961
Views
1
CrossRef citations to date
0
Altmetric
Review

Nanotechnology for Food Safety and Security: A Comprehensive Review

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Rovera, C.; Ghaani, M.; Farris, S. Nano-Inspired Oxygen Barrier Coatings for Food Packaging Applications: An Overview. Trends Food Sci. Technol. 2020, 97, 201–220. DOI: 10.1016/j.tifs.2020.01.024.
  • Kalpana, S.; Priyadarshini, S. R.; Leena, M. M.; Moses, J. A.; Anandharamakrishnan, C. Intelligent Packaging: Trends and Applications in Food Systems. Trends Food Sci. Technol. 2019, 93, 145–157. DOI: 10.1016/j.tifs.2019.09.008.
  • Joachim, V. B. Strategic Body Needed to Beat Food Crises. Nature. 2010, 465(7298), 548–549. DOI: 10.1038/465548a.
  • Shafiee-Jood, M.; Cai, X. Reducing Food Loss and Waste to Enhance Food Security and Environmental Sustainability. Environ. Sci. Technol. 2016, 50(16), 8432–8443. DOI: 10.1021/acs.est.6b01993.
  • Gu, B.; Zhang, X.; Bai, X.; Fu, B.; Chen, D. Four Steps to Food Security for Swelling Cities. Nature. 2019, 566(7742), 31–33. DOI: 10.1038/d41586-019-00407-3.
  • Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of Extreme Weather Disasters on Global Crop Production. Nature. 2016, 529(7584), 84–87. DOI: 10.1038/nature16467.
  • Chaudhary, A.; Gustafson, D.; Mathys, A. Multi-Indicator Sustainability Assessment of Global Food Systems. Nat. Commun. 2018, 9(1), 1–13. DOI: 10.1038/s41467-018-03308-7.
  • Food and Agricultural Organization. FAO. The State of Food Insecurity in the World 2018. Rome, Italy. 2018.
  • Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A. M.; Kinengyere, A.; Opazo, C. M.; Owoo, N.; Page, J. R.; Prager, S. D., et al. A Scoping Review on Incentives for Adoption of Sustainable Agricultural Practices and Their Outcomes. Nat. Sustain. 2020, 3(10), 809–820. DOI: 10.1038/s41893-020-00617-y.
  • King, T.; Osmond-mcleod, M. J.; Duffy, L. L. Nanotechnology in the Food Sector and Potential Applications for the Poultry Industry. Trends Food Sci. Technol. 2018, 72, 62–73. DOI: 10.1016/j.tifs.2017.11.015.
  • Chellaram, C.; Murugaboopathi, G.; John, A. A.; Sivakumar, R.; Ganesan, S.; Krithika, S.; Priya, G. Significance of Nanotechnology in Food Industry. Apcbee Procedia. 2014, 8, 109–113. DOI: 10.1016/j.apcbee.2014.03.010.
  • Kumar, S.; Basumatary, I. B.; Sudhani, H. P. K.; Bajpai, V. K.; Chen, L.; Shukla, S.; Mukherjee, A. Plant Extract Mediated Silver Nanoparticles and Their Applications as Antimicrobials and in Sustainable Food Packaging: A State-of-the-Art Review. Trends Food Sci. Technol. 2021, 112, 651–666. DOI: 10.1016/J.TIFS.2021.04.031.
  • Nikolic, M. V.; Vasiljevic, Z. Z.; Auger, S.; Vidic, J. Metal Oxide Nanoparticles for Safe Active and Intelligent Food Packaging. Trends Food Sci. Technol. 2021, 116, 655–668. DOI: 10.1016/J.TIFS.2021.08.019.
  • Chen, Z.; Han, S.; Zhou, S.; Feng, H.; Liu, Y.; Jia, G. Review of Health Safety Aspects of Titanium Dioxide Nanoparticles in Food Application. NanoImpact. 2020, 18, 100224. DOI: 10.1016/j.impact.2020.100224.
  • Youssef, A. M.; El-Sayed, S. M. Bionanocomposites Materials for Food Packaging Applications: Concepts and Future Outlook. Carbohydr. Polym. 2018, 193, 19–27. DOI: 10.1016/j.carbpol.2018.03.088.
  • Luo, X.; Han, Y.; Chen, X.; Tang, W.; Yue, T.; Li, Z. Carbon Dots Derived Fluorescent Nanosensors as Versatile Tools for Food Quality and Safety Assessment: A Review. Trends Food Sci. Technol. 2020, 95, 149–161. DOI: 10.1016/j.tifs.2019.11.017.
  • Francisco, E. V. D.; García-Estepa, R. M. Nanotechnology in the Agrofood Industry. J. Food Eng. 2018, 238, 1–11. DOI: 10.1016/j.jfoodeng.2018.05.024.
  • Esfanjani, A. F.; Assadpour, E.; Jafari, S. M. Improving the Bioavailability of Phenolic Compounds by Loading Them within Lipid-Based Nanocarriers. Trends Food Sci. Technol. 2018, 76, 56–66. DOI: 10.1016/j.tifs.2018.04.002.
