible Coating Composition to Retard Strawberry Fruit Senescence. Postharvest. Biol. Technol. 2007, 44(1), 63–70. DOI: 10.1016/j.postharvbio.2006.11.015.
  • Lin, M.; Lasekan, O.; Saari, N.; Khairunniza-Bejo, S. Effect of Chitosan and Carrageenan-based Edible Coatings on Post-harvested Longan (Dimocarpus Longan) Fruits. CyTA - J. Food. 2018, 16(1), 490–497. DOI: 10.1080/19476337.2017.1414078.
  • Ghasemnezhad, M.; Shiri, M.; Sanavi, M. Effect of Chitosan Coatings on Some Quality Indices of Apricot (Prunus Armeniaca L.) During Cold Storage. Caspian J. Environ. Sci. 2010, 8(1), 25–33 https://www.researchgate.net/publication/228354837_Effect_of_chitosan_coatings_on_some_quality_indices_of_apricot_Prunus_armeniaca_L_during_cold_storage (accessed June 21, 2021).
  • Dos Santos, N.S; Athayde Aguiar, A.J; de Oliveira, C.E; Veríssimo de Sales, C.; de Melo e Silva, S.; Sousa Da Silva, R.; Stamford, T. C. M.; de Souza, E. L. . Efficacy of the Application of a Coating Composed of Chitosan and Origanum Vulgare L. Essential Oil to Control Rhizopus Stolonifer and Aspergillus Niger in Grapes (Vitis Labrusca L.). Food Microbiol. 2012, 32(2), 345–353. DOI: 10.1016/j.fm.2012.07.014.
  • Hong, K.; Xie, J.; Zhang, L.; Sun, D.; Gong, D. Effects of Chitosan Coating on Postharvest Life and Quality of Guava (Psidium Guajava L.) Fruit during Cold Storage. Sci. Hortic. 2012, 144, 172–178. DOI: 10.1016/j.scienta.2012.07.002.
  • Cháfer, M.; Sánchez-González, L.; González-Martínez, C.; Chiralt, A. Fungal Decay and Shelf Life of Oranges Coated with Chitosan and Bergamot, Thyme, and Tea Tree Essential Oils. J. Food Sci. 2012, 77(8), E182–E187. DOI: 10.1111/j.1750-3841.2012.02827.x.
  • Escamilla-García, M.; Rodríguez-Hernández, M.; Hernández-Hernández, H.; Delgado-Sánchez, L.; García-Almendárez, B.; Amaro-Reyes, A.; Regalado-González, C. Effect of an Edible Coating Based on Chitosan and Oxidized Starch on Shelf Life of Carica Papaya L., And Its Physicochemical and Antimicrobial Properties. Coatings. 2018, 8(9), 318. DOI: 10.3390/coatings8090318.
  • Kaya, M.; Česonienė, L.; Daubaras, R.; Leskauskaitė, D.; Zabulionė, D. Chitosan Coating of Red Kiwifruit (Actinidia Melanandra) for Extending of the Shelf Life. Int. J. Biol. Macromol. 2016, 85, 355–360. DOI: 10.1016/j.ijbiomac.2016.01.012.
  • Khalifa, I.; Barakat, H.; El-Mansy, H.; Soliman, S. Enhancing the Keeping Quality of Fresh Strawberry Using Chitosan-incorporated Olive Processing Wastes. Food Biosci. 2016, 13, 69–75. DOI: 10.1016/j.fbio.2015.12.008.
  • Adetunji, C.; Ojediran, J.; Adetunji, J.; Owa, S. Influence of Chitosan Edible Coating on Postharvest Qualities of Capsicum Annum L. During Storage in Evaporative Cooling System. Croat. J. Food Sci.Technol. 2019, 11(1), 59–66. DOI: 10.17508/cjfst.2019.11.1.09.
  • Moreira, M.; Cassani, L.; Martín-Belloso, O.; Soliva-Fortuny, R. Effects of Polysaccharide-based Edible Coatings Enriched with Dietary Fiber on Quality Attributes of Fresh-cut Apples. J. Food Sci. Technol. 2015, 52(12), 7795–7805. DOI: 10.1007/s13197-015-1907-z.
  • Saberi, B.; Golding, J.; Marques, J.; Pristijono, P.; Chockchaisawasdee, S.; Scarlett, C.; Stathopoulos, C. Application of Biocomposite Edible Coatings Based on Pea Starch and Guar Gum on Quality, Storability, and Shelf Life of ‘Valencia’ Oranges. Postharvest. Biol. Technol. 2018, 137, 9–20. DOI: 10.1016/j.postharvbio.2017.11.003.
  • Dong, F.; Wang, X. Guar Gum and Ginseng Extract Coatings Maintain the Quality of Sweet Cherry. LWT. 2018, 89, 117–122. DOI: 10.1016/j.lwt.2017.10.035.
  • Parafati, L.; Vitale, A.; Restuccia, C.; Cirvilleri, G. The Effect of Locust Bean Gum (Lbg)-based Edible Coatings Carrying Biocontrol Yeasts against Penicillium Digitatum and Penicillium Italicum Causal Agents of Postharvest Decay of Mandarin Fruit. Food Microbiol. 2016, 58, 87–94. DOI: 10.1016/j.fm.2016.03.014.
  • Nadim, Z.; Ahmadi, E.; Sarikhani, H.; Amiri Chayjan, R. Effect of Methylcellulose-Based Edible Coating on Strawberry Fruit’s Quality Maintenance during Storage. J. Food Process. Preserv. 2014, 39(1), 80–90. DOI: 10.1111/jfpp.12227.
  • Ayranci, E.; Tunc, S. The Effect of Edible Coatings on Water and Vitamin C Loss of Apricots (Armeniaca Vulgaris Lam.) And Green Peppers (Capsicum Annuum L.). Food Chem. 2004, 87(3), 339–342. DOI: 10.1016/j.foodchem.2003.12.003.
  • Maftoonazad, N.; Ramasawmy, H. Effect of Pectin-based Coating on the Kinetics of Quality Change Associated with Stored Avocados. J. Food Process. Preserv. 2008, 32(4), 621–643. DOI: 10.1111/j.1745-4549.2008.00203.x.
  • Moalemiyan, M.; Ramasawmy, H.; Maftoonazad, N. Pectin-based Edible Coating for Shelf-life Extension of Ataulfo Mango. J. Food Process Eng. 2011, 35(4), 572–600. DOI: 10.1111/j.1745-4530.2010.00609.x.
  • Ramirez, M.; Timón, M.; Petrón, M.; Andrés, A. Effect of Chitosan, Pectin and Sodium Caseinate Edible Coatings on Shelf Life of Fresh-Cut P Runus Persica Var. Nectarine. J. Food Process. Preserv. 2015, 39(6), 2687–2697. DOI: 10.1111/jfpp.12519.
  • Treviño-Garza, M.; García, S.; Del Socorro Flores-gonzález, M.; Arévalo-Niño, K. Edible Active Coatings Based on Pectin, Pullulan, and Chitosan Increase Quality and Shelf Life of Strawberries (Fragaria Ananassa). J. Food Sci. 2015, 80(8), M1823–M1830. DOI: 10.1111/1750-3841.12938.
  • Salman, S.; Balci, F.; Caglar, A. F.; Tekin, S.; Torun, M.; Ozdemir, F. Effect of Pullulan, Sodium Alginate and Pectin Based Edible Coatings on the Quality of Fresh-cut Kiwi Fruit during Cold Storage; Innovations in Food Packaging, Shelf Life and Food Safety. 2015.
  • Li, L.; Sun, J.; Gao, H.; Shen, Y.; Li, C.; Yi, P., He, X., Ling, D., Sheng, J., Li, J.; et. al. Effects of Polysaccharide-Based Edible Coatings on Quality and Antioxidant Enzyme System of Strawberry during Cold Storage. Int. J. Polym. Sci. 2017, 1–8. DOI: 10.1155/2017/9746174.
  • Sapper, M.; Chiralt, A. Starch-Based Coatings For Preservation Of Fruits And Vegetables. Coatings. 2018, 8(5), 152. DOI: 10.3390/coatings8050152.
  • Sharma, S.; Rao, T. Xanthan Gum Based Edible Coating Enriched with Cinnamic Acid Prevents Browning and Extends the Shelf-life of Fresh-cut Pears. LWT - Food Sci. Technol. 2015, 62(1), 791–800. DOI: 10.1016/j.lwt.2014.11.050.
  • Shon, J.; Choi, Y. Effect of Edible Coatings Containing Soy Protein Isolate (SPI) on the Browning and Moisture Content of Cut Fruit and Vegetables. J. Appl. Biol. Chem. 2011, 54(3), 190–196. DOI: 10.3839/jabc.2011.032.
  • Tanada-Palmu, P.; Grosso, C. Effect of Edible Wheat Gluten-based Films and Coatings on Refrigerated Strawberry (Fragaria Ananassa) Quality. Postharvest. Biol. Technol. 2005, 36(2), 199–208. DOI: 10.1016/j.postharvbio.2004.12.003.
  • Hassani, F.; Garousi, F.; Javanmard, M. Edible Coating Based on Whey Protein Concentrate - Rice Bran Oil to Maintain the Physical and Chemical Properties of the Kiwifruit (Actinidia Deliciosa). Trakia J. Sci. 2012, 10(1), 26–34. accessed June 21, 2021.
  • Bai, J.; Alleyne, V.; Hagenmaier, R.; Mattheis, J.; Baldwin, E. Formulation of Zein Coatings for Apples (Malus Domestica Borkh). Postharvest. Biol. Technol. 2003, 28(2), 259–268. DOI: 10.1016/s0925-5214(02)00182-5.
  • Eshetu, A.; Ibrahim, A.; Forsido, S.; Kuyu, C. Effect of Beeswax and Chitosan Treatments on Quality and Shelf Life of Selected Mango (Mangifera Indica L.) Cultivars. Heliyon. 2019, 5(1), e01116. DOI: 10.1016/j.heliyon.2018.e01116.
  • Mladenoska, I. The Potential Application of Novel Beeswax Edible Coatings Containing Coconut Oil in the Minimal Processing of Fruits. Adv. Technol. 2012, 1(2), 26–34. accessed June 21, 2021.
  • Ochoa, E.; Saucedo-Pompa, S.; Rojas-Molina, R.; de La Garza, H.; Charles-Rodríguez, A.; Aguilar, C. Evaluation of a Candelilla Wax-Based Edible Coating to Prolong the Shelf-Life Quality and Safety of Apples. Am J Agric Biol Sci. 2011, 6(1), 92–98. DOI: 10.3844/ajabssp.2011.92.98.
  • Kore, V.; Tawade, S.; Kabir, J. Application of Edible Coatings on Fruits and Vegetables. Imperial J. Interdiscip. Res (IJIR). 2017, 3(1), 2454–1362. (accessed June 21, 2021.
  • Dang, K.; Singh, Z.; Swinny, E. Edible Coatings Influence Fruit Ripening, Quality, and Aroma Biosynthesis in Mango Fruit. J. Agric. Food Chem. 2008, 56(4), 1361–1370. DOI: 10.1021/jf072208a.
  • Mota, W.; Salomão, L.; Cecon, P.; Finger, F. Waxes, and Plastic Film in Relation to the Shelf Life of Yellow Passion Fruit. Sci. Agricola. 2003, 60(1), 51–57. DOI: 10.1590/s0103-90162003000100008.
  • Cortez-Mazatán, G.; Valdez-Aguilar, L.; Lira-Saldivar, R.; Peralta-Rodríguez, R. Polyvinyl Acetate as an Edible Coating for Fruits Effect on Selected Physiological and Quality Characteristics of Tomato. Rev. Chapingo Ser. Hortic. 2011, XVII(1), 15–22. DOI: 10.5154/r.rchsh.2011.17.003.
  • Ma, J.; Zhou, Z.; Li, K.; Li, K.; Liu, L.; Zhang, W.; Xu, J.; Tu, X.; Du, L.; Zhang, H.; et al. Novel Edible Coating Based on Shellac and Tannic Acid for Prolonging Postharvest Shelf Life and Improving Overall Quality of Mango. Food Chem. 2021, 354, 129510. DOI: 10.1016/j.foodchem.2021.129510.
  • Velickova, E.; Winkelhausen, E.; Kuzmanova, S.; Alves, V.; Moldão-Martins, M. Impact of Chitosan-beeswax Edible Coatings on the Quality of Fresh Strawberries (Fragaria Ananassa Cv Camarosa) under Commercial Storage Conditions. LWT - Food Sci. Technol. 2013, 52(2), 80–92. DOI: 10.1016/j.lwt.2013.02.004.
  • Kharchoufi, S.; Parafati, L.; Licciardello, F.; Muratore, G.; Hamdi, M.; Cirvilleri, G.; Restuccia, C. Edible Coatings Incorporateg Pomegranate Peel Extract and Biocontrol Yeast to Reduce Penicillium Digitatum Postharvest Decay of Oranges. Food Microbiol. 2018, 74, 107–112. DOI: 10.1016/j.fm.2018.03.011.
  • Brasil, I.; Gomes, C.; Puerta-Gomez, A.; Castell-Perez, M.; Moreira, R. Polysaccharide-based Multilayered Antimicrobial Edible Coating Enhances Quality of Fresh-cut Papaya. LWT - Food Sci. Technol. 2012, 47(1), 39–45. DOI: 10.1016/j.lwt.2012.01.005.
