698
Views
1
CrossRef citations to date
0
Altmetric
Review

Mitigation Strategies to Reduce Acrylamide in Cookies: Effect of Formulation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Arepally, D.; Reddy, R. S.; Goswami, T. K.; Datta, A. K. Biscuit Baking: A Review. Lwt. 2020, 131(January), 1–18. DOI: 10.1016/j.lwt.2020.109726.
  • Paulson, L. C.; Wrigley, C. W. Cookies and Crackers: Commercial Production; 2nd. Oxford, United Kingdom: Elsevier Ltd: 2016; Vol. 3. DOI: 10.1016/B978-0-12-394437-5.00252-7.
  • Romani, S.; Balestra, F.; Angioloni, A.; Rocculi, P.; Dalla Rosa, M. Physico-Chemical and Electronic Nose Measurements on the Study of Biscuit Baking Kinetics. Ital. J. Food Sci. 2012, 24(1), 32–40.
  • Abt, E.; Robin, L. P.; McGrath, S.; Srinivasan, J.; DiNovi, M.; Adachi, Y.; Chirtel, S. Acrylamide Levels and Dietary Exposure from Foods in the United States, an Update Based on 2011-2015 Data. Food Addit. Contam. - Part A Chem. Anal. Control. Expo. Risk Assess. 2019, 36(10), 1475–1490. DOI: 10.1080/19440049.2019.1637548.
  • Nguyen, H. T.; van Der Fels-klerx, H. J.; Peters, R. J. B.; van Boekel, M. A. J. S. Acrylamide and 5-Hydroxymethylfurfural Formation during Baking of Biscuits: Part I: Effects of Sugar Type. Food Chem. 2016, 192, 575–585. DOI: 10.1016/j.foodchem.2015.07.016.
  • Sazesh, B.; Goli, M. Quinoa as a Wheat Substitute to Improve the Textural Properties and Minimize the Carcinogenic Acrylamide Content of the Biscuit. J. Food Process. Preserv. 2020, 44(8), 1–10. DOI: 10.1111/jfpp.14563.
  • Nematollahi, A.; Mollakhalili Meybodi, N.; Khaneghah, A. M. An Overview of the Combination of Emerging Technologies with Conventional Methods to Reduce Acrylamide in Different Food Products: Perspectives and Future Challenges. Food Control. 2021, 127, 108144. DOI: 10.1016/j.foodcont.2021.108144.
  • International Agency for Research on Cancer (IARC). Acrylamide. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans. Some Industrial Chemicals. 1994, 60, 389–434.
  • Pundir, C. S.; Yadav, N.; Chhillar, A. K. Occurrence, Synthesis, Toxicity and Detection Methods for Acrylamide Determination in Processed Foods with Special Reference to Biosensors: A Review. Trends Food Sci. Technol. 2019, 85(January 2018), 211–225. DOI: 10.1016/j.tifs.2019.01.003.
  • Sarion, C.; Codină, G. G.; Dabija, A. Acrylamide in Bakery Products: A Review on Health Risks, Legal Regulations and Strategies to Reduce Its Formation. Int. J. Environ. Res. Public Health. 2021, 18(8), 4332. DOI: 10.3390/ijerph18084332.
  • Seal, C. J.; de Mul, A.; Eisenbrand, G.; Haverkort, A. J.; Franke, K.; Lalljie, S. P. D.; Mykkänen, H.; Reimerdes, E.; Scholz, G.; Somoza, V., et al. Risk-Benefit Considerations of Mitigation Measures on Acrylamide Content of Foods - A Case Study on Potatoes, Cereals and Coffee. Br. J. Nutr. 2008, 99, S1–S46. DOI: 10.1017/S0007114508965314.
  • Žilić, S.; Aktağ, I. G.; Dodig, D.; Filipović, M.; Gökmen, V. Acrylamide Formation in Biscuits Made of Different Wholegrain Flours Depending on Their Free Asparagine Content and Baking Conditions. Food Res. Int. 2020, 132(February), 109109. DOI: 10.1016/j.foodres.2020.109109.
  • European Commission. Commission Recommendation of 10.1.2011; 2011; Vol. 148.