  • Soukoulis, C.; Bohn, T. A Comprehensive Overview on the Micro- and Nano-Technological Encapsulation Advances for Enhancing the Chemical Stability and Bioavailability of Carotenoids. Crit. Rev. Food Sci. Nutr. 2018, 58(1), 1–36. DOI: 10.1080/10408398.2014.971353.
  • Adeyeye, S. A. O.; Ashaolu, T. J. Applications of Nano‐Materials in Food Packaging: A Review. J. Food Process Eng. 2021, 44(7), e13708. DOI: 10.1111/JFPE.13708.
  • Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface Modification of Inorganic Nanoparticles for Development of Organic-Inorganic Nanocomposites-A Review. Prog. Polym. Sci. 2013, 38(8), 1232–1261. DOI: 10.1016/j.progpolymsci.2013.02.003.
  • Wang, Y.; Cen, C.; Chen, J.; Fu, L. MgO/Carboxymethyl Chitosan Nanocomposite Improves Thermal Stability, Waterproof and Antibacterial Performance for Food Packaging. Carbohydr. Polym. 2020, 236, 116078. DOI: 10.1016/j.carbpol.2020.116078.
  • Khalaj, M. J.; Ahmadi, H.; Lesankhosh, R.; Khalaj, G. Study of Physical and Mechanical Properties of Polypropylene Nanocomposites for Food Packaging Application: Nano-Clay Modified with Iron Nanoparticles. Trends Food Sci. Technol. 2016, 51, 41–48. DOI: 10.1016/j.tifs.2016.03.007.
  • Duncan, T. V. Applications of Nanotechnology in Food Packaging and Food Safety: Barrier Materials, Antimicrobials and Sensors. J. Colloid Interface Sci. 2011, 363(1), 1–24. DOI: 10.1016/j.jcis.2011.07.017.
  • Huang, J. Y.; Li, X.; Zhou, W. Safety Assessment of Nanocomposite for Food Packaging Application. Trends Food Sci. Technol. 2015, 45(2), 187–199. DOI: 10.1016/j.tifs.2015.07.002.
  • Garcia, C. V.; Shin, G. H.; Kim, J. T. Metal Oxide-Based Nanocomposites in Food Packaging: Applications, Migration, and Regulations. Trends Food Sci. Technol. 2018, 82, 21–31. DOI: 10.1016/j.tifs.2018.09.021.
  • Achachlouei, B. F.; Zahedi, Y. Fabrication and Characterization of CMC-Based Nanocomposites Reinforced with Sodium Montmorillonite and TiO2 Nanomaterials. Carbohydrate Polymers. 2018, 199, 415–425. DOI: 10.1016/j.carbpol.2018.07.031.
  • Tyagi, P.; Salem, K. S.; Hubbe, M. A.; Pal, L. Advances in Barrier Coatings and Film Technologies for Achieving Sustainable Packaging of Food Products-A Review. Trends Food Sci. Technol. 2021, 115, 461–485. DOI: 10.1016/J.TIFS.2021.06.036.
  • Salari, M.; Khiabani, M. S.; Mokarram, R. R.; Ghanbarzadeh, B.; Kafil, H. S. Development and Evaluation of Chitosan Based Active Nanocomposite Films Containing Bacterial Cellulose Nanocrystals and Silver Nanoparticles. Food Hydrocolloids. 2018, 84, 414–423. DOI: 10.1016/j.foodhyd.2018.05.037.
  • Cao, L.; Ge, T.; Meng, F.; Xu, S.; Li, J.; Wang, L. An Edible Oil Packaging Film with Improved Barrier Properties and Heat Sealability from Cassia Gum Incorporating Carboxylated Cellulose Nano Crystal Whisker. Food Hydrocolloids. 2020, 98, 105251. DOI: 10.1016/j.foodhyd.2019.105251.
  • Dey, A.; Neogi, S. Oxygen Scavengers for Food Packaging Applications: A Review. Trends Food Sci. Technol. 2019, 90, 26–34. DOI: 10.1016/j.tifs.2019.05.013.
  • Tulsyan, G.; Richter, C.; Diaz, C. A. Oxygen Scavengers Based on Titanium Oxide Nanotubes for Packaging Applications. Packag. Technol. Sci. 2017, 30(6), 251–256. DOI: 10.1002/pts.2296.
  • Vilela, C.; Kurek, M.; Hayouka, Z.; Röcker, B.; Yildirim, S.; Antunes, M. D. C.; Nilsen-Nygaard, J.; Pettersen, M. K.; Freire, C. S. R. A Concise Guide to Active Agents for Active Food Packaging. Trends Food Sci. Technol. 2018, 80, 212–232. DOI: 10.1016/j.tifs.2018.08.006.
  • Yousefi, H.; Su, H.; Imani, S.; Alkhaldi, K.; Filipe, C. D. M.; Didar, T. F. Intelligent Food Packaging: A Review of Smart Sensing Technologies for Monitoring Food Quality. ACS Sens. 2019, 4(4), 808–821. DOI: 10.1021/acssensors.9b00440.
  • Adeyeye, S. A. O. Food Packaging and Nanotechnology: Safeguarding Consumer Health and Safety. Nutr. Food Sci. 2019, 49(6), 1164–1179. DOI: 10.1108/NFS-01-2019-0020.
