941
Views
10
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Pectin-based Nanoencapsulation for Enhancing the Bioavailability of Bioactive Compounds: Curcumin Oral Bioavailability

, &

References

  • Naksuriya, O.; Okonogi, S.; Schiffelers, R. M.; Hennink, W. E. Curcumin Nanoformulations: A Review of Pharmaceutical Properties and Preclinical Studies and Clinical Data Related to Cancer Treatment. Biomaterials. 2014, 35, 3365–3383. DOI: 10.1016/j.biomaterials.2013.12.090.
  • Zhang, Y.; Khan, A. R.; Fu, M.; Zhai, Y.; Ji, J.; Bobrovskaya, L.; Zhai, G. Advances in Curcumin-loaded Nanopreparations: Improving Bioavailability and Overcoming Inherent Drawbacks. J. Drug Target. 2019, 27(9), 917–931. DOI: 10.1080/1061186X.2019.1572158.
  • Rafiee, Z.; Nejatian, M.; Daeihamed, M.; Jafari, S. M. Application of Curcumin-loaded Nanocarriers for Food, Drug and Cosmetic Purposes. Trends Food Sci. Tech. 2019, 88, 445–458. DOI: 10.1016/j.tifs.2019.04.017.
  • Kharat, M.; McClements, D. J. Recent Advances in Colloidal Delivery Systems for Nutraceuticals: A Case Study – Delivery by Design of Curcumin. J. Colloid Interface Sci. 2019, 557, 506–518. DOI: 10.1016/j.jcis.2019.09.045.
  • Sanidad, K. Z.; Sukamtoh, E.; Xiao, H.; McClements, D. J.; Zhang, G. Curcumin: Recent Advances in the Development of Strategies to Improve Oral Bioavailability. Annu. Rev. Food Sci. Technol. 2019, 10, 597–617. DOI: 10.1146/annurev-food-032818-121738.
  • Ban, C.; Jo, M.; Park, Y. H.; Kim, J. H.; Han, J. Y.; Lee, K. W.; Kweon, D. H.; Choi, Y. J. Enhancing the Oral Bioavailability of Curcumin Using Solid Lipid Nanoparticles. Food Chem. 2020, 302, 125328. DOI: 10.1016/j.foodchem.2019.125328.
  • Saifullah, M.; Shishir, M.; Ferdowsi, R.; Ramim, M.; Quan, V. Micro and Nano Encapsulation, Retention and Controlled Release of Flavor and Aroma Compounds: A Critical Review. Trends Food Sci. Tech. 2019, 86, 230–251. DOI: 10.1016/j.tifs.2019.02.030.
  • Jafari, S. M.; McClements, D. J. Nanotechnology Approaches for Increasing Nutrient Bioavailability. Adv. Food Nutr. Res. 2017, 81, 1–30.
  • Mundlia, J.; Ahuja, M.; Kumar, P.; Pillay, V. Pectin-curcumin Composite: Synthesis, Molecular Modeling and Cytotoxicity. Polym. Bull. 2019, 76, 3153–3173. DOI: 10.1007/s00289-018-2538-0.
  • Barclay, T. G.; Day, C. M.; Petrovsky, N.; Garg, S. A Review of Polysaccharide Particle-based Functional Drug Delivery. Carbohydr. Polym. 2019, 221, 94–112. DOI: 10.1016/j.carbpol.2019.05.067.
  • Mirhosseini, H.; Amid, B. T. A Review Study on Chemical Composition and Molecular Structure of Newly Plant Gum Exudates and Seed Gums. Food Res. Int. 2012, 46, 387–398. DOI: 10.1016/j.foodres.2011.11.017.
  • Assadpour, E.; Jafari, S. M.; Maghsoudlou, Y. Evaluation of Folic Acid Release from Spray Dried Powder Particles of Pectin-whey Protein Nano-capsules. Int. J. Biol. Macromol. 2017, 95, 238–247. DOI: 10.1016/j.ijbiomac.2016.11.023.
  • Rehman, A.; Ahmed, T.; Aadil, R.; Spotti, M. J.; Bakry, A. M.; Khan, I. M.; Zhao, L.; Riaz, T.; Tong, Q. Pectin Polymers as Wall Materials for the Nano-encapsulation of Bioactive Compounds. Trends Food Sci. Tech. 2019, 90, 35–46. DOI: 10.1016/j.tifs.2019.05.015.
  • Silva, K. S.; Fonseca, T. M. R.; Amado, L. R.; Mauro, M. A. Physicochemical and Microstructural Properties of Whey Protein Isolate Based Films with Addition of Pectin. Food Packag. Shelf Life. 2018, 16, 122–128. DOI: 10.1016/j.fpsl.2018.03.005.