  • Nguyen, H. N.; Dinh, K. D.; Vu, L. T. K. Carboxymethyl Cellulose Aloe Vera Gel Edible Films for Food Preservation. 5th International Conference on Green Technology and Sustainable Development (GTSD) 27-28th of November Da Nang city, vietnam, 2020; pp. 203–208. doi: 10.1109/GTSD50082.2020.9303129
  • Gunaydin, S.; Karaca, H.; Palou, L.; de la Fuente, B.; Pérez-Gago, M. Effect of Hydroxypropyl Methylcellulose-Beeswax Composite Edible Coatings Formulated with or without Antifungal Agents on Physicochemical Properties of Plums during Cold Storage. J. Food Qual. 2017, 2017, 1–9. DOI: 10.1155/2017/8573549.
  • Fagundes, C.; Palou, L.; Monteiro, A.; Pérez-Gago, M. Hydroxypropyl Methylcellulose-beeswax Edible Coatings Formulated with Antifungal Food Additives to Reduce Alternaria Black Spot and Maintain Postharvest Quality of Cold-stored Cherry Tomatoes. Sci. Hortic. 2015, 193, 249–257. DOI: 10.1016/j.scienta.2015.07.027.
  • Khorram, F.; Ramezanian, A.; Hosseini, S. Shellac, Gelatin, and Persian Gum as Alternative Coating for Orange Fruit. Sci. Hortic. 2017, 225, 22–28. DOI: 10.1016/j.scienta.2017.06.045.
  • Hagenmaier, R. D. Fruit Coatings Containing Ammonia Instead of Morpholine. Proc. Fla. State Hort. Soc. 2004, 117, 396–402.
  • Franssen, L.; Krochta, J. Natural Antimicrobials for the Minimal Processing of Foods; Woodhead Publishing Limited and CRC Press LLC: Cambridge, 2003; pp 250–262.
  • Ottaway, P.; Ottaway, B. Natural Antimicrobials for the Minimal Processing of Foods; Woodhead Publishing: UK, 2003; pp 281–293.
  • Pashova, S.; Radev, R.; Dimitrov, G.; Ivanov, J. . In Quality - Access To Success 19 (166), 2018 Edible coatings in Food industry related to circular economy ; pp 111–117.
  • Rojas-graü, M.; Soliva-Fortuny, R.; Martin-Belloso, O. Edible Coatings: Past, Present And Future. Stewart Postharvest Rev. 2010, 6(3), 1–5.
  • Guilbert, S.; Gontard, N. Edible and Biodegradable Food Packaging. In Foods and Packaging Materials—Chemical Interactions Ackermann, P, Jägerstad, M, and Ohlsson, T; Royal Society of Chemistry: Cambridge, 1996; pp 159–168.
  • Sinopoli, D.; A Comparative Analysis between the European Union and the United States on the Scope and Function of Food Additives. Master Food Safety, Wageningen University, 2013.
  • Government of Mauritius. Regulations Made by the Minister under Section 18 of the Food Act 1998: Mauritius, Food Act 173/1999, 1999.
  • FDA (Food and Drug Administration). CFR Title 21: Foods and Drugs, CFR Part 172: Food Additives Permitted for Direct Addition to Food for Human Consumption CFR, Subpart C: Coatings, Films and Related Substances; Silver Spring: MD, 2020. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm Accessed8 May 2021.
  • FDA. CFR Title 21: Foods and Drugs, CFR Part 173: Secondary Direct Food Additives Permitted in Food for Human Consumption; Silver Spring: MD, 2020. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm Accessed5 May 2021.
  • FDA. CFR Title 21: Food and Drugs, CFR Part 184: Direct Food Substances Generally Recognised as Safe; Silver Spring: MD, 2020. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm Accessed 5 May 2021.
  • USDA - U.S. Food and Drug Administration. Food Additive Status List: 2006. http://www.cfsan.fda.gov/dms/opa-appa.html (accessed Feb 24th, 2021).
  • United states Code. CFR Title 21: Food and Drugs, Chapter 9- Federal Food, Drug, and Cosmetics Act; Subchapter iv- Food, Section 343- Misbranded Food, 2012.
  • FAO. Overview of Food Ingredients, Additives & Colors. https://www.fda.gov/food/food-ingredients-packaging/overview-food-ingredients-additives-colors (accessed Feb 24, 2021).
  • Galus, S.; Arik Kibar, E.; Gniewosz, M.; Kraśniewska, K. Novel Materials In The Preparation Of Edible Films And Coatings—A Review. Coatings. 2020, 10(7), 674.
  • ED-European Parliament and Council Directive N 95/2/EC. On Food Additive Other than Colors and Sweeteners: 1995. http://ec.europa.eu/food/fs/sfp/additflavor/flav11en.pdf Accessed5 May 2021
  • ED-European Parliament and Council Directive N 98/72/EC. 1998. On Food Additive Other than Colors and Sweeteners. http://ec.europa.eu/food/fs/sfp/additflavor/flav11en.pdf Accessed5 May 2021
  • UNCTAD. Annual Report; A Commitment to Inclusive Trade; United Nations, 2016.
  • European Commission (EC). Regulation (EU) 1130/2011 of 11 November 2011 Amending Annex III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council on Food Additives by Establishing a Union List of Food Additives Approved for Use in Food Additives, Food Enzymes, Food Flavourings and Nutrients; Off J Eur Union L295:1. accessed Nov 5, 2020.
  • Codex Alimentarius Commission. CODEX STAN 192-1995: General Standards for Food Additives; FAO & WHO, 2019.
  • Vargas, M.; Pastor, C.; Chiralt, A.; McClements, D.; González-Martínez, C. Recent Advances In Edible Coatings For Fresh And Minimally Processed Fruits. Crit. Rev. Food Sci. Nutr. 2008, 48(6), 496–511.
  • Olivas, G.; Rodriques, J.; Barbosa-Canovas, G. Edible Coatings Composed Of Methyl Cellulose, Stearic Acid, And Additives To Preserve Quality Of Pear Wedges. J. Food Process. Preserv. 2003, 27(4), 299–320. DOI: 10.1111/j.1745-4549.2003.tb00519.x.
  • Food Sanitation Act. Issued by the Japan Ministry of Health, Labour and Welfare. Designated Additives List of plant or Animal sources of Natural flavouring agents, and list of existing food additives and labelling requirements, 1947
  • Japan Ministry of Health, Labour and Welfare (JMHLW). Specifications and Standards for Foods, Food Additives, etc. Under the Food Sanitation Act; Japan external trade organisation, 2011.
  • Food Packaging Regulation in Japan Food Packaging Forum. https://www.foodpackagingforum.org/Food-Packaging-Health/Regulation-on-Food-Packaging/Food-Packaging-Regulation-in-Japan (accessed Feb 23, 2021).
  • CPMA. Fresh Fruits for Industry: Protective Coating; Canadian Produce Marketing Association, 2014.
  • Government of Canada. Food additives: List of permitted food additives. 2021. https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/food-additives/lists-permitted/4-emulsifying-gelling-stabilizing-thickening-agents.html (accessed 21 June 2021).
  • CFIA. Government of Canada; List of ingredients - Fresh fruits or vegetables, 2021.
  • FSANZ (Food Standards Australia New Zealand). Australia New Zealand Food Standards Code; Legislation Act 2003. PART 1.3 Substances added to or present in food: Standard 1.3.1- Food additives, 2021.
  • Kielhorn, J.; Rosner, G. WHO. Morpholine. World Health Organization: 1996. https://apps.who.int/iris/handle/10665/37834 Accessed20 April 2021
  • Hagenmaier, R. D.; Baker, R. A. Edible Coatings Form Morpholine-free Wax Micro- Emulsions. J. Agric. Food Chem. 1997, 45, 349–352. DOI: 10.1021/jf9604551.
  • FAOSTAT. Countries by Commodity. http://www.fao.org/faostat/en/#rankings/countries_by_commodity_exports (accessed Feb 23, 2021).
  • Mason-D’Croz, D.; Bogard, J.; Sulser, T.; Cenacchi, N.; Dunston, S.; Herrero, M.; Wiebe, K. Gaps Between Fruit And Vegetable Production, Demand, And Recommended Consumption At Global And National Levels: An Integrated Modelling Study. Lancet Planet Health. 2019, 3(7), e318–e329. DOI: 10.1016/S2542-5196(19)30095-6.
  • Aljohani, K.; Thompson, R. The Impacts Of Relocating A Logistics Facility On Last Food Miles – The Case Of Melbourne’S Fruit & Vegetable Wholesale Market. Case Stud. Transport Policy. 2018, 6(2), 279–288. DOI: 10.1016/j.cstp.2018.03.007.
  • Food Miles Calculator Foodmiles.com. https://www.foodmiles.com/results.cfm (accessed Feb 23, 2021).
  • Raut, R.; Gardas, B.; Narwane, V.; Narkhede, B. Improvement In The Food Losses In Fruits And Vegetable Supply Chain - A Perspective Of Cold Third-Party Logistics Approach. Oper. Res. Perspec. 2019, 6, 100117. DOI: 10.1016/j.orp.2019.100117.
  • Monteiro Fritz, A.; de Matos Fonseca, J.; Trevisol, T.; Fagundes, C.; Valencia, G. . Polymers for Agri-Food Applications (Switzerland: Springer). 2019 Active, Eco-Friendly and Edible Coatings in the Post-Harvest – A Critical Discussion , 433–463.
  • Dijkxhoorn, Y.; Galen, M.; Van, Barungi, J.; Okiira, J.; Gema, J.; Janssen, V. The Uganda Vegetables and Fruit Sector Competitiveness, Investment and Trade Options; Wageningen, Wageningen Economic Research, Report 2019-117, 2019, 1–4. Doi: 10.18174/505785.
  • van Lin, M.; van den Bos, A.; Sterras, N. Vegetable Agro-Processing in South Africa; Ministry of Foreign Affairs Netherlands Enterprise Agency, 2018.
  • Safari, S.; Razali, N. A.; Mustaffa, R. Distribution Channel Assessment: A Case Study in Exporting. Int. J. Agr. For. Plant. 2019, 8, 75–85.
  • Andrade, R.; Skurtys, O.; Osorio, F. Atomizing Spray Systems for Application of Edible Coatings. Compr. Rev. Food Sci. Food Saf. 2012, 11(3), 323–337. DOI: 10.1111/j.1541-4337.2012.00186.x.
  • De Azeredo, H.; Rosa, M.; De Sá, M.; Souza Filho, M.; Waldron, K. . Advances in Biorefineries: Biomass and Waste Supply Chain Exploitation Waldron, K 1 (UK: Woodhead Publishing). 2014 The use of biomass for packaging films and coatings , 819–874.
  • Lin, D.; Zhao, Y. Innovations In The Development And Application Of Edible Coatings For Fresh And Minimally Processed Fruits And Vegetables. Compr. Rev. Food Sci. Food Saf. 2007, 6(3), 60–75. DOI: 10.1111/j.1541-4337.2007.00018.x.
  • Erkmen, O.; Barazi, A. General Characteristics of Edible Films. J. Food Biotechnol. Res. 2018, 2(1), 1–4.
  • Md Nor, S.; Ding, P. Trends And Advances In Edible Biopolymer Coating For Tropical Fruit: A Review. Food Res. Int. 2020, 134, 109208. DOI: 10.1016/j.foodres.2020.109208.
  • Maringgal, B.; Hashim, N.; Mohamed Amin Tawakkal, I.; Muda Mohamed, M. Recent Advance in Edible Coating and Its Effect on Fresh/fresh-cut Fruits Quality. Trends Food Sci. Technol. 2020, 96, 253–267. DOI: 10.1016/j.tifs.2019.12.024.
  • Shit, S.; Shah, P. Edible Polymers: Challenges And Opportunities. J. Polym. 2014, 2014, 1–13. DOI: 10.1155/2014/427259.
  • Pace International Global Leader in Post-Harvest Solutions. Semperfresh™ - Pace International Global Leader in Post-Harvest Solutions: 2020. [online] Available at: https://www.paceint.com/product/semperfresh (accessed Aug 3, 2020).
  • Dhall, R. Advances In Edible Coatings For Fresh Fruits And Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53(5), 435–450. PMID: 23391012. DOI: 10.1080/10408398.2010.541568.
  • Agricoat.co.uk. Natureseal® | Produce Industry Processors: 2020. [online] Available at: https://www.agricoat.co.uk/industries/processors/semperfresh accessed Aug 3, 2020.
  • NatureSeal Leading the Fresh-Cut Produce Industry. Agricoat.co.uk. 2021. https://www.agricoat.co.uk/about-us (accessed 21 June, 2021).
  • Apeel.com. Apeel How Apeel Works: 2021. [online] Available at: https://www.apeel.com/science (accessed 8 Aug, 2021).
  • Decco Argentina. Naturcover - Decco Argentina: 2021. [online] Available at: http://www.deccolatam.com/producto/naturcover-cp/?lang=en (accessed Mar 28, 2021).
  • Fruitech, F. GREENSEAL-VG - Fomesa Fruitech: 2021. [online] Available at: https://www.fomesafruitech.net/en/products-and-equipment/greenline-en/by-crop-greenline/tropical-greenline-en/greenseal-vg-en (accessed Mar 28, 2021).
  • Ciriminna, R.; Carnaroglio, D.; Delisi, R.; Arvati, S.; Tamburino, A.; Pagliaro, M. Industrial Feasibility Of Natural Products Extraction With Microwave Technology. Chem. Sel. 2016, 1(3), 549–555.