  • Medina-Jaramillo, C.; Ochoa-Yepes, O.; Bernal, C.; Famá, F. L. Active and Smart Biodegradable Packaging Based on Starch and Natural Extracts. Carbohydr. Polym. 2017, 176, 187–194. DOI: 10.1016/j.carbpol.2017.08.079.
  • Moradi, M.; Tajik, H.; Almasi, H.; Forough, M.; Ezati, P. A. Novel pH-Sensing Indicator Based on Bacterial Cellulose Nanofibers and Black Carrot Anthocyanins for Monitoring Fish Freshness. Carbohydr. Polym. 2019, 222,115030. DOI: 10.1016/j.carbpol.2019.115030.
  • Sarojini, K. S.; Indumathi, M. P.; Rajarajeswari, G. R. Mahua Oil-Based Polyurethane/Chitosan/Nano ZnO Composite Films for Biodegradable Food Packaging Applications. Int. J. Biol. Macromol. 2019, 124, 163–174. DOI: 10.1016/j.ijbiomac.2018.11.195.
  • Zhu, Z. W.; Cai, H. H.; Sun, D. W. Titanium Dioxide (Tio2) Photocatalysis Technology for Nonthermal Inactivation of Microorganisms in Foods. Trends Food Sci. Technol. 2018, 75, 23–35. DOI: 10.1016/j.tifs.2018.02.018.
  • Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ling, C. A.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro. Lett. 2015, 7(3), 219–242. DOI: 10.1007/s40820-015-0040-x.
  • Roy, S.; Rhim, J. Fabrication of Chitosan-Based Functional Nanocomposite Films: Effect of Quercetin-Loaded Chitosan Nanoparticles. Food Hydrocolloids. 2021, 121, 107065. DOI: 10.1016/J.FOODHYD.2021.107065.
  • Siripatrawan, U.; Kaewklin, P. Fabrication and Characterization of Chitosan-Titanium Dioxide Nanocomposite Film as Ethylene Scavenging and Antimicrobial Active Food Packaging. Food Hydrocolloids. 2018, 84, 125–134. DOI: 10.1016/j.foodhyd.2018.04.049.
  • Bajpai, V. K.; Kamle, M.; Shukla, S.; Mahato, D. K.; Chandra, P.; Hwang, S. K.; Kumar, P.; Huh, Y. S.; Han, Y. K. Prospects of Using Nanotechnology for Food Preservation, Safety, and Security. J. Food Drug Anal. 2018, 26(4), 1201–1214. DOI: 10.1016/j.jfda.2018.06.011.
  • Sufian, M. M.; Khattak, J. Z. K.; Yousaf, S.; Rana, M. S. Safety Issues Associated with the Use of Nanoparticles in Human Body. Photodiagn. Photodyn. Ther. 2017, 19, 67–72. DOI: 10.1016/j.pdpdt.2017.05.012.
  • Song, H.; Li, B.; Lin, Q. B.; Wu, H. J.; Chen, Y. Migration of Silver from Nanosilver-Polyethylene Composite Packaging into Food Simulants. Food Addit. Contam. Part A-Chem. 2011, 28(12), 1758–1762. DOI: 10.1080/19440049.2011.603705.
  • Wu, Z. G.; Huang, X. J.; Li, Y.-C.; Xiao, H. Z.; Wang, X. Y. Novel Chitosan Films with Laponite Immobilized Ag Nanoparticles for Active Food Packaging. Carbohydr. Polym. 2018, 199, 210–218. DOI: 10.1016/j.carbpol.2018.07.030.
  • Lombi, E.; Donner, E.; Dusinska, M.; Wickson, F. A One Health Approach to Managing the Applications and Implications of Nanotechnologies in Agriculture. Nat. Nanotechnol. 2019, 14(6), 523–531. DOI: 10.1038/s41565-019-0460-8.
  • Kennedy, S. Why Can’t We Test Our Way to Absolute Food Safety? Science. 2008, 322(5908), 1641–1643. DOI: 10.1126/science.1163867.
  • Papadakis, G.; Murasova, P.; Hamiot, A.; Tsougeni, K.; Kaprou, G.; Eck, M.; Rabus, D.; Bilkova, Z.; Dupuy, B.; Jobst, G., et al. Micro-Nano-Bio Acoustic System for the Detection of Foodborne Pathogens in Real Samples. Biosens. Bioelectron. 2018, 111, 52–58. DOI: 10.1016/j.bios.2018.03.056.
  • Singh, C.; Ali, M. A.; Reddy, V.; Singh, D.; Kim, C. G.; Sumana, G.; Malhotra, B. D. Biofunctionalized Graphene Oxide Wrapped Carbon Nanotubes Enabled Microfluidic Immunochip for Bacterial Cells Detection. Sens. Actuator B-Chem. 2018, 255, 2495–2503. DOI: 10.1016/j.snb.2017.09.054.
  • Weng, X.; Zhang, C.; Jiang, H. Advances in Microfluidic Nanobiosensors for the Detection of Foodborne Pathogens. LWT. 2021, 151, 112172. DOI: 10.1016/j.lwt.2021.112172.