  • Zhang, X.; Li, S.; Sun, L.; Ji, L.; Zhu, J.; Fan, Y.; Tai, G.; Zhou, Y. Further Analysis of the Structure and Immunological Activity of an RG-I Type Pectin from Panax Ginseng. Carbohydr. Polym. 2012, 89(2), 519–525. DOI: 10.1016/j.carbpol.2012.03.039.
  • Wu, D.; Zheng, J.; Mao, G.; Hu, W.; Ye, X.; Linhardt, R. J.; Chen, S. Rethinking the Impact of RG-I Mainly from Fruits and Vegetables on Dietary Health. Crit. Rev. Food Sci. Nutr. 2020, 60(17), 2938–2960. DOI: 10.1080/10408398.2019.1672037.
  • Xu, Y.; Zhang, L.; Bailina, Y.; Ge, Z.; Ding, T.; Ye, X.; Liu, D. Effects of Ultrasound And/or Heating on the Extraction of Pectin from Grapefruit Peel. J. Food Eng. 2014, 126(4), 72–81. DOI: 10.1016/j.jfoodeng.2013.11.004.
  • Voragen, A. J.; Coenen, G. J.; Verhoef, R.; Schols, H. Pectin, a Versatile Polysaccharide Present in Plant Cell Walls. Struct. Chem. 2009, 20(2), 263–275. DOI: 10.1007/s11224-009-9442-z.
  • Vincken, J. P.; Schols, H. A.; Oomen, R. J. F. J.; McCann, M. C.; Ulvskov, P.; Voragen, A. G. J.; Visser, R. G. F. If Homogalacturonan Were a Side Chain of Rhamnogalacturonan I. Implications for Cell Wall Architecture. Plant Physiol. 2003, 132(4), 1781–1789. DOI: 10.1104/pp.103.022350.
  • Morris, C. A.; Ralet, M. C.; Bonnin, E.; Thibault, J. F.; Harding, S. E. Physical Characterisation of the Rhamnogalacturonan and Homogalacturonan Fractions of Sugar Beet (Beta Vulgaris) Pectin. Carbohydr. Polym. 2010, 82, 1161–1167. DOI: 10.1016/j.carbpol.2010.06.049.
  • Kaya, M.; Sousa, A. G.; Crepeau, M. J.; Sorensen, S. O.; Ralet, M. C. Characterization of Citrus Pectin Samples Extracted under Different Conditions: Influence of Acid Type and pH of Extraction. Ann. Bot. 2014, 114(6), 1319–1326. DOI: 10.1093/aob/mcu150.
  • Mellinas, C.; Ramos, M.; Jiménez, A.; Garrigos, M. C. Recent Trends in the Use of Pectin from Agro-waste Residues as a Natural-based Biopolymer Packaging Applications. Materials. 2020, 13(3), 673. DOI: 10.3390/ma13030673.
  • Lopes da silva, L.A.; ; ; ; , Rao, M.A. In:Food Polysaccharides and Their Applications; Stephen, A.M., Phillips, G.O., and Williams, P.A., .; CRC Press: N.Y, USA, 2006 Pectin: Structure, Functionality, and Uses ; pp 287–339.
  • Levigne, S.; Thomas, M.; Ralet, M. C.; Quemener, B.; Thibault, J. F. Determination of the Degrees of Methylation and Acetylation of Pectins Using a C18 Column and Internal Standards. Food Hydrocoll. 2002, 16, 547–550. DOI: 10.1016/S0268-005X(02)00015-2.
  • Chan, S. Y.; Choo, W. S. Effect of Extraction Conditions on the Yield and Chemical Properties of Pectin from Cocoa Husks. Food Chem. 2013, 141(4), 3752–3758. DOI: 10.1016/j.foodchem.2013.06.097.
  • Chen, J.; Liu, W.; Liu, C. M.; Li, T.; Liang, R. H.; Luo, S. J. Pectin Modifications: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55(12), 1684–1698. DOI: 10.1080/10408398.2012.718722.
  • Zhang, H.; Chen, J.; Li, J.; Yan, L.; Li, S.; Ye, X.; Liu, D.; Ding, T.; Linhardt, R. J.; Orfila, C., et al. Extraction and Characterization of RG-I Enriched Pectic Polysaccharides from Mandarin Citrus Peel. Food Hydrocoll. 2018, 79, 579–586. DOI: 10.1016/j.foodhyd.2017.12.002.
  • Thakur, B. R.; Singh, R. K.; Handa, A. K. Chemistry and Uses of Pectin- a Review. Crit. Rev. Food Sci. Nutr. 1997, 37, 47–73. DOI: 10.1080/10408399709527767.
  • Barajas, J. A. S.; Ayon, M. A. G.; Velez, R.; Verdugo-Perales, M.; Lagarda, J., and Allende, R. Pectin: Chemical properties, Uses and Health benefits Bush, P. L. (N.Y, USA: Nova Science) 2014 Pectin: From gelling properties to the biological activity , 203–224 .
  • Vanitha, T.; Khan, M. Role of Pectin in Food Processing and Food Packaging. In Pectins: Extraction, Purification, Characterization and Application; 2019. DOI: 10.5772/intechopen.83677.
  • Akhtar, K.; Dickinson, E.; Mazoyer, J.; Langendorff, V. Emulsion Stabilizing Properties of Depolymerized Pectin. Food Hydrocoll. 2002, 16, 249–256. DOI: 10.1016/S0268-005X(01)00095-9.
  • Fathi, M.; Martin, A.; McClements, D. J. Nanoencapsulation of Food Ingredients Using Carbohydrate Based Delivery Systems. Trends Food Sci. Tech. 2014, 39(1), 18–39. DOI: 10.1016/j.tifs.2014.06.007.
  • Chomto, P.; Nunthanid, J. Physicochemical and Powder Characteristics of Various Citrus Pectins and Their Application for Oral Pharmaceutical Tablets. Carbohydr. Polym. 2017, 174, 25–31. DOI: 10.1016/j.carbpol.2017.06.049.
  • Devi, N.; Sarmah, M.; Khatun, B.; Maji, T. K. Encapsulation of Active Ingredients in Polysaccharide–protein Complex Coacervates. Adv. Colloid Interface Sci. 2017, 239, 136–145. DOI: 10.1016/j.cis.2016.05.009.
  • Shishir, M. R. I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in Micro and Nano-encapsulation of Bioactive Compounds Using Biopolymer and Lipid-based Transporters. Trends Food Sci. Tech. 2018, 78, 34–60.
  • Hosseini, S. M. H.; Emam-Djomeh, A.; Sabatino, P.; Van der Meeren, P. Nanocomplexes Arising from Protein-polysaccharide Electrostatic Interaction as a Promising Carrier for Nutraceutical Compounds. Food Hydrocoll. 2015, 50, 16–26. DOI: 10.1016/j.foodhyd.2015.04.006.
  • Yang, J.; Li, J. Self-assembled Cellulose Materials for Biomedicine: A Review. Carbohydr. Polym. 2018, 181, 264–274. DOI: 10.1016/j.carbpol.2017.10.067.
  • Giacomazza, D.; Bulone, D.; San Biagio, P. L.; Lapasin, R. The Complex Mechanism of HM Pectin Self-assembly: A Rheological Investigation. Carbohydr. Polym. 2016, 146, 181–186. DOI: 10.1016/j.carbpol.2016.03.046.
  • Valencia, G. A.; Zare, E. N.; Makvandi, P.; Gutiérrez, T. J. Self‐Assembled Carbohydrate Polymers for Food Applications: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18(6), 2009–2024. DOI: 10.1111/1541-4337.12499.
  • Rafiee, Z.; Nejatian, M.; Daeihamed, M.; Jafari, S. M. Application of Different Nanocarriers Encapsulation of Curcumin. Crit. Rev. Food Sci. Nutr. 2019, 59(21), 3468–3497. DOI: 10.1080/10408398.2018.1495174.
  • de Kruif, C. G.; Weinbreck, F.; de Vries, R. Complex Coacervation of Proteins and Anionic Polysaccharides. Curr. Opin. Colloid Interface Sci. 2004, 9, 340–349. DOI: 10.1016/j.cocis.2004.09.006.
  • Ducel, V.; Richard, J.; Saulnier, P.; Popineau, Y.; Boury, F. Evidence and Characterization of Complex Coacervates Containing Plant Proteins: Application to the Microencapsulation of Oil Droplets. Colloid Surf. A. 2004, 232, 239–247. DOI: 10.1016/j.colsurfa.2003.11.001.
  • Soukoulis, C.; Bohn, T. A Comprehensive Overview on the Micro- and Nano-technological Encapsulation Advances for Enhancing the Chemical Stability and Bioavailability of Carotenoids. Crit. Rev. Food Sci. Nutr. 2018, 58(1), 1–36. DOI: 10.1080/10408398.2014.971353.
  • Zhao, S.; Gao, W.; Tian, G.; Zhao, C.; DiMarco-Crook, C.; Fan, B.; Li, C.; Xiao, H.; Zheng, J. Citrus Oil Emulsion Stabilized by Citrus Pectin: The Influence Mechanism of Citrus Variety and Acid Treatment. J. Agri. Food Chem. 2018, 66, 12978–12988. DOI: 10.1021/acs.jafc.8b04711.
  • Zuidema, J. M.; Pap, M. M.; Jaroch, D. B.; Morrison, F. A.; Gilbert, R. J. Fabrication and Characterization of Tunable Polysaccharide Hydrogel Blends for Neural Repair. Acta. Biomater. 2011, 7, 1634–1643. DOI: 10.1016/j.actbio.2010.11.039.
  • Raei, M.; Shahidi, F.; Farhoodi, M.; Jafari, S. M.; Rafe, A. Application, of Whey Protein- Pectin Nano-complex Carriers for Loading of Lactoferrin. Int. J. Biol. Macromol. 2017, 105, 281–291. DOI: 10.1016/j.ijbiomac.2017.07.037.
  • Ghasemi, S.; Jafari, S. M.; Assadpour, E.; Khomeiri, M. Production of Pectin-whey Protein Nano-complexes as Carriers of Orange Peel Oil. Carbohydr. Polym. 2017, 177, 369–377. DOI: 10.1016/j.carbpol.2017.09.009.
  • Gharehbeglou, P.; Jafari, S. M.; Hamishekar, H.; Homayouni, A.; Mirzaei, H. Pectin-whey Protein Complexes Vs. Small Molecule Surfactants for Stabilization of Double Nano-emulsions as Novel Bioactive Delivery Systems. J. Food Eng. 2019, 245, 139–148. DOI: 10.1016/j.jfoodeng.2018.10.016.
  • Zhao, X.; Zhang, X.; Tie, S.; Hou, S.; Wang, H.; Song, Y.; Rai, R.; Tan, M. Facile Synthesis of Nanocarriers from Chitosan and Pectin with Improved Stability and Biocompatibility for Anthocyanins Delivery: An in Vitro and in Vivo Study. Food Hydrocoll. 2020, 109, 106114. DOI: 10.1016/j.foodhyd.2020.106114.
  • Jiang, Y.; Li, F.; Li, D.; Sun-Waterhouse, D.; Huang, Q. Zein/Pectin Nanoparticle- Stabilized Sesame Oil Pickering Emulsions: Sustainable Bioactive Carriers and Healthy Alternatives to Sesame Paste. Food Bioprocess. Tech. 2019, 12, 1982–1992. DOI: 10.1007/s11947-019-02361-4.
  • Peng, H.; Chen, S.; Luo, M.; Ning, F.; Zhu, X.; Xiong, H. Preparation and Self-assembly Mechanism of Bovine Serum Albumin-citrus Peel Pectin Conjugated Hydrogels: A Potential Delivery System for Vitamin C. J. Agric. Food Chem. 2016, 64(39), 7377–7384. DOI: 10.1021/acs.jafc.6b02966.
  • Xiang, C.; Gao, J.; Ye, H.; Ren, G.; Ma, X.; Xie, H.; Fang, S.; Lei, Q.; Fang, W. Development of Ovalbumin-pectin Nanocomplexes for Vitamin D3 Encapsulation: Enhanced Storage Stability and Sustained Release in Simulated Gastrointestinal Digestion. Food Hydrocoll. 2020, 106, 105926. DOI: 10.1016/j.foodhyd.2020.105926.
  • Kaushik, P.; Priyadarshini, E.; Rawat, K.; Bohidar, P. R. H. B. pH Responsive Doxorubicin Loaded Zein Nanoparticle Crosslinked Pectin Hydrogel as Effective Site-specific Anticancer Substrates. Int. J. Biol. Macromol. 2020, 152, 1027–1037. DOI: 10.1016/j.ijbiomac.2019.10.190.
  • Niu, Z.; Loveday, S. M.; Barbe, V.; Thielen, I.; He, Y.; Singh, H. Protection of Native Lactoferrin under Gastric Conditions through Complexation with Pectin and Chitosan. Food Hydrocoll. 2019, 93, 120–130. DOI: 10.1016/j.foodhyd.2019.02.020.
  • Gautam, M.; Santhiya, D. Pectin/PEG Food Grade Hydrogel Blend for the Targeted Oral Co-delivery of Nutrients. Colloids Surf. A. 2019, 577, 637–644. DOI: 10.1016/j.colsurfa.2019.06.027.
  • Huang, X.; Liu, Y.; Zou, Y.; Liang, X.; Peng, Y.; McClements, D. J.; Hu, K. Encapsulation of Resveratrol in Zein/pectin Core-shell Nanoparticles: Stability, Bioaccessibility, and Antioxidant Capacity after Simulated Gastrointestinal Digestion. Food Hydrocoll. 2019, 93, 261–269. DOI: 10.1016/j.foodhyd.2019.02.039.
  • Bai, F.; Diao, J.; Wang, Y.; Sun, S.; Zhang, H.; Liu, Y.; Wang, Y.; Cao, J. A New Water-soluble Nanomicelle Formed through Self-assembly of Pectin – Curcumin Conjugates: Preparation, Characterization, and Anticancer Activity Evaluation. J. Agric. Food Chem. 2017, 65, 6840–6847. DOI: 10.1021/acs.jafc.7b02250.
  • Abdou, E. S.; Galhoum, G. F.; Mohamed, E. N. Curcumin Loaded Nanoemulsions/ Pectin Coatings for Refrigerated Chicken Fillets. Food Hydrocoll. 2018, 83, 445–453. DOI: 10.1016/j.foodhyd.2018.05.026.
  • Gaikwad, D.; Shewale, R.; Patil, V.; Mali, D.; Gaikwad, U.; Jadhav, N. Enhancement in In Vitro Anti-angiogenesis Activity and Cytotoxicity in Lung Cancer Cell by pectin-PVP Based Curcumin Particulates. Int. J. Biol. Macromol. 2017, 104, 656–664. DOI: 10.1016/j.ijbiomac.2017.05.170.
  • Raghav, N.; Mor, N.; Gupta, R. D.; Kaur, R.; Sharma, M. R.; Arya, P. Some Cetyl Trimethyl Ammonium Bromide Modified Polysaccharide Supports as Sustained Release Systems for Curcumin. Int. J. Biol. Macromol. 2020, 151, 361–370. DOI: 10.1016/j.ijbiomac.2020.02.317.
  • Alkhader, E.; Billa, N.; Roberts, C. J. Mucoadhesive Chitosan-pectinate Nono-particles for the Delivery of Curcumin to the Colon. AAPS Pharm. Sci. Tech. 2017, 18(4), 1009–1018. DOI: 10.1208/s12249-016-0623-y.
  • Sabra, R.; Billa, N.; Roberts, C. J. An Augmented Delivery of the Anticancer Agent, Curcumin, to the Colon. React. Funct. Polym. 2018, 123, 54–60. DOI: 10.1016/j.reactfunctpolym.2017.12.012.
  • Neufeld, L.; Bianco-Peled, H. Pectin-chitosan Physical Hydrogels as Potential Drug Delivery Vehicles. Int. J. Biol. Macromol. 2017, 101, 852–861. DOI: 10.1016/j.ijbiomac.2017.03.167.
  • Wu, L. X.; Qiao, Z. R.; Cai, W. D.; Qiu, W. Y.; Yan, J. K. Quaternized Curdlan/pectin Polyelectrolyte Complexes as Biocompatible Nanovehicles for Curcumin. Food Chem. 2019, 291, 180–186. DOI: 10.1016/j.foodchem.2019.04.029.
  • Chang, C.; Wang, T.; Hu, Q.; Zhou, M.; Xue, J.; Luo, Y. Pectin Coating Improves Physicochemical Properties of Caseinate/zein Nanoparticles as Oral Delivery Vehicles for Curcumin. Food Hydrocoll. 2017, 70, 143–151. DOI: 10.1016/j.foodhyd.2017.03.033.
  • Xue, J.; Wang, T.; Hu, Q.; Zhou, M.; Luo, Y. Insight into Natural Biopolymer-emulsified Solid Lipid Nanoparticles for Encapsulation of Curcumin: Effect of Loading Methods. Food Hydrocoll. 2018, 79, 110–116. DOI: 10.1016/j.foodhyd.2017.12.018.
  • Shih, F. Y.; Su, I. J.; Chu, L. L.; Lin, X.; Kuo, S. C.; Hou, Y. C.; Chiang, Y. T. Development of Pectin-type B Gelatin Polyelectrolyte Complex for Curcumin Delivery in Anticancer Therapy. Int. J. Mol. Sci. 2018, 19(11), 3625. DOI: 10.3390/ijms19113625.
  • Guo, Q.; Su, J.; Shu, X.; Yuan, F.; Mao, L.; Liu, J.; Gao, Y. Production and Characterization of Pea Protein Isolate-pectin Complexes for Delivery of Curcumin: Effect of Esterified Degree of Pectin. Food Hydrocoll. 2020, 105, 105777. DOI: 10.1016/j.foodhyd.2020.105777.
  • Cai, T.; Xiao, P.; Yu, N.; Zhou, Y.; Mao, J.; Peng, H.; Deng, S. A Novel Pectin from Akebia Trifoliata Var. Australis Fruit Peel and Its Use as A Wall-material to Coat Curcumin Loaded Zein Nanoparticles. Int. J. Biol. Macromol. 2020, 152, 40–49. DOI: 10.1016/j.ijbiomac.2020.02.234.