  • European Commission. Commission Regulation (EU) 2017/2158 of 20 November 2017 Establishing Mitigation Measures and Benchmark Levels for the Reduction of the Presence of Acrylamide in Food; 2017.
  • European Commission. Commission Recommendation (EU) 2019/1888 of 7 November 2019 on the Monitoring of the Presence of Acrylamide in Certain Foods; 2019.
  • Negoiță, M.; Iorga, E.; Mihai, A. L.; Spadaro, G. Investigations regarding the Influence of Certain Types of Fat Content on Acrylamide Level in Biscuits. J. Hyg. Eng. Des. 2016, 15, 31–41.
  • Lanza, T. Tecnologia e Pratica per La Produzione Dei Biscotti. In Tecnologia e pratica per la produzione dei biscotti 1st; Lanza, T., Ed.; Pinerolo, Torino, Italy: Chirotti, 2006; 472, ISBN: 8885022952.
  • Davidson, I. Baking Process. In Biscuit Baking Technology: Processing and Engineering Manual 2nd; Davidson, I., Ed.; Oxford, United Kingdom: Academic Press, 2016; 35–48, ISBN: 9780128042113.
  • Canali, G.; Balestra, F.; Glicerina, V.; Pasini, F.; Caboni, M. F.; Romani, S. Influence of Different Baking Powders on Physico-Chemical, Sensory and Volatile Compounds in Biscuits and Their Impact on Textural Modifications during Soaking. J. Food Sci. Technol. 2020, 57(10), 3864–3873. DOI: 10.1007/s13197-020-04418-1.
  • Mamat, H.; Hill, S. E. Structural and Functional Properties of Major Ingredients of Biscuit. Int. Food Res. J. 2018, 25(2), 462–471.
  • Manley, D.; Clark, H. Biscuit Baking. In Technology of Biscuits, Creackers and Cookies; Manley, D., Ed.; Stamford, USA: Woodhead Publishing,2011; Vol. Part IV, pp. 477–500. DOI:10.1533/9780857093646.4.477.
  • Misra, N. N.; Tiwari, B. K. Biscuits. In Bakery Products Science and Technology 2nd; Zhou, W., Hui, Y.H., De Leyn, I., Pagani, A.M., Rosell, C.M., Selman, J.D., and Therdthai, N., Ed.; Southern Gate, Chichester, United Kingdom: John Wiley & Sons, 2014; 585–601, ISBN: 9781119967156. DOI: 10.1002/9781118792001.ch33.
  • Figoni, P. I. Leavening Agents. In How Baking Works: Exploring the Fundamentals of Baking Science; Figoni, P.I., Ed.; Southern Gate, Chichester, United Kingdom: John Wiley & Sons, 2010; 299–322, ISBN: 0470392673.
  • Sharma, A.; Mishra, S. Asparaginase: A Promising Aspirant for Mitigation of Acrylamide in Foods. Int. J. Food Sci. Nutr. 2017, 2(6), 208–214.
  • Cronin, K.; Preis, C. Statistical Analysis of Biscuit Physical Properties as Affected by Baking. J. Food Eng. 2000, 46(4), 217–225. DOI: 10.1016/S0260-8774(00)00053-4.
  • Food Drink Europe (FDE). Acrylamide Toolbox 2019 https://www.fooddrinkeurope.eu/uploads/publications_documents/FoodDrinkEurope_Acrylamide_Toolbox_2019.pdf (accessed Sep 20, 2020).
  • Curtis, T. Y.; Powers, S. J.; Wang, R.; Halford, N. G. Effects of Variety, Year of Cultivation and Sulphur Supply on the Accumulation of Free Asparagine in the Grain of Commercial Wheat Varieties. Food Chem. 2018, 239, 304–313. DOI: 10.1016/j.foodchem.2017.06.113.
  • Rannou, C.; Laroque, D.; Renault, E.; Prost, C.; Sérot, T. Mitigation Strategies of Acrylamide, Furans, Heterocyclic Amines and Browning during the Maillard Reaction in Foods. Food Res. Int. 2016, 90, 154–176. DOI: 10.1016/j.foodres.2016.10.037.
  • Miśkiewicz, K. E.; Nebesny, E.; Oracz, J. Formation of Acrylamide during Baking of Shortcrust Cookies Derived from Various Flours. Czech J. Food Sci. 2012, 30(1), 53–66. DOI: 10.17221/287/2010-cjfs.
  • Palermo, M.; Fiore, A.; Fogliano, V. Okara Promoted Acrylamide and Carboxymethyl-Lysine Formation in Bakery Products. J. Agric. Food Chem. 2012, 60(40), 10141–10146. DOI: 10.1021/jf302750q.
  • Mesías, M.; Holgado, F.; Márquez-Ruiz, G.; Morales, F. J. Risk/Benefit Considerations of a New Formulation of Wheat-Based Biscuit Supplemented with Different Amounts of Chia Flour. LWT - Food Sci. Technol. 2016, 73, 528–535. DOI: 10.1016/j.lwt.2016.06.056.
  • Manolache, F. A.; Todașcă, M. C.; Ionescu, V.; Negoita, M.; Marin, D. I. Quality Assessment for Nutritive Value of Biscuits Based on Oat Flour from Avena Nuda L. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2019, 81(1), 4–12.
  • Chen, Y.; Wu, Y.; Fu, J.; Fan, Q. Comparison of Different Rice Flour- and Wheat Flour-Based Butter Cookies for Acrylamide Formation. J. Cereal Sci. 2020, 95(May), 103086. DOI: 10.1016/j.jcs.2020.103086.
  • Haase, N. U.; Grothe, K. H.; Matthäus, B.; Vosmann, K.; Lindhauer, M. G. Acrylamide Formation and Antioxidant Level in Biscuits Related to Recipe and Baking. Food Addit. Contam. - Part A Chem. Anal. Control. Expo. Risk Assess. 2012, 29(8), 1230–1238. DOI: 10.1080/19440049.2012.690349.
  • Mustățea, G.; Negoiță, M.; Popa, M. E. Influence of Flour Extraction Degree on Acrylamide Formation in Biscuits. Rom. Biotechnol. Lett. 2016, 21(2), 11328–11336.
  • Negoiță, M.; Mihai, A. L.; Iorga, E. Influence of Technological Factors on Acrylamide Level from Biscuits. Sci. Bull. Ser. F. Biotechnol. 2017, XXI, 149–158.
  • Fernandes, C. L.; Carvalho, D. O.; Guido, L. F. Determination of Acrylamide in Biscuits by High-Resolution Orbitrap Mass Spectrometry: A Novel Application. Foods. 2019, 8(12), 1–11. DOI: 10.3390/foods8120597.
  • Anese, M.; Quarta, B.; Foschia, M.; Bortolomeazzi, R. Effect of Low-Temperature Long-Time Pre-Treatment of Wheat on Acrylamide Concentration in Short Dough Biscuits. Mol. Nutr. Food Res. 2009, 53(12), 1526–1531. DOI: 10.1002/mnfr.200900017.
  • Bartkiene, E.; Jakobsone, I.; Pugajeva, I.; Bartkevics, V.; Zadeike, D.; Juodeikiene, G. Reducing of Acrylamide Formation in Wheat Biscuits Supplemented with Flaxseed and Lupine. LWT - Food Sci. Technol. 2016, 65, 275–282. DOI: 10.1016/j.lwt.2015.08.002.
  • Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; Törnqvist, M. Analysis of Acrylamide, a Carcinogen Formed in Heated Foodstuffs. J. Agric. Food Chem. 2002, 50(17), 4998–5006. DOI: 10.1021/jf020302f.
  • Maradini Filho, A. M.; Pirozi, M. R.; Borges, J. T. D. S.; Pinheiro Sant’Ana, H. M.; Chaves, J. B. P.; Coimbra, J. S. D. R. Quinoa: Nutritional, Functional, and Antinutritional Aspects. Crit. Rev. Food Sci. Nutr. 2017, 57(8), 1618–1630. DOI: 10.1080/10408398.2014.1001811.
  • Navruz-Varli, S.; Sanlