1,954
Views
10
CrossRef citations to date
0
Altmetric
Review

Duckweed (Lemnaceae) for potentially nutritious human food: A review

, , , , , , , & show all

References

  • Mc Carthy, U.; Uysal, I.; Badia-Melis, R.; Mercier, S.; O’Donnell, C.; Ktenioudaki, A. Global Food Security – Issues, Challenges and Technological Solutions. Trends in Food Sci. & Technol. 2018, 77, 11–20.
  • Dijk, M.; Morley, V.; Rau, T.; Saghai, M. L. A Meta-analysis of Projected Global Food Demand and Population at Risk of Hunger for the Period 2010-2050. Nat. Food. 2021, 2, 494–501.
  • Hasegawa, T.; Sakurai, G.; Fujimori, S.; Takahashi, K.; Hijioka, Y.; Masui, T. Extreme Climate Events Increase Risk of Global Food Insecurity and Adaptation Needs. Nat. Food. 2021, 2, 587–595.
  • Appenroth, K. J.; Sree, K. S.; Böhm, V.; Hammann, S.; Vetter, W.; Leiterer, M.; Jahreis, G. Nutritional Value of Duckweeds (Lemnaceae) as Human Food. Food Chem. 2017, 217, 266–273.
  • Appenroth, K. J.; Sree, K. S.; Bog, M.; Ecker, J.; Seeliger, C.; Böhm, V.; Lorkowski, S.; Sommer, K.; Vetter, W.; Tolzin-Banasch, K., et al. Nutritional Value of the Duckweed Species of the Genus Wolffia (Lemnaceae) as Human Food. Front. Chem. 2018, 6, 483.
  • Bhanthumnavin, K.; Mcgarry, M. G. Wolffia Arrhiza as a Possible Source of Inexpensive Protein. Nature. 1971, 232, 495.
  • Said, M. Z. M.; Culley, D. D.; Standifer, L. C.; Epps, E. A.; Myers, R. W.; Boney, S. A. Effect of Harvest Rate, Waste Loading, and Stocking Density on the Yield of Duckweeds. Proc. World Maricul. Soc. 1979, 10, 769–780.
  • Rusoff, L. L.; Blakeney, E. W.; Culley, D. D. Duckweeds (Lemnaceae Family): A Potential Source of Protein and Amino Acids. J. Agric. Food Chem. 1980, 28, 848–850.
  • Dewanji, A.;. Amino Acid Composition of Leaf Proteins Extracted from Some Aquatic Weeds. J. Agric. Food Chem. 1993, 41, 1232–1236.
  • Skillicorn, P.; Spira, W.; Journey, W. Duckweed Aquaculture. A New Aquatic Farming System for Developing Countries; The World Bank: Wanshington, DC, 1993.
  • Chen, Q.; Jin, Y.; Zhang, G.; Fang, Y.; Xiao, Y.; Zhao, H. Improving Production of Bioethanol from Duckweed (Landoltia Punctata) by Pectinase Pretreatment. Energy. 2012, 5, 3019–3032.
  • Duan, P.;. Hydrothermal Processing of Duckweed: Effect of Reaction Conditions on Product Distribution and Composition. Biores. Technol. 2013, 135, 710–719.
  • Xu, J.; Zhao, H.; Stomp, A.-M.; Cheng, J. J. The Production of Duckweed as a Source of Biofuels. Biofuels. 2012, 3, 589–601.
  • Sree, K. S.; Appenroth, K. J. Worldwide Genetic Resources of Duckweed: Stock Collections. In The Duckweed Genomes. Compendium of Plant Genomes; Cao, X., Fourounjian, P., Wang, W., Eds.; Springer: Cham; Switzerland AG, 2020; pp. 39–46.
  • Zhang, J.; Azizullah, A. Genetic Diversity and DNA Barcoding in the Duckweed Family. In The Duckweed Genomes. Compendium of Plant Genomes; Cao, X., Fourounjian, P., Wang, W., Eds.; Springer: Cham; Switzerland AG, 2020; pp. 59–65.
  • Chakrabarti, R.; Clark, W. D.; Sharma, J. G.; Goswami, R. K.; Shrivastav, A. K.; Tocher, D. R. Mass Production of Lemna Minor and Its Amino Acid and Fatty Acid Profiles. Front. Chem. 2018, 6, 479.