  • Zhou, F. Z.; Huang, X. N.; Wu, Z. L.; Yin, S. W.; Zhu, J. H.; Tang, C. H.; Yang, X. Fabrication of Zein/pectin Hybrid Particles Stabilized Pickering High Phase Emulsions (Hipes) with Robust and Ordered Interface Architecture. J. Agric. Food Chem. 2018, 66(42), 11113–11123. DOI: 10.1021/acs.jafc.8b03714.
  • Zhou, M.; Wang, T.; Hu, Q.; Luo, Y. Low Density Lipoprotein/protein Complex Nanogels as Potential Oral Delivery Vehicles for Curcumin. Food Hydrocoll. 2016, 57, 20–29. DOI: 10.1016/j.foodhyd.2016.01.010.
  • Zhou, M.; Hu, Q.; Wang, T.; Xue, J.; Luo, Y. Alginate Hydrogel Beads as a Carrier of Low Density Lipoprotein/pectin Nanogels for Potential Oral Delivery Applications. Int. J. Biol. Macromol. 2018, 120, 859–864. DOI: 10.1016/j.ijbiomac.2018.08.135.
  • Jin, B.; Zhou, X.; Zhou, S.; Liu, Y.; Guan, R.; Zheng, Z.; Liang, Y. Influence of Phenolic Acids on the Storage and Digestion Stability of Curcumin Emulsions Based on Soy Protein-pectin-phenolic Acids Ternary Nano-complexes. J. Microencapsul. 2019, 36(7), 622–634. DOI: 10.1080/02652048.2019.1662122.
  • Moideen, M. M. J.; Karuppaiyan, K.; Kandhasamy, R.; Seetharaman, S. Skimmed Milk Powder and Pectin Decorated Solid Lipid Nanoparticle Containing Soluble Curcumin Used for the Treatment of Colorectal Cancer. J. Food Process Eng. 2019, 43(3). DOI: 10.1111/jfpe.13246.
  • Ye, A. Complexation between Milk Proteins and Polysaccharides via Electrostatic Interaction: Principles and Applications – A Review. Int. J. Food Sci. Technol. 2008, 43, 406–415. DOI: 10.1111/j.1365-2621.2006.01454.x.
  • Nagahama, K.; Sano, Y.; Kumano, T. Anticancer Drug-based Dextran-multifunctional Nanogels through Self-assembly of Curcumin Conjugates toward Cancer Theranostics. Bioorg. Med. Chem. Lett. 2015, 25, 2519–2522. DOI: 10.1016/j.bmcl.2015.04.062.
  • O’Toole, M. G.; Soucy, P. A.; Chauhan, R.; Raju, M. V. R.; Patel, D. N.; Nunn, B. N.; Keynton, M. A.; Ehringer, W. D.; Nantz, M. H.; Keynton, R. S., et al. Release-modulated Antioxidant Activity of a Composite Curcumin-chitosan Polymer. Biomacromolecules. 2016, 17, 1253–1260. DOI: 10.1021/acs.biomac.5b01019.
  • Dey, S.; Sreenivasan, K. Conjugation of Curcumin onto Alginate Enhances Aqueous Solubility and Stability of Curcumin. Carbohydr. Polym. 2014, 99, 499–507. DOI: 10.1016/j.carbpol.2013.08.067.
  • Rana, V.; Rai, P.; Tripathi, A. K.; Singh, R. S.; Kennedy, J. F.; Kneil, C. J. Modified Gums: Approaches and Applications in Drug Delivery. Carbohydr. Polym. 2011, 83, 1031–1047. DOI: 10.1016/j.carbpol.2010.09.010.
  • Mishra, R. K.; Banthia, A. K.; Majeed, A. B. A. Pectin Based Formulations for Biomedical Applications: A Review. Asian J. Pharm. Clin. Res. 2012, 5(4), 1–7.
  • Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. Polysaccharides-based Nano Particles as Drug Delivery Systems. Adv. Drug Deliv. Rev. 2008, 60(15), 1650–1662. DOI: 10.1016/j.addr.2008.09.001.
  • Kang, B.; Opatz, T.; Landfester, K.; Wurm, F. R. Carbohydrate Nanocarriers in Biomedical Applications: Functionalization and Construction. Chem. Soc. Rev. 2015, 44(22), 8301–8325. DOI: 10.1039/C5CS00092K.
  • Zhang, A.; Zhang, Z.; Shi, F.; Ding, J.; Xiao, C.; Zhuang, X.; He, C.; Chen, L.; Chen, X. Disulfid Crosslinked Pegylated Starch Micelles as Efficient Intracellular Drug Delivery Plat Forms. Soft Matter. 2013, 9(7), 2224–2233. DOI: 10.1039/c2sm27189c.
  • Jonassen, H.; Kjoniksen, A. L.; Hiorth, M. Stability of Chitosan Nanoparticles Cross Linked with Tripolyphosphate. Biomacromolecules. 2012, 13, 3747–3756. DOI: 10.1021/bm301207a.