  • Baghdikian, B.; Filly, A.; Fabiano-Tixier, A.; Petitcolas, E.; Mabrouki, F.; Chemat, F.; Ollivier, É. Extraction By Solvent Using Microwave And Ultrasound-Assisted Techniques Followed By HPLC Analysis Of Harpagoside From Harpagophytum Procumbens And Comparison With Conventional Solvent Extraction Methods. C. R. Chim. 2016, 19(6), 692–698. DOI: 10.1016/j.crci.2016.02.020.
  • Leão, D.; Botelho, B.; Oliveira, L.; Franca, A. Potential Of Pequi (Caryocar Brasiliense Camb.) Peels As Sources Of Highly Esterified Pectins Obtained By Microwave Assisted Extraction. LWT. 2018, 87, 575–580.
  • Maran, J.; Prakash, K. Process Variables Influence On Microwave Assisted Extraction Of Pectin From Waste Carcia Papaya L. Peel. Int. J. Biol. Macromol. 2015, 73, 202–206. DOI: 10.1016/j.ijbiomac.2014.11.008.
  • Prakash Maran, J.; Sivakumar, V.; Thirugnanasambandham, K.; Sridhar, R. Microwave Assisted Extraction Of Pectin From Waste Citrullus Lanatus Fruit Rinds. Carbohydr. Polym. 2014, 101, 786–791. DOI: 10.1016/j.carbpol.2013.09.062.
  • Seixas, F.; Fukuda, D.; Turbiani, F.; Garcia, P.; Petkowicz, C.; Jagadevan, S.; Gimenes, M. Extraction Of Pectin From Passion Fruit Peel (Passiflora Edulis F. Flavicarpa) By Microwave-Induced Heating. Food Hydrocolloids. 2014, 38, 186–192.
  • Tongkham, N.; Juntasalay, B.; Lasunon, P.; Sengkhamparn, N. Dragon Fruit Peel Pectin: Microwave-Assisted Extraction And Fuzzy Assessment. Agric. Nat. Resour. 2017, 51(4), 262–267. DOI: 10.1016/j.anres.2017.04.004.
  • Ventura, S.P.M.; Nobre, B.; Ertekin, F.; Hayes, M.; Garcia-Vaquero, M.; Vieira, F., Koc, M., Gouveia, L., Aires-Barros, M.R., Palavra†, A.M.F., et al. Extraction of Value Added Compounds from Microalgae. In Microalgal-based Biofuels and Bioproducts; 1st; Gonzalez, C., and Munoz, P., Eds.; Woodhead Publishing Limited.: UK, 2017; pp. 461–483. https://www.researchgate.net/publication/317960046_Extraction_of_value_added_compounds_from_microalgae Accessed 4 May 2021
  • Perussello, C.; Zhang, Z.; Marzocchella, A.; Tiwari, B. Valorization Of Apple Pomace By Extraction Of Valuable Compounds. Compr. Rev. Food Sci. Food Saf. 2017, 16(5), 776–796. DOI: 10.1111/1541-4337.12290.
  • Wan, V.; Lee, C.; Lee, S. Understanding Consumer Attitudes on Edible Films and Coatings: Focus Group Findings. J. Sens. Stud. 2007, 22(3), 353–366. DOI: 10.1111/j.1745-459X.2007.00108.x.
  • Sonti, S.; Consumer Perception and Application of Edible Coatings on Fresh-cut Fruits and Vegetables, 2003. LSU Master’s Theses. 2225.
  • Tharanathan, R. Biodegradable Films and Composite Coatings: Past, Present and Future. Trends Food Sci. Technol. 2003, 14(3), 71–78. DOI: 10.1016/S0924-2244(02)00280-7.
  • Tuorila, H. Consumer-Led Food Product Development MacFie, H.; Cambridge: Woodhead Publishing Limited, 2007 Sensory perception as a basis of food acceptance and consumption; pp 593–613.
  • Popovic, I.; Bossink, B.; van der Sijde, P. Factors Influencing Consumers’ Decision to Purchase Food in Environmentally Friendly Packaging: What Do We Know and Where Do We Go from Here?. Sustainability. 2019, 11(24), 7197. DOI: 10.3390/su11247197.
  • Olsen, S.; Heide, M.; Dopico, D.; Toften, K. Explaining Intention to Consume A New Fish Product: A Cross-Generational and Cross-Cultural Comparison. Food Qual. Preference. 2008, 19(7), 618–627. DOI: 10.1016/j.foodqual.2008.04.007.
  • Davidson, P.; Zivanovic, S. The Use of Natural Antimicrobials. In Food Preservation Techniques Zeuthen, P., and Bøgh-Sørensen, L.; Woodhead Publishing Limited: Cambridge, England, 2003; pp 6–23.
  • Manios, S.; Skandamis, P. Methods in Molecular Biology Walker , J.M; Clifton, N.J.: Humana Press, 2014 Control of Listeria monocytogenes in the Processing Environment by Understanding Biofilm Formation and Resistance to Sanitizers ; pp 251–261.
  • Palou, L.; Smilanick, J.; Droby, S. Alternatives to Conventional Fungicides for the Control of Citrus Postharvest Green and Blue Moulds. Stewart Postharvest Rev. 2008, 4(2), 1–16.
  • Raghav, P.; Agarwal, N.; Saini, M. Herbal Edible Coatings Of Fruits & Vegetables: A Newer Concept. Int. J. Adv. Res. 2016, 4(6), 1452–1458. DOI: 10.21474/IJAR01/660.
  • Valencia-Chamorro, S.; Palou, L.; Del Río, M.; Pérez-Gago, M. Antimicrobial Edible Films And Coatings For Fresh And Minimally Processed Fruits And Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2011, 51(9), 872–900. DOI: 10.1080/10408398.2010.485705.
  • Acevedo-Fani, A.; Salvia-Trujillo, L.; Rojas-Graü, M.; Martín-Belloso, O. Edible Films From Essential-Oil-Loaded Nanoemulsions: Physicochemical Characterization And Antimicrobial Properties. Food Hydrocolloids. 2015, 47, 168–177. DOI: 10.1016/j.foodhyd.2015.01.032.
  • Ruiz-Navajas, Y.; Viuda-Martos, M.; Sendra, E.; Perez-Alvarez, J.; Fernández-López, J. Vitro Antibacterial And Antioxidant Properties Of Chitosan Edible Films Incorporated With Thymus Moroderi Or Thymus Piperella Essential Oils. Food Control. 2013, 30(2), 386–392. DOI: 10.1016/j.foodcont.2012.07.052.
  • Campos-Requena, V.; Rivas, B.; Pérez, M.; Figueroa, C.; Sanfuentes, E. The Synergistic Antimicrobial Effect Of Carvacrol And Thymol In Clay/Polymer Nanocomposite Films Over Strawberry Gray Mold. LWT - Food Sci. Technol. 2015, 64(1), 390–396. DOI: 10.1016/j.lwt.2015.06.006.