  • Singh, A. K.; Senapati, D.; Wang, S.; Griffin, J.; Neely, A.; Candice, P.; Naylor, K. M.; Varisli, B.; Kalluri, J. R.; Ray, P. C. Gold Nanorod Based Selective Identification of Escherichia Coli Bacteria Using Two-Photon Rayleigh Scattering Spectroscopy. ACS Nano. 2009, 3(7), 1906–1912. DOI: 10.1021/nn9005494.
  • Karuppuswami, S.; Matta, L. L.; Alocilja, E. C.; Chahal, P. A Wireless RFID Compatible Sensor Tag Using Gold Nanoparticle Markers for Pathogen Detection in the Liquid Food Supply Chain. IEEE Sens. Lett. 2018, 2(2), 1–4. DOI: 10.1109/LSENS.2018.2822305.
  • Matta, L. L.; Karuppuswami, S.; Chahal, P.; Alocilja, E. C. AuNP-RF Sensor: An Innovative Application of RF Technology for Sensing Pathogens Electrically in Liquids (SPEL) within the Food Supply Chain. Biosens. Bioelectron. 2018, 111, 152–158. DOI: 10.1016/j.bios.2018.04.010.
  • Yilmaz, M.; Altan, A. Optimization of Functionalized Electrospun Fibers for the Development of Colorimetric Oxygen Indicator as an Intelligent Food Packaging System. Food Packag. Shelf Life. 2021, 28, 100651. DOI: 10.1016/J.FPSL.2021.100651.
  • Mills, A.; Hazafy, D. Nanocrystalline SnO2-Based, UVB-Activated, Colourimetric Oxygen Indicator. Sens. Actuator B-Chem. 2009, 136(2), 344–349. DOI: 10.1016/j.snb.2008.12.048.
  • Ali, M. M.; Hashim, N.; Aziz, S. A.; Lasekan, O. Principles and Recent Advances in Electronic Nose for Quality Inspection of Agricultural and Food Products. Trends Food Sci. Technol. 2020, 99, 1–10. DOI: 10.1016/j.tifs.2020.02.028.
  • Yang, H.; Kim, D.; Kim, J.; Moon, D.; Song, H. S.; Lee, M.; Hong, S.; Park, T. H. Nanodisc-Based Bioelectronic Nose Using Olfactory Receptor Produced in Escherichia Coli for the Assessment of Death-Associated Odor Cadaverine. ACS Nano. 2017, 11(12), 11847–11855. DOI: 10.1021/acsnano.7b04992.
  • Shao, B.; Li, H.; Shen, J.; Wu, Y. Nontargeted Detection Methods for Food Safety and Integrity. Annu. Rev. Food Sci. Technol. 2019, 10(1), 429–455. DOI: 10.1146/annurev-food-032818-121233.
  • Deng, L. Z.; Sutar, P. P.; Mujumdar, A. S.; Tao, Y.; Pan, Z.; Liu, Y. H.; Xiao, H. W. Thermal Decontamination Technologies for Microorganisms and Mycotoxins in Low-Moisture Foods. Annu. Rev. Food Sci. Technol. 2021, 12(1), 287–305. DOI: 10.1146/ANNUREV-FOOD-062220-112934.
  • Sánchez-Maldonado, A. F.; Lee, A.; Farber, J. M. Methods for the Control of Foodborne Pathogens in Low-Moisture Foods. Annu. Rev. Food Sci. Technol. 2018, 9(1), 177–208. DOI: 10.1146/annurev-food-030117-012304.
  • Yadav, N.; Yadav, S. S.; Chhillar, A. K.; Rana, J. S. An Overview of Nanomaterial Based Biosensors for Detection of Aflatoxin B1 Toxicity in Foods. Food Chem. Toxicol. 2021, 152, 112201. DOI: 10.1016/J.FCT.2021.112201.
  • Liu, H. L.; Zhou, K. W.; Wu, D.; Wang, J.; Sun, B. A Novel Quantum Dots-Labeled on the Surface of Molecularly Imprinted Polymer for Turn-Off Optosensing of Dicyandiamide in Dairy Products. Biosens. Bioelectron. 2016, 77, 512–517. DOI: 10.1016/j.bios.2015.10.007.
  • Wu, Q. Q.; Long, Q.; Li, H. T.; Zhang, Y. Y.; Yao, S. Z. An Upconversion Fluorescence Resonance Energy Transfer Nanosensor for One Step Detection of Melamine in Raw Milk. Talanta. 2015, 136, 47–53. DOI: 10.1016/j.talanta.2015.01.005.
  • White, J. C.; Gardea-Torresdey, J. Achieving Food Security through the Very Small. Nat. Nanotechnol. 2018, 13(8), 627–629. DOI: 10.1038/s41565-018-0223-y.
  • Laborde, D.; Martin, W.; Swinnen, J.; Vos, R. COVID-19 Risks to Global Food Security. Science. 2020, 369(6503), 500–502. DOI: 10.1126/science.abc4765.
  • Usman, M.; Farooq, M.; Wakeel, A.; Wakeel, A.; Cheema, S. A.; Rehman, H.; Ashraf, I.; Sanaullah, M. Nanotechnology in Agriculture: Current Status, Challenges and Future Opportunities. Sci. Total Environ. 2020, 721, 137778. DOI: 10.1016/j.scitotenv.2020.137778.
  • Siddiqui, M. H.; Al-Whaibi, M. H.; Mohammad, F.; Sahli, A. A. A. Nano-Silicon Dioxide Mitigates the Adverse Effects of Salt Stress on Cucurbita Pepo L. Environ. Toxicol. Chem. 2015, 33(11), 2429–2437. DOI: 10.1002/etc.2697.
  • Jabeen, N.; Maqbool, Q.; Bibi, T.; Nazar, M.; Hussain, S. Z.; Hussain, T.; Jan, T.; Ahmad, I.; Maaza, M.; Anwaar, S. Optimized Synthesis of ZnO-Nano-Fertilizer through Green Chemistry: Boosted Growth Dynamics of Economically Important L. Esculentum. IET Nanobiotechnol. 2018, 12(4), 405–411. DOI: 10.1049/iet-nbt.2017.0094.
  • Siddiqui, M. H.; Al-Whaibi, M. H. Role of Nano-SiO2 in Germination of Tomato (Lycopersicum Esculentum Seeds Mill.). Saudi J. Biol. Sci. 2014, 21(1), 13–17. DOI: 10.1016/j.sjbs.2013.04.005.
  • Rastogi, A.; Zivcak, M.; Sytar, O.; Kalaji, H. M.; He, X.; Mbarki, S.; Brestic, M. Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Front. Chem. 2017, 5, 1–16. DOI: 10.3389/fchem.2017.00078.
  • Line, C.; Larue, C.; Flahaut, E. Carbon Nanotubes: Impacts and Behaviour in the Terrestrial Ecosystem-A Review. Carbon. 2017, 123, 767–785. DOI: 10.1016/j.carbon.2017.07.089.
  • Hector, V.; Enkeleda, D.; Kanishka, D. S.; Biris, A. S.; Khodakovskaya, M. V. Surface Chemistry of Carbon Nanotubes Impacts the Growth and Expression of Water Channel Protein in Tomato Plants. Small. 2012, 8(15), 2328–2334. DOI: 10.1002/smll.201102661.
  • Lahiani, M. H.; Chen, J.; Irin, F.; Puretzky, A. A.; Green, M. J.; Khodakovskaya, M. V. Interaction of Carbon Nanohorns with Plants: Uptake and Biological Effects. Carbon. 2015, 81, 607–619. DOI: 10.1016/j.carbon.2014.09.095.
  • Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N. A.; Munné-Bosch, S. Nanofertilizer Use for Sustainable Agriculture: Advantages and Limitations. Plant Sci. 2019, 289, 110270. DOI: 10.1016/j.plantsci.2019.110270.
  • Wall, D. H.; Nielsen, U. N.; Six, J. Soil Biodiversity and Human Health. Nature. 2015, 528(7580), 69–76. DOI: 10.1038/nature15744.
  • Amundson, R.; Berhe, A. A.; Hopmans, J. W.; Olson, C.; Sztein, A. E.; Sparks, D. L. Soil and Human Security in the 21st Century. Science. 2015, 348(6235), 647. DOI: 10.1126/science.1261071.
  • Dasgupta, N.; Ranjan, S.; Ramalingam, C. Applications of Nanotechnology in Agriculture and Water Quality Management. Environ. Chem. Lett. 2017, 15(4), 591–605. DOI: 10.1007/s10311-017-0648-9.
  • Granata, G.; Stracquadanio, S.; Leonardi, M.; Napoli, E.; Consoli, G. M. L.; Cafiso, V.; Stefani, S.; Geraci, C. Essential Oils Encapsulated in Polymer-Based Nanocapsules as Potential Candidates for Application in Food Preservation. Food Chem. 2018, 269, 286–292. DOI: 10.1016/j.foodchem.2018.06.140.
  • Kashyap, P. L.; Xiang, X.; Heiden, P. Chitosan Nanoparticle-Based Delivery Systems for Sustainable Agriculture. Int. J. Biol. Macromol. 2015, 77, 36–51. DOI: 10.1016/j.ijbiomac.2015.02.039.
  • Sharma, S.; Cheng, S.; Bhattacharya, B.; Chakkaravarthi, S. Efficacy of Free and Encapsulated Natural Antioxidants in Oxidative Stability of Edible Oil: Special Emphasis on Nanoemulsion-Based Encapsulation. Trends Food Sci. Technol. 2020, 91, 305–318. DOI: 10.1016/j.tifs.2019.07.030.
  • Du, Z. P.; Wang, C. X.; Tai, X. M.; Wang, G. Y.; Liu, X. Y. Optimization and Characterization of Biocompatible Oil-in-Water Nanoemulsion for Pesticide Delivery. ACS Sustain. Chem. Eng. 2015, 4(3), 983–991. DOI: 10.1021/acssuschemeng.5b01058.