  • Yin, Y.; Yu, C.; Yu, L.; Zhao, J.; Sun, C.; Ma, Y.; Zhou, G. The Influence of Light Intensity and Photoperiod on Duckweed Biomass and Starch Accumulation for Bioethanol Production. Bio. Technol. 2015, 187, 84–90.
  • Fourounjian, P.; Fakhoorian, T.; Cao, X. H. Importance of Duckweeds in Basic Research and Their Industrial Applications. In The Duckweed Genomes. Compendium of Plant Genomes; Cao, X., Fourounjian, P., Wang, W., Eds.; Springer: Cham; Switzerland AG, 2020; 1–17.
  • GRAS Notice (GRC) No. 742. 2017. https://www.fda.gov/media/113614/download. (accessed March 8, 2021).
  • Islam, K. M. S.;. Feasibility of Duckweed as Poultry Feed – A Review. Ind. J. Animal. Sci. 2002, 72, 486–491.
  • Hasan, M. R.; Rina, C. Use of Algae and Aquatic Macrophytes as Feed in Small-scale Aquaculture: A Review (No. 531).; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009.
  • Cruz-Velásquez, Y.; Kijora, C.; Vergara-Hernández, W.; Schulz, C. On-farm Evaluation of Cachama Blanca and Nile Tilapia Fed Fermented Aquatic Plants in a Polyculture. Orinoq. 2014, 18, 269–277.
  • Cui, W.; Cheng, J. J. Growing Duckweed for Biofuel Production: A Review. Plant Biol. J. 2015, 17, 16–23.
  • Xu, J.; Cui, W.; Cheng, J. J.; Stomp, A.-M. Production of High-starch Duckweed and Its Conversion to Bioethanol. Biosyst. Eng. 2011, 110, 67–72.
  • Sońta, M.; Rekiel, A.; Batorska, M. Use of Duckweed (Lemna L.) In Sustainable Livestock Production and Aquaculture – A Review. Ann. Animal Sci. 2019, 19, 257–271.
  • Edelman, M.; Colt, M. Nutrient Value of Leaf Vs. Seed. Front. Chem. 2016, 4, 32.
  • Anderson, K. E.; Lowman, Z.; Stomp, A.-M.; Chang, J. Duckweed as a Feed Ingredient in Laying Hen Diets and Its Effect on Egg Production and Composition. Int. J. Poul. Sci. 2011, 10, 4–7.
  • Ruekaewma, N.; Piyatiratitivorakul, S.; Powtongsook, S. Culture System for Wolffia Globosa L. (Lemnaceae) for Hygiene Human Food. Songklanakarin J. Sci. Technol. 2015, 7, 575–580.
  • Sharma, J.; Clark, W. D.; Shrivastav, A. K.; Goswami, R. K.; Tocher, D. R.; Chakrabarti, R. Production Potential of Greater Duckweed Spirodela Polyrhiza (L. Schleiden) and Its Biochemical Composition Evaluation. Aquacul. 2019, 513, 734419.
  • Aguilera-Morales, M.; Canales-Martinez, M. M.; Avila-Gonzalez, E.; Flores-Ortiz, X. M. Nutrients and Bioactive Compounds of the Lemna Gibba and Ulva Lactuca as Possible Ingredients to Functional Foods. Lat. Am. J. Aquatic Res. 2018, 46, 709–716.
  • Escobar, C.; Escobar, A. Duckweed: A Tiny Aquatic Plant with Enormous Potential for Bioregenerative Life Support Systems. In 47th International Conference on Environmental Systems, Charleston, U.S., July 16-20, 2017.
  • Casal, J. A.; Vermaat, J. E.; Wiegman, F. A Test of Two Methods for Plant Protein Determination Using Duckweed. Aqua. Bot. 2000, 67, 61–67.
  • Yu, G.; Liu, H.; Venkateshan, K.; Yan, S.; Cheng, J.; Sun, X.; Functional, W. D. Physiochemical, and Rheological Properties of Duckweed (Spirodela Polyrhiza) Protein. Trans. ASABE. 2011, 54, 555–556.
  • Liener, I. E.;. Implications of Antinutritional Components in Soybean Foods. Crit. Rev. Food Sci. Nutr. 1994, 34, 31–67.
  • Hamad, S. A. A.; Mustafa, A. I.; Magboul, B. I.; Qasem, A. A. A.; Ahmed, I. A. M. Nutritional Quality of Raw and Cooked Flours of a High β-glucan Sorghum Inbred Line. J. Cereal Sci. 2019, 90, 102857.