  • Medina Jaramillo, C.; Gutiérrez, T.; Goyanes, S.; Bernal, C.; Famá, L. Biodegradability And Plasticizing Effect Of Yerba Mate Extract On Cassava Starch Edible Films. Carbohydr. Polym. 2016, 151, 150–159. DOI: 10.1016/j.carbpol.2016.05.025.
  • Batista Silva, W.; Cosme Silva, G.; Santana, D.; Salvador, A.; Medeiros, D.; Belghith, I.; Da Silva, N.; Cordeiro, M.; Misobutsi, G. Chitosan Delays Ripening And ROS Production In Guava (Psidium Guajava L.) Fruit. Food Chem. 2018, 242, 232–238. DOI: 10.1016/j.foodchem.2017.09.052.
  • Moghadam, M.; Salami, M.; Mohammadian, M.; Khodadadi, M.; Emam-Djomeh, Z. Development Of Antioxidant Edible Films Based On Mung Bean Protein Enriched With Pomegranate Peel. Food Hydrocolloids. 2020, 104, 105735. DOI: 10.1016/j.foodhyd.2020.105735.
  • Siracusa, V.; Rocculi, P.; Romani, S.; Rosa, M. Biodegradable Polymers For Food Packaging: A Review. Trends Food Sci. Technol. 2008, 19(12), 634–643. DOI: 10.1016/j.tifs.2008.07.003.
  • Bajpai, S.; Chand, N.; Chaurasia, V. Nano Zinc Oxide-Loaded Calcium Alginate Films With Potential Antibacterial Properties. Food Bioprocess. Technol. 2011, 5(5), 1871–1881. DOI: 10.1007/s11947-011-0587-6.
  • Grosso, A.; Asensio, C.; Grosso, N.; Nepote, V. Increase Of Walnuts’ Shelf Life Using A Walnut Flour Protein-Based Edible Coating. LWT. 2020, 118, 108712.
  • Hasan, S.; Ferrentino, G.; Scampicchio, M. Nanoemulsion As Advanced Edible Coatings To Preserve The Quality Of Fresh‐Cut Fruits And Vegetables: A Review. Int. J. Food Sci. Technol. 2019, 55(1), 1–10. DOI: 10.1111/ijfs.14273.
  • Kazemian-Bazkiaee, F.; Ebrahimi, A.; Hosseini, S.; Shojaee-Aliabadi, S.; Farhoodi, M.; Rahmatzadeh, B.; Sheikhi, Z. Evaluating The Protective Effect Of Edible Coatings On Lipid Oxidation, Fatty Acid Composition, Aflatoxins Levels Of Roasted Peanut Kernels. J. Food Meas. Charact. 2020, 14(2), 1025–1038. DOI: 10.1007/s11694-019-00352-9.
  • De Pilli, T. Development Of A Vegetable Oil And Egg Proteins Edible Film To Replace Preservatives And Primary Packaging Of Sweet Baked Goods. Food Control. 2020, 114, 107273. DOI: 10.1016/j.foodcont.2020.107273.
  • Sharma, P.; Shehin, V.; Kaur, N.; Vyas, P. Application Of Edible Coatings On Fresh And Minimally Processed Vegetables: A Review. Int. J. Vegetable Sci. 2018, 25(3), 295–314. DOI: 10.1080/19315260.2018.1510863.
  • Embuscado, M.; Huber, K. Edible Films and Coatings for Food Applications; Springer: Dordrecht, 2009.
  • Senturk Parreidt, T.; Müller, K.; Schmid, M. Alginate-Based Edible Films And Coatings For Food Packaging Applications. Foods. 2018, 7(10), 170. DOI: 10.3390/foods7100170.
  • Gyawali, R.; Ibrahim, S. Natural Products As Antimicrobial Agents. Food Control. 2014, 46, 412–429. DOI: 10.1016/j.foodcont.2014.05.047.
  • Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application Of Edible Coating With Essential Oil In Food Preservation. Crit. Rev. Food Sci. Nutr. 2018, 59(15), 2467–2480. DOI: 10.1080/10408398.2018.1456402.
  • Janjarasskul, T.; Krochta, J. M. Edible Packaging Materials. Ann. Rev. Food Sci. Technol. 2010, 1, 415–448.
  • Jeya Jeevahan, J.; Chandrasekaran, M.; Venkatesan, S.; Sriram, V.; Britto Joseph, G.; Mageshwaran, G.; Durairaj, R. Scaling Up Difficulties And Commercial Aspects Of Edible Films For Food Packaging: A Review. Trends Food Sci. Technol. 2020, 100, 210–222. DOI: 10.1016/j.tifs.2020.04.014.
  • Petrescu, D.C. , Vermeir, I. , V, R.M. 2020 Consumer Understanding of Food Quality, Healthiness, and Environmental Impact: A Cross-National Perspective International Journal of Environmental Research and Public Health 17 169 1–20 Accessed5 June 2021 .
  • Kader, A. Flavor Quality Of Fruits And Vegetables. J. Sci. Food Agric. 2008, 88(11), 1863–1868. DOI: 10.1002/jsfa.3293.
  • Guerreiro, A.; Gago, C.; Miguel, M.; Faleiro, M.; Antunes, M. The Influence Of Edible Coatings Enriched With Citral And Eugenol On The Raspberry Storage Ability, Nutritional And Sensory Quality. Food Pack. Shelf Life. 2016, 9, 20–28. DOI: 10.1016/j.fpsl.2016.05.004.
  • Mikulič Petkovšek, M.; Štampar, F.; Veberič, R. Changes In The Inner Quality Parameters Of Apple Fruit From Technological To Edible Maturity. Acta Agric. Slovenica. 2009, 93(1). DOI: 10.2478/v10014-009-0003-3.
  • Soliva-Fortuny, R.; Oms-Oliu, G.; Martin-Belloso, O. Effects Of Ripeness Stages On The Storage Atmosphere, Color, And Textural Properties Of Minimally Processed Apple Slices. J. Food Sci. 2002, 67(5), 1958–1963. DOI: 10.1111/j.1365-2621.2002.tb08752.x.
  • Varela, P.; Salvador, A.; Fiszman, S. Methodological Developments In Crispness Assessment: Effects Of Cooking Method On The Crispness Of Crusted Foods. LWT - Food Sci. Technol. 2008, 41(7), 1252–1259. DOI: 10.1016/j.lwt.2007.08.008.
  • Perez-Gago, M.; Serra, M.; Río, M. Color Change of Fresh-cut Apples Coated with Whey Protein Concentrate-based Edible Coatings. Postharvest. Biol. Technol. 2006, 39(1), 84–92. DOI: 10.1016/j.postharvbio.2005.08.002.