  • Chariou, P. L.; Steinmetz, N. F. Delivery of Pesticides to Plant Parasitic Nematodes Using Tobacco Mild Green Mosaic Virus as a Nanocarrier. ACS Nano. 2017, 11(5), 4719–4730. DOI: 10.1021/acsnano.7b00823.
  • Sharma, R.; Bajpai, J.; Bajpai, A. K.; Acharya, S.; Kumar, B.; Singh, R. K. Assessment of Water Retention Performance of Pectin-based Nanocarriers for Controlled Irrigation in Agriculture. Agric. Res. 2017, 6(2), 139–149. DOI: 10.1007/s40003-017-0257-7.
  • Srivastava, A. K.; Dev, A.; Karmakar, S. Nanosensors and Nanobiosensors in Food and Agriculture. Environ. Chem. Lett. 2018, 16(1), 161–182. DOI: 10.1007/s10311-017-0674-7.
  • Wall, D. H.; Six, J. Give Soils Their Due. Science. 2015, 347(6223), 695. DOI: 10.1126/science.aaa8493.
  • Ali, M. A.; Jiang, H.; Mahal, N. K.; Weber, R. J.; Kumar, R.; Castellano, M. J.; Dong, L. Microfluidic Impedimetric Sensor for Soil Nitrate Detection Using Graphene Oxide and Conductive Nanofibers Enabled Sensing Interface. Sens. Actuator B-Chem. 2017, 239, 1289–1299. DOI: 10.1016/j.snb.2016.09.101.
  • Deng, H. H.; Hong, G. L.; Lin, F. L.; Liu, A. L.; Xia, X. H.; Chen, W. Colorimetric Detection of Urea, Urease, and Urease Inhibitor Based on the Peroxidase-Like Activity of Gold Nanoparticles. Anal. Chim. Acta. 2016, 915, 74–80. DOI: 10.1016/j.aca.2016.02.008.
  • Zheng, X.; Fan, R.; Li, C.; Yang, X.; Li, H.; Lin, J.; Zhou, X.; Lv, R. A Fast-Response and Highly Linear Humidity Sensor Based on Quartz Crystal Microbalance. Sens. Actuator B-Chem. 2019, 283, 659–665. DOI: 10.1016/j.snb.2018.12.081.
  • Patil, S. J.; Adhikari, A.; Baghini, M. S.; Rao, V. R. An Ultra-Sensitive Piezoresistive Polymer Nano-Composite Microcantilever Platform for Humidity and Soil Moisture Detection. Sens. Actuator B-Chem. 2014, 203, 165–173. DOI: 10.1016/j.snb.2014.06.110.
  • Puangjan, A.; Chaiyasith, S. A Co3O4 Nano-Octahedron Modified Fluorine Doped Tin Oxide Electrochemical Sensor for Detection of Benzobicyclon. J. Electroanal. Chem. 2018, 813, 20–30. DOI: 10.1016/j.jelechem.2018.02.008.
  • Dong, J.; Fan, X.; Qiao, F.; Ai, S.; Hao, X. A Novel Protocol for Ultra-trace Detection of Pesticides: Combined Electrochemical Reduction of Ellman’s Reagent with Acetylcholinesterase Inhibition. Anal. Chim. Acta. 2013, 761, 78–83. DOI: 10.1016/j.aca.2012.11.042.
  • Shi, H.; Zhao, G.; Liu, M.; Fang, L.; Cao, T. Aptamer-Based Colorimetric Sensing of Acetamiprid in Soil Samples: Sensitivity, Selectivity and Mechanism. J. Hazard. Mater. 2013, 260, 754–761. DOI: 10.1016/j.jhazmat.2013.06.031.
  • Talari, F. F.; Bozorg, A.; Faridbod, F.; Vossoughi, M. A Novel Sensitive Aptamer-Based Nanosensor Using rGQDs and MWCNTs for Rapid Detection of Diazinon Pesticide. J. Environ. Chem. Eng. 2021, 9(1), 104878. DOI: 10.1016/J.JECE.2020.104878.
  • Liu, J.; Ye, L. Y.; Mo, Y. Y.; Yang, H. Highly Sensitive Fluorescent Quantification of Acid Phosphatase Activity and Its Inhibitor Pesticide Dufulin by a Functional Metal–Organic Framework Nanosensor for Environment Assessment and Food Safety. Food Chem. 2022, 370, 131034. DOI: 10.1016/J.FOODCHEM.2021.131034.
  • Tümay, S. O.; Senocak, A.; Sarı, E.; Sanko, V.; Durmus, M.; Demirbas, E. A New Perspective for Electrochemical Determination of Parathion and Chlorantraniliprole Pesticides via Carbon Nanotube-based Thiophene-ferrocene Appended Hybrid Nanosensor. Sens. Actuator B-Chem. 2021, 345, 130344. DOI: 10.1016/J.SNB.2021.130344.
  • Giraldo, J. P.; Wu, H.; Newkirk, G. M.; Kruss, S. Nanobiotechnology Approaches for Engineering Smart Plant Sensors. Nat. Nanotechnol. 2019, 14(6), 541–553. DOI: 10.1038/s41565-019-0470-6.