  • Anal, A. K.; Shrestha, S.; Sadiq, M. B. Biopolymeric-based Emulsions and Their Effects during Processing, Digestibility and Bioaccessibility of Bioactive Compounds in Food Systems. Food Hydrocoll. 2019, 87, 691–702. DOI: 10.1016/j.foodhyd.2018.09.008.
  • Cao, Y.; Mezzenga, R. Design Principles of Food Gels. Nat. Food. 2020, 1(2), 106–118. DOI: 10.1038/s43016-019-0009-x.
  • Das, M.; Giri, T. K. Hydrogels Based on Gellan Gum in Cell Delivery and Drug Delivery. J. Drug Deliv. Sci. Technol. 2020, 56, 101586. DOI: 10.1016/j.jddst.2020.101586.
  • Langer, R.; Peppas, N. A. Advances in Biomaterials, Drug Delivery and Bionanotechnology. AIChE J. 2003, 49(12), 2990–3006. DOI: 10.1002/aic.690491202.
  • Giri, T. K.; Verma, D.; Badwaik, H. R. Effect of Aluminium Chloride Concentration on Diltiazem Hydrochloride Release from pH-sensitive Hydrogel Beads Composed of Hydrolysed Grafted K-carrageenan and Sodium Alginate. Curr. Chem. Biol. 2017, 11(1), 44–49. DOI: 10.2174/2212796810666161108152612.
  • Dreiss, C. A. Hydrogel Design Strategies for Drug Delivery. Curr. Opin. Colloid Interface Sci. 2020, 48, 1–17. DOI: 10.1016/j.cocis.2020.02.001.
  • Jafari, S. M. Nanoencapsulation Technologies for the Food and Nutraceutical Industries; Cambridge, MA: Academic Press, 2017; 638.
  • Wu, C.; Bottcher, C.; Haag, R. Enzymatically Crosslinked Dendritic Polyglycerol Nanogels for Encapsulation of Catalytically Active Proteins. Soft Matter. 2015, 11(5), 972–980. DOI: 10.1039/C4SM01746C.
  • Eswaramma, S.; Reddy, N. S.; Rao, K. S. V. K. Phosphate Crosslinked Pectin Based Dual Responsive Hydrogel Networks and Nanocomposites: Development, Swelling Dynamics and Drug Release Characteristics. Int. J. Biol. Macromol. 2017, 103, 1162–1172. DOI: 10.1016/j.ijbiomac.2017.05.160.
  • Mungure, T. E.; Roohinejad, S.; Bekhit, A. E. D.; Greiner, R.; Mallikarjunan, K. Potential Application of Pectin for the Stabilization of Nanoemulsions. Curr. Opin. Food Sci. 2018, 19, 72–76. DOI: 10.1016/j.cofs.2018.01.011.
  • McClements, D. J. Recent Progress in Hydrogel Delivery Systems for Improving Nutraceutical Bioavailability. Food Hydrocoll. 2017, 68, 238–245. DOI: 10.1016/j.foodhyd.2016.05.037.
  • Jung, J.; Arnold, R. D.; Wicker, L. Pectin and Charge Modified Pectin Hydrogel Beads as a Colon-targeted Drug Delivery Carrier. Colloids Surf. B. 2013, 104, 116–121. DOI: 10.1016/j.colsurfb.2012.11.042.
  • Kotta, S.; Khan, A. W.; Pramod, K.; Ansari, S. H.; Sharma, R. K.; Ali, J. Exploring Oral Nanoemulsions for Bioavailability Enhancement of Poorly Water-soluble Drugs. Expert Opin. Drug Deliv. 2012, 9(5), 585–598. DOI: 10.1517/17425247.2012.668523.
  • Albano, K. M.; Cavallieri, A. L. F.; Nicoletti, V. R. Electrostatic Interaction between Proteins and Polysaccharides: Physicochemical Aspects and Applications in Emulsion Stabilization. Food Rev. Int. 2019, 35, 54–89. DOI: 10.1080/87559129.2018.1467442.
  • Kuhn, K. R.; Cunha, R. L. Flaxseed Oil–whey Protein Isolate Emulsions: Effect of High Pressure Homogenization. J. Food Eng. 2012, 111(2), 449–457. DOI: 10.1016/j.jfoodeng.2012.01.016.
  • Adjonu, R.; Doran, G.; Torley, P.; Agboola, S. Formation of Whey Protein Hydrolysate Stabilized Nanoemulsion. Food Hydrocoll. 2014, 41, 169–177. DOI: 10.1016/j.foodhyd.2014.04.007.
  • Ngouemazong, E. D.; Christiaens, S.; Shpigelman, A.; Van Loey, A.; Hendrickx, M. The Emulsifying and Emulsion Stabilizing Properties of Pectin: A Review. Compr. Rev. Food Sci. Food Saf. 2015, 14(6), 705–718. DOI: 10.1111/1541-4337.12160.
  • Yadav, M. P.; Johnston, D. B.; Hicks, K. B. Corn Fiber Gum: New Structure/function Relationships for This Potential Beverage Flavor Stabilizer. Food Hydrocoll. 2009, 23(6), 1488–1493. DOI: 10.1016/j.foodhyd.2008.08.012.
  • Bai, L.; Huan, S.; Li, Z.; McClements, D. J. Comparison of Emulsifying Properties of Food-grade Polysaccharides in Oil-in-water Emulsions: Gum Arabic, Beet Pectin, and Corn Fiber Gum. Food Hydrocoll. 2017, 66, 144–153. DOI: 10.1016/j.foodhyd.2016.12.019.
  • Zhang, L.; Shi, Z.; Shangguan, W.; Fang, Y.; Nishinari, K.; Phillips, G. O.; Jiang, F. Emulsification Properties of Sugar Beet Pectin after Modification with Horseradish Peroxidase. Food Hydrocoll. 2015, 43, 107–113. DOI: 10.1016/j.foodhyd.2014.05.004.
  • Chen, F. P.; Ou, S. Y.; Tang, C. H. Core-shell Soy Protein-soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained-release of Curcumin. J. Agric. Food Chem. 2016, 64, 5053–5059. DOI: 10.1021/acs.jafc.6b01176.
  • O’Driscoll, C. M.; Griffin, B. T. Biopharmaceutical Challenges Associated with Drugs with Low Aqueous Solubility – The Potential Impact of Lipid Based Formulations. Adv. Drug Deliv. Rev. 2008, 60(7), 617–624. DOI: 10.1016/j.addr.2007.10.012.
  • Gaba, B.; Fazil, B.; Ali, A.; Baboota, S.; Sahni, J. K.; Ali, J. Nanostructured Lipid (Nlcs) Carriers as a Bioavailability Enhancement Tool for Oral Administration. Drug. Deliv. 2015, 22(6), 691–700. DOI: 10.3109/10717544.2014.898110.
  • Li, M.; Zahi, M. R.; Yuan, Q.; Tian, F.; Liang, H. Preparation and Stability of Astaxanthin Solid Lipid Nanoparticles Based on Stearic Acid. Eur. J. Lipid Sci. Technol. 2016, 118, 592–602. DOI: 10.1002/ejlt.201400650.
  • Wang, T.; Luo, Y. Biological Fate of Ingested Lipid-based Nanoparticles: Current Understanding and Future Directions. Nanoscale. 2019, 11, 11048–11063. DOI: 10.1039/C9NR03025E.
  • Wang, T.; Hu, Q.; Zhou, M.; Xue, J.; Luo, Y. Preparation of Ultra-fine Powders from Polysaccharide-coated Solid Lipid Nanoparticles and Nanostructured Lipid Carriers by Innovative Nano Spray Drying Technology. Int. J. Pharm. 2016, 511(1), 219–222. DOI: 10.1016/j.ijpharm.2016.07.005.
  • Xue, J.; Wang, T.; Hu, Q.; Zhou, M.; Luo, Y. A Novel and Organic Solvent-free Preparation of Solid Lipid Nanoparticles Using Natural Biopolymers as Emulsifier and Stabilizer. Int. J. Pharm. 2017, 531, 56–66. DOI: 10.1016/j.ijpharm.2017.08.066.
  • Vareed, S. K.; Kakarala, M.; Ruffin, M. T.; Crowell, J. A.; Normolle, D. P.; Djuric, Z.; Brenner, D. E. Pharmacokinetics of Curcumin Conjugate Metabolites in Healthy Human Subjects. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 1411–1417. DOI: 10.1158/1055-9965.EPI-07-2693.
  • Aggarwal, B. B.; Sung, B. Pharmacological Basis for the Role of Curcumin in Chronic Diseases: An Age-old Spice with Modern Targets. Trends Pharmacol. Sci. 2009, 30(2), 85–94. DOI: 10.1016/j.tips.2008.11.002.
  • Liu, L.; Fishman, M. L.; Hicks, K. B. Pectin in Controlled Drug Delivery – A Review. Cellulose. 2007, 14, 15–24. DOI: 10.1007/s10570-006-9095-7.
  • Hu, S.; Wang, T.; Fernandez, M. L.; Luo, Y. Development of Tannic Acid Cross-linked Hollow Zein Nanoparticles as Potential Oral Delivery Vehicles for Curcumin. Food Hydrocoll. 2016, 61, 821–831. DOI: 10.1016/j.foodhyd.2016.07.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.