  • Aloui, H.; Khwaldia, K.; Sánchez-González, L.; Muneret, L.; Jeandel, C.; Hamdi, M.; Desobry, S. Alginate Coatings Containing Grapefruit Essential Oil Or Grapefruit Seed Extract For Grapes Preservation. Int. J. Food Sci. Technol. 2013, 49(4), 952–959. DOI: 10.1111/ijfs.12387.
  • Abebe, Z.; Tola, Y. B.; Mohammed, A. Effects of Edible Coating Materials and Stages of Maturity at Harvest on Storage Life and Quality of Tomato (Lycopersicon Esculentum Mill.) Fruits. Afr. J. Agric. Res. 2017, 12(8), 550–565. DOI: 10.5897/AJAR2016.11648.
  • Chauhan, S.; Gupta, K. C.; Agrawal, M. Application of Biodegradable Aloe Vera Gel to Control Post-harvest Decay and Longer the Shelf Life of Grapes. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 632–642.
  • Barrett, D.; Beaulieu, J.; Shewfelt, R. Color, Flavor, Texture, And Nutritional Quality Of Fresh-Cut Fruits And Vegetables: Desirable Levels, Instrumental And Sensory Measurement, And The Effects Of Processing. Crit. Rev. Food Sci. Nutr. 2010, 50(5), 369–389. DOI: 10.1080/10408391003626322.
  • Rawdkuen, S. Antimicrobial Activity of Some Potential Active Compounds against Food Spoilage Microorganisms. Afr. J. Biotechnol. 2012, 11(74). DOI: 10.5897/ajb12.1400.
  • Aloui, H.; Khwaldia, K. Natural Antimicrobial Edible Coatings For Microbial Safety And Food Quality Enhancement. Compr. Rev. Food Sci. Food Saf. 2016, 15(6), 1080–1103. DOI: 10.1111/1541-4337.12226.
  • Marín, A.; Atarés, L.; Chiralt, A. Improving Function Of Biocontrol Agents Incorporated In Antifungal Fruit Coatings: A Review. Biocontrol Sci Technol. 2017, 27(10), 1220–1241. DOI: 10.1080/09583157.2017.1390068.
  • Palou, L.; Valencia-Chamorro, S.; Pérez-Gago, M. Antifungal Edible Coatings For Fresh Citrus Fruit: A Review. Coatings. 2015, 5(4), 962–986. DOI: 10.3390/coatings5040962.
  • Masoom, M.; Pasha, S., .; Asif-Ur-Rahman, S.; Factors Affecting the Consumer Purchasing Decisions of Perishable Foods: Exploring the Attitudes and the Preferences. Manage. Dyn. Knowl Econ. 2015, 3, 509–531. https://www.researchgate.net/publication/283791521_Factors_Affecting_the_Consumer_Purchasing_Decisions_of_Perishable_Foods_Exploring_the_Attitudes_and_the_Preferences (accessed June 21, 2021).
  • Pranoto, Y.; Salokhe, V.; Rakshit, S. Physical And Antibacte Rial Properties Of Alginate-Based Edible Film Incorporated With Garlic Oil. Food Res. Int. 2005, 38(3), 267–272. DOI: 10.1016/j.foodres.2004.04.009.
  • Bolumar, T.; LaPeña, D.; Skibsted, L.; Orlien, V. Rosemary And Oxygen Scavenger In Active Packaging For Prevention Of High-Pressure Induced Lipid Oxidation In Pork Patties. Food Pack. Shelf Life. 2016, 7, 26–33. DOI: 10.1016/j.fpsl.2016.01.002.
  • Camo, J.; Beltrán, J.; Roncalés, P. Extension Of The Display Life Of Lamb With An Antioxidant Active Packaging. Meat Sci. 2008, 80(4), 1086–1091. DOI: 10.1016/j.meatsci.2008.04.031.
  • López de Dicastillo, C.; Nerín, C.; Alfaro, P.; Catalá, R.; Gavara, R.; Hernández-Muñoz, P. Development Of New Antioxidant Active Packaging Films Based On Ethylene Vinyl Alcohol Copolymer (EVOH) And Green Tea Extract. J. Agric. Food Chem. 2011, 59(14), 7832–7840. DOI: 10.1021/jf201246g.
  • Burt, S. Essential Oils: Their Antibacterial Properties And Potential Applications In Foods—A Review. Int. J. Food Microbiol. 2004, 94(3), 223–253. DOI: 10.1016/j.ijfoodmicro.2004.03.022.
  • D.Antunes, M.; M. Gago, C.; M. Cavaco, A.; G. Miguel, M. Edible Coatings Enriched With Essential Oils And Their Compounds For Fresh And Fresh-Cut Fruit. Recent Pat. Food Nutr. Agric. 2012, 4(2), 114–122. DOI: 10.2174/2212798411204020114.
  • Vasile, C. Polymeric Nanocomposites And Nanocoatings For Food Packaging: A Review. Materials. 2018, 11(10), 1834. DOI: 10.3390/ma11101834.
  • Zoghi, A.; Khosravi-Darani, K.; Mohammadi, R. Application Of Edible Films Containing Probiotics In Food Products. J Consum. Protect Food Safety. 2020, 15(4), 307–320. DOI: 10.1007/s00003-020-01286-x.
  • Karatzas, A.; Bennik, M.; Smid, E.; Kets, E. Combined Action Of S-Carvone And Mild Heat Treatment On Listeria Monocytogenes Scott A. J. Appl. Microbiol. 2000, 89(2), 296–301. DOI: 10.1046/j.1365-2672.2000.01110.x.
  • Vázquez, B.; Fente, C.; Franco, C.; Vázquez, M.; Cepeda, A. Inhibitory Effects Of Eugenol And Thymol On Penicillium Citrinum Strains In Culture Media And Cheese. Int. J. Food Microbiol. 2001, 67(1–2), 157–163. DOI: 10.1016/S0168-1605(01)00429-9.
  • Delaquis, P. Antimicrobial Activity Of Individual And Mixed Fractions Of Dill, Cilantro, Coriander And Eucalyptus Essential Oils. Int. J. Food Microbiol. 2002, 74(1–2), 101–109. DOI: 10.1016/S0168-1605(01)00734-6.
  • Valdés, A.; Mellinas, A.; Ramos, M.; Burgos, N.; Jiménez, A.; Garrigós, M. Use Of Herbs, Spices And Their Bioactive Compounds In Active Food Packaging. RSC Adv. 2015, 5(50), 40324–40335. DOI: 10.1039/C4RA17286H.
  • Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The Antimicrobial Efficacy Of Plant Essential Oil Combinations And Interactions With Food Ingredients. Int. J. Food Microbiol. 2008, 124(1), 91–97. DOI: 10.1016/j.ijfoodmicro.2008.02.028.
  • Drewnowski, A.; Gomez-Carneros, C. Bitter Taste, Phytonutrients, And The Consumer: A Review. Am. J. Clin. Nutr. 2000, 72(6), 1424–1435. DOI: 10.1093/ajcn/72.6.1424.