  • Kah, M.; Tufenkji, N.; White, J. C. Nano-Enabled Strategies to Enhance Crop Nutrition and Protection. Nat. Nanotechnol. 2019, 14(6), 532–540. DOI: 10.1038/s41565-019-0439-5.
  • Landry, M. P.; Mitter, N. How Nanocarriers Delivering Cargos in Plants Can Change the GMO Landscape. Nat. Nanotechnol. 2019, 14(6), 512–514. DOI: 10.1038/s41565-019-0463-5.
  • Hanjra, M. A.; Qureshi, M. E. Global Water Crisis and Future Food Security in an Era of Climate Change. Food Policy. 2010, 35(5), 365–377. DOI: 10.1016/j.foodpol.2010.05.006.
  • Knox, J. W.; Kay, M. G.; Weatherhead, E. K. Water Regulation, Crop Production, and Agricultural Water Management-Understanding Farmer Perspectives on Irrigation Efficiency. Agric. Water Manage. 2012, 108(2), 3–8. DOI: 10.1016/j.agwat.2011.06.007.
  • Mok, W. K.; Tan, Y. X.; Chen, W. N. Technology Innovations for Food Security in Singapore: A Case Study of Future Food Systems for an Increasingly Natural Resource-Scarce World. Trends Food Sci. Technol. 2020, 102, 155–168. DOI: 10.1016/j.tifs.2020.06.013.
  • Larsen, T. A.; Hoffmann, S.; Lüthi, C.; Truffer, B.; Maurer, M. Emerging Solutions to the Water Challenges of an Urbanizing World. Science. 2016, 352(6288), 928–933. DOI: 10.1126/science.aad8641.
  • Eliasson, J. The Rising Pressure of Global Water Shortages. Nature. 2015, 517(7532), 6. DOI: 10.1038/517006a.
  • Madhura, L.; Singh, S.; Kanchi, S.; Sabela, M.; Bisetty, K. Inamuddin. Nanotechnology-Based Water Quality Management for Wastewater Treatment. Environ. Chem. Lett. 2018, 1–57. DOI: 10.1007/s10311-018-0778-8.
  • Egea-Corbacho, A.; Ruiz, S. G.; Alonso, J. M. Q. Removal of Emerging Contaminants from Wastewater Using Nanofiltration for Its Subsequent Reuse: Full-Scale Pilot Plant. J. Clean. Prod. 2019, 214, 514–523. DOI: 10.1016/j.jclepro.2018.12.297.
  • Zhang, Y. Q.; Sun, H. G.; Sadam, H.; Liu, Y. Y.; Shao, L. Supramolecular Chemistry Assisted Construction of Ultra-Stable Solvent-Resistant Membranes for Angstrom-Sized Molecular Separation. Chem. Eng. J. 2019, 371, 535–543. DOI: 10.1016/j.cej.2019.04.096.
  • Zhou, D.; Zhu, L.; Fu, Y.; Zhu, M.; Xue, L. Development of Lower Cost Seawater Desalination Processes Using Nanofiltration Technologies-A Review. Desalination. 2015, 376, 109–116. DOI: 10.1016/j.desal.2015.08.020.
  • Yang, Y. B.; Yang, X. D.; Liang, L.; Gao, Y. Y.; Cheng, H. Y.; Li, X. M.; Zou, M. C.; Cao, A. Y.; Ma, R. Z.; Yuan, Q., et al. Large-Area Graphene-Nanomesh/Carbon-Nanotube Hybrid Membranes for Ionic and Molecular Nanofiltration. Science. 2019, 364(6445), 1057. DOI: 10.1126/science.aau5321.
  • Khaki, M. R. D.; Shafeeyan, M. S.; Raman, A. A. A.; Daud, W. M. A. W. Application of Doped Photocatalysts for Organic Pollutant Degradation-A Review. J. Environ. Manage. 2017, 198, 78–94. DOI: 10.1016/j.jenvman.2017.04.099.
  • Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Neppolian, B.; Anpo, M. Photocatalytic Degradation of Organic Compounds Diluted in Water Using Visible Light-Responsive Metal Ion-Implanted TiO2 Catalysts: Fe Ion-Implanted TiO2. Catal. Today. 2003, 84(3–4), 191–196. DOI: 10.1016/S0920-5861(03)00273-6.
  • Pol, R.; Guerrero, M.; García-Lecina, E.; Altube, A.; Rossinyol, E.; Garroni, S.; Baró, M. D.; Pons, J.; Sort, J.; Pellicer, E. Ni-, Pt- and (Ni/pt)-doped TiO2 Nanophotocatalysts: A Smart Approach for Sustainable Degradation of Rhodamine B Dye. Appl. Catal. B-Environ. 2016, 181, 270–278. DOI: 10.1016/j.apcatb.2015.08.006.
  • Zhu, Y.; Liu, X. L.; Hu, Y. L.; Wang, R.; Chen, M.; Wu, J. H.; Wang, Y. Y.; Kang, S.; Sun, Y.; Zhu, M. X. Behavior, Remediation Effect and Toxicity of Nanomaterials in Water Environments. Environ. Res. 2019, 174, 54–60. DOI: 10.1016/j.envres.2019.04.014.
  • Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Guo, W. Adsorptive Removal of Antibiotics from Water and Wastewater: Progress and Challenges. Sci. Total Environ. 2015, 532, 112–126. DOI: 10.1016/j.scitotenv.2015.05.130.
  • Zhao, C.; Wang, B.; Theng, B. K. G.; Wu, P.; Liu, F.; Wang, S.; Lee, X.; Chen, M.; Li, L.; Zhang, X. Formation and Mechanisms of Nano-Metal Oxide-Biochar Composites for Pollutants Removal: A Review. Sci. Total Environ. 2021, 767, 145305. DOI: 10.1016/J.SCITOTENV.2021.145305.
  • Garrick, D. E.; Hall, J. W.; Dobson, A.; Damania, R.; Grafton, R. Q.; Hope, R.; Hepburn, C.; Bark, R.; Boltz, F.; De Stefano, L., et al. Valuing Water for Sustainable Development. Science. 2017, 358(6366), 1003–1005. DOI: 10.1126/science.aao4942.
  • Rafiee, Z.; Nejatian, M.; Daeihamed, M.; Jafari, S. M. Application of Different Nanocarriers for Encapsulation of Curcumin. Crit. Rev. Food Sci. Nutr. 2019, 59(21), 3468–3497. DOI: 10.1080/10408398.2018.1495174.
  • Souri, J.; Almasi, H.; Hamishenkar, H.; Amjadi, S. Sodium Caseinate-Coated and β-cyclodextrin/Vitamin E Inclusion Complex-Loaded Nanoliposomes: A Novel Stabilized Nanocarrier. LWT. 2021, 151, 112174. DOI: 10.1016/J.LWT.2021.112174.
  • Akhavan, S.; Assadpour, E.; Katouzian, I.; Jafari, S. M. Lipid Nano Scale Cargos for the Protection and Delivery of Food Bioactive Ingredients and Nutraceuticals. Trends Food Sci. Technol. 2018, 74, 132–146. DOI: 10.1016/j.tifs.2018.02.001.
  • Abbasi, A.; Emam-Djomeh, Z.; Mousavi, M. A. E.; Davoodi, D. Stability of Vitamin D3 Encapsulated in Nanoparticles of Whey Protein Isolate. Food Chem. 2014, 143(1), 379–383. DOI: 10.1016/j.foodchem.2013.08.018.
  • Ahmad, M.; Mudgil, P.; Gani, A.; Hamed, F.; Masoodi, F. A.; Maqsood, S. Nano-Encapsulation of Catechin in Starch Nanoparticles: Characterization, Release Behavior and Bioactivity Retention during Simulated in-Vitro Digestion. Food Chem. 2019, 270, 95–104. DOI: 10.1016/j.foodchem.2018.07.024.
  • Yang, R.; Liu, Y.; Blanchard, C.; Zhou, Z. Channel Directed Rutin Nano-Encapsulation in Phytoferritin Induced by Guanidine Hydrochloride. Food Chem. 2018, 240, 935–939. DOI: 10.1016/j.foodchem.2017.07.088.
  • Dey, T. K.; Koley, H.; Ghosh, M.; Dey, S.; Dhar, P. Effects of Nano-Sizing on Lipid Bioaccessibility and Ex Vivo Bioavailability from EPA-DHA Rich Oil in Water Nanoemulsion. Food Chem. 2019, 275, 135–142. DOI: 10.1016/j.foodchem.2018.09.084.
  • Sáiz-Abajo, M.; González-Ferrero, C.; Moreno-Ruiz, A.; Romo-Hualde, A.; González-Navarro, C. J. Thermal Protection of β-carotene in Reassembled Casein Micelles during Different Processing Technologies Applied in Food Industry. Food Chem. 2013, 138(2–3), 1581–1587. DOI: 10.1016/j.foodchem.2012.11.016.
  • Ghorbanzade, T.; Jafari, S. M.; Akhavan, S.; Hadavi, R. Nano-Encapsulation of Fish Oil in Nano-Liposomes and Its Application in Fortification of Yogurt. Food Chem. 2017, 216, 146–152. DOI: 10.1016/j.foodchem.2016.08.022.
  • Huang, H.; Belwal, T.; Liu, S.; Duan, Z.; Luo, Z. Novel Multi-Phase Nano-Emulsion Preparation for Co-Loading Hydrophilic Arbutin and Hydrophobic Coumaric Acid Using Hydrocolloids. Food Hydrocolloids. 2019, 93, 92–101. DOI: 10.1016/j.foodhyd.2019.02.023.
  • Smruthi, M. R.; Nallamuthu, I.; Anand, T. A Comparative Study of Optimized Naringenin Nanoformulations Using Nano-Carriers (PLA/PVA and Zein/Pectin) for Improvement of Bioavailability. Food Chem. 2021, 369, 130950. DOI: 10.1016/J.FOODCHEM.2021.130950.
  • Mcclements, D. J.; Xiao, H. Is Nano Safe in Foods? Establishing the Factors Impacting the Gastrointestinal Fate and Toxicity of Organic and Inorganic Food-Grade Nanoparticles. Npj Sci. Food. 2017, 1(1), 1–13. DOI: 10.1038/s41538-017-0005-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.