  • Wu, G.; Ashton, J.; Simic, A.; Fang, Z.; Johnson, S. K. Mineral Availability Is Modified by Tannin and Phytate Content in Sorghum Flaked Breakfast Cereals. Food Res. Int. 2018, 103, 509–514.
  • Xiong, Y.; Zhang, P.; Luo, J.; Johnson, S. K.; Fang, Z. Effect of Processing on the Phenolic Contents, Antioxidant Activity and Volatile Compounds of Sorghum Grain Tea. J. Cereal Sci. 2019, 85, 6–14.
  • Fasakin, E. A.;. Nutrient Quality of Leaf Protein Concentrates Produced from Water Fern (Azolla Africana Desv) and Duckweed (Spirodela Polyrhiza L. Schleiden). Bio Technol. 1999, 69, 185–187.
  • Ifie, I.; Olatunde, S.; Ogbon, O.; Umukoro, J. E. Processing Techniques on Phytochemical Content, Proximate Composition, and Toxic Components in Duckweed. Int. J. Veg. Sci. 2020, 27, 1–9.
  • Zhang, X.; Chen, H.; Wu, D.; Gu, W.; Sun, X.; Chen, J.; Wu, Q. Determination of Free Amino Acids in Three Species of Duckweed (Lemnaceae). J. Food Qua. 2018, 2018, 1–15.
  • Xu, Y.; Cartier, A.; Obielodan, M.; Jordan, K.; Hairston, T.; Shannon, A.; Sismour, E. Nutritional and Anti-nutritional Composition, and in Vitro Protein Digestibility of Kabuli Chickpea (Cicer Arietinum L.) As Affected by Differential Processing Methods. Food Meas. 2016, 10, 625–633.
  • Kaplan, A.; Zelicha, H.; Tsaban, G.; Meir, A. Y.; Rinott, E.; Kovsan, J.; Novack, L.; Thiery, J.; Ceglarek, U.; Burkhardt, R., et al. Protein Bioavailability of Wolffia Globose Duckweed, A Novel Aquatic Plant– A Randomized Controlled Trial. Clin. Nutr. 2019, 38, 2576–2582.
  • Zelicha, H.; Kaplan, A.; Yaskolka Meir, A.; Tsaban, G.; Rinott, E.; Shelef, I.; Tirosh, A.; Brikner, D.; Pupkin, E.; Qi, L., et al. The Effect of Wolffia Globosa Mankai, A Green Aquatic Plant, on Postprandial Glycemic Response: A Randomized Crossover Controlled Trial. Dia Care. 2019, 42, 1162–1169.
  • Reid, M. S.; Bieleski, R. L. Response of Spirodela Oligorrhiza to Phosphorus Deficiency. Plant Physio. 1970, 46, 609–613.
  • Shao, J.; Liu, Z.; Ding, Y. Biosynthesis of the Starch Is Improved by the Supplement of Nickel (Ni2+) in Duckweed (Landoltia Punctata). Physio/Biochem./Mol Cel. Bio. 2020, 133, 587–596.
  • de Souza Moretti, M. M.; Yu, W.; Zou, W.; Franco, C. M. L.; Albertin, L. L.; Schenk, P. M.; Gilbert, R. G. Relationship between the Molecular Structure of Duckweed Starch and Its in Vitro Enzymatic Degradation Kinetics. Int. J. Bio. Mac. 2019, 139, 244–251.
  • Su, H.; Zhao, Y.; Jiang, J.; Lu, Q.; Li, Q.; Luo, Y.; Zhao, H.; Wang, M. Use of Duckweed (Landoltia Punctata) as a Fermentation Substrate for the Production of Higher Alcohols as Biofuels. Energy Fuels. 2014, 28, 3206–3216.
  • Ge, X.; Zhang, N.; Phillips, G. C.; Xu, J. Growing Lemna Minor in Agricultural Wastewater and Converting the Duckweed Biomass to Ethanol. Bio. Tech. 2012, 124, 485–488.
  • Lee, C. J.; Yangcheng, H.; Cheng, H. J.; Jane, J.-L. Starch Characterization and Ethanol Production of Duckweed and Corn Kernel: Starch Characterization and Ethanol Production of Duckweed and Corn Kernel. Starch – Stärke. 2016, 68, 348–354.
  • Yan, Y.; Candreva, J.; Shi, H.; Martienssen, R.; Schwender, J.; Shanklin, J. Survey of the Total Fatty Acid and Triacylglycerol Composition and Content of 30 Duckweed Species and Cloning of a Δ6-desaturase Responsible for the Production of γ-linolenic and Stearidonic Acids in Lemna Gibba. BMC Plant Bio. 2013, 13, 201.
  • Tang, J.; Li, Y.; Ma, J.; Cheng, J. J. Survey of Duckweed Diversity in Lake Chao and Total Fatty Acid, Triacylglycerol, Profiles of Representative Strains. Plant Biol. J. 2015, 17, 1066–1072.
  • Wijendran, V.; Hayes, K. C. Dietary N-6 and N-3 Fatty Acid Balance and Cardiovascular Health. Ann. Rev. Nutr. 2004, 24, 597–615.
  • Land, B.;. Benefit-risk Assessment of Fish Oil in Preventing Cardiovascular Disease. Drug Safety. 2016, 39, 787–799.
  • Rachwa-Rosiak, D.; Nebesny, E.; Budryn, G. Chickpeas—Composition, Nutritional Value, Health Benefits, Application to Bread and Snacks: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1137–1145.
  • Batal, A. B.; Dale, N. M.; Saha, U. K. Mineral Composition of Corn and Soybean Meal. J. Appl. Poultry Res. 2010, 19, 361–364.
  • Shao, Y.; Hu, Z.; Yu, Y.; Mou, R.; Zhu, Z.; Beta, T. Phenolic Acids, Anthocyanins, Proanthocyanidins, Antioxidant Activity, Minerals and Their Correlations in Non-pigmented, Red, and Black Rice. Food Chem. 2018, 239, 733–741.
  • Jahreis, G.; Appenroth, K. L.; Sree, K. W.; Dawczynski, C.;; Letter to original article by Kaplan; et al. 2018 - Protein Bioavailability of Wolffia Globosa Duckweed, A Novel Aquatic Plant, A Randomized Controlled Trial. Clin. Nutr. 2019, 38, p. 2463
  • Sree, K. S.; Bog, M.; Appenroth, K.-J. Taxonomy of Duckweeds (Lemnaceae), Potential New Crop Plants. Emirate J. Agric. Food Chem. 2016, 28, 291–302.
  • Stewart, J. J.; William, W. A.; Escobar, C. M.; Lopez-Pozo, M.; Demmig-Adams, B. Growth and Essential Carotenoid Micronutrients in Lemna Gibba as a Function of Growth Light Intensity . Front. Plant Sci. 2020,11, 480.
  • Space Food and Nutrition. 1999. https://www.nasa.gov/pdf/143163main_Space.Food.and.Nutrition.pdf. [accessed July 6, 2021]
  • de Beukelaar, M. F.; Zeinstra, G. G.; Mes, J. J.; Fischer, A. R. H. Duckweed as Human Food. The Influence of Meal Context and Information on Duckweed Acceptability of Dutch Consumers. Food Qua. Pre. 2019, 71, 76–86.
  • Krishhnan, S. B.; Smith, J. E. Public Health Issues of Aquatic Systems Used for Wastewater Treatment. In Aquatic Plants for Water Treatment and Resource Recovery; Reddy, K.R., Smith, W.H., Eds.; Magnolia: Orlando, FL, 1987; pp. 855–878.
  • FAO. Duckweed- A Tiny Aquatic Plant with Enormous Potential for Agriculture and Environment; FAO publications: Rome, Italy, 1999.
  • Fujisawa, T.; Kurosawa, M.; Katagi, T. Uptake and Transformation of Metabolites by Duckweed (Lemna Gibba). J. Agric. Food Chem. 2006, 54, 6286–6293.
  • Adeparusi, E. O.;. Effect of Processing on the Nutrients and Anti-Nutrients of LimaBean (Phaseolus Lunatus L.) Flour. Nahrung/ Food. 2001, 45, 94–96.
  • Kruger, J.; Taylor, J. R. N.; Du, X.; Moura, F. F. D.; Lonerdal, B.; Oelofse, A. Effect of Phytate Reduction of Sorghum, through Genetic Modification, on Iron and Zinc Availability as Assessed by an in Vitro Dialysability Bioaccessibility Assay, Caco-2 Cell Uptake Assay, and Suckling Rat Pup Absorption Model. Food Chem. 2013, 141, 1019–1025.
  • Sree, K. S.; Dahse, H.-M.; Chandran, J. N.; Schneider, B.; Jahreis, G.; Appenroth, K. J. Duckweed for Human Nutrition: No Cytotoxic and No Anti-Proliferative Effects on Human Cell Lines. Plant Foods Human Nutr. 2019, 74, pp. 223–224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.