  • LeClair, K. Breaking the Sensory Barrier for Functional Foods. Food Prod. Des. 2000, 7, 59–63.
  • Han, C.; Lederer, C.; McDaniel, M.; Zhao, Y. Sensory Evaluation Of Fresh Strawberries (Fragaria Ananassa) Coated With Chitosan-Based Edible Coatings. J. Food Sci. 2006, 70(3), S172–S178. DOI: 10.1111/j.1365-2621.2005.tb07153.x.
  • Reidmiller, J.; Smith, W.; Sawyer, M.; Osburn, B.; Stott, J.; Cullor, J. Antimicrobial Properties Of The Chelating Agent EDTA On Streptococcal Bovine Mastitis Isolates. J. Food Prot. 2006, 69(6), 1460–1462. DOI: 10.4315/0362-028X-69.6.1460.
  • Maes, C.; Bouquillon, S.; Fauconnier, M. L. Encapsulation Of Essential Oils For The Development Of Biosourced Pesticides With Controlled Release: A Review. Molecules. 2019, 24(14), 2539. DOI: 10.3390/molecules24142539.
  • Ayala-Zavala, J.; Silva-Espinoza, B.; Cruz-Valenzuela, M.; Leyva, J.; Ortega-Ramírez, L.; Carrazco-Lugo, D.; Pérez-Carlón, J.; Melgarejo-Flores, B.; González-Aguilar, G.; Miranda, M. Pectin-Cinnamon Leaf Oil Coatings Add Antioxidant And Antibacterial Properties To Fresh-Cut Peach. Flavour Fragr. J. 2012, 28(1), 39–45. DOI: 10.1002/ffj.3125.
  • Miguel, M. Antioxidant Activity Of Medicinal And Aromatic Plants. A Review. Flavour Fragr. J. 2010, 25(5), 291–312. DOI: 10.1002/ffj.1961.
  • Nobile, C.; Nett, J.; Andes, D.; Mitchell, A. Function Of Candida Albicans Adhesin Hwp1 In Biofilm Formation. Eukaryotic Cell. 2006, 5(10), 1604–1610. DOI: 10.1128/EC.00194-06.
  • Aldred Cheek, K.; Wansink, B. Making It Part Of The Package: Edible Packaging Is More Acceptable To Young Consumers When It Is Integrated With Food. J. Food Prod. Marketing. 2016, 23(6), 723–732. DOI: 10.1080/10454446.2017.1244793.
  • Ghayebzadeh, M.; Taghipour, H.; Aslani, H. Estimation Of Plastic Waste Inputs From Land Into The Persian Gulf And The Gulf Of Oman: An Environmental Disaster, Scientific And Social Concerns. Sci. Total Environ. 2020, 733, 138942. DOI: 10.1016/j.scitotenv.2020.138942.
  • Kedzierski, M.; Frère, D.; Le Maguer, G.; Bruzaud, S. Why Is There Plastic Packaging In The Natural Environment? Understanding The Roots Of Our Individual Plastic Waste Management Behaviours. Sci. Total Environ. 2020, 740, 139985. DOI: 10.1016/j.scitotenv.2020.139985.
  • Beaumont, N.; Aanesen, M.; Austen, M.; Börger, T.; Clark, J.; Cole, M.; Hooper, T.; Lindeque, P.; Pascoe, C.; Wyles, K. Global Ecological, Social And Economic Impacts Of Marine Plastic. Mar. Pollut. Bull. 2019, 142, 189–195. DOI: 10.1016/j.marpolbul.2019.03.022.
  • Gheorghita Puscaselu, R.; Gutt, G.; Amariei, S. The Use Of Edible Films Based On Sodium Alginate In Meat Product Packaging: An Eco-Friendly Alternative To Conventional Plastic Materials. Coatings. 2020, 10(2), 166. DOI: 10.3390/coatings10020166.
  • George, A.; Sanjay, M.; Srisuk, R.; Parameswaranpillai, J.; Siengchin, S.; Comprehensive Review, A. On Chemical Properties And Applications Of Biopolymers And Their Composites. Int. J. Biol. Macromol. 2020, 154, 329–338. DOI: 10.1016/j.ijbiomac.2020.03.120.
  • Maraveas, C. Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers. 2020, 12(5), 1127. DOI: 10.3390/polym12051127.
  • Irkin, R.; Esmer, O. Novel Food Packaging Systems With Natural Antimicrobial Agents. J. Food Sci. Technol. 2015, 52(10), 6095–6111. DOI: 10.1007/s13197-015-1780-9.
  • Knueven, P. W. E. P. J.; (2016). (12) Patent Application Publication (10) Pub. No .: US 2016/0271610 A1 Patent Application Publication. 1 (19),1–5.
  • Abugoch, L.; Tapia, C.; Villamán, M.; Yazdani-Pedram, M.; Díaz-Dosque, M. Characterization Of Quinoa Protein–Chitosan Blend Edible Films. Food Hydrocolloids. 2011, 25(5), 879–886. DOI: 10.1016/j.foodhyd.2010.08.008.
  • Vargas-Torres, A.; Becerra-Loza, A.; Sayago-Ayerdi, S.; Palma-Rodríguez, H.; García-Magaña, M.; Montalvo-González, E. Combined Effect Of The Application Of 1-MCP And Different Edible Coatings On The Fruit Quality Of Jackfruit Bulbs (Artocarpus Heterophyllus Lam) During Cold Storage. Sci. Hortic. 2017, 214, 221–227. DOI: 10.1016/j.scienta.2016.11.045.
  • Park, H. Development Of Advanced Edible Coatings For Fruits. Trends Food Sci. Technol. 1999, 10(8), 254–260. DOI: 10.1016/S0924-2244(00)00003-0.
  • Banks, N.; Cutting, J.; Nicholson, S. Approaches To Optimising Surface Coatings For Fruits. N. Z. J. Crop Hortic. Sci. 1997, 25(3), 261–272. DOI: 10.1080/01140671.1997.9514015.
  • Park, H. . Food Preserv. Tech Zeuthen, P., and Bøgh-Sørensen, L. (Cambridge: Woodhead Publishing). 2003. Edible coatings, 90–105.
  • Zhao, Y.; McDaniel, M. . Innovations Food Packag Han, J.H. (San Diego, California: Academic Press). 2005 Sensory quality of foods associated with edible film and coating systems and shelf-life extension, 434–453.
  • Salehi, F. Edible Coating of Fruits and Vegetables Using Natural Gums: A Review. Int. J. Fruit Sci. 2020, 20(sup2), S570–S589. DOI: 10.1080/15538362.2020.1746730.
  • Okcu, Z.; Yavuz, Y.; Kerse, S. Edible Film and Coating Applications in Fruits and Vegetables; Alınteri Zirai Bilimler Dergisi, 2018; pp.221–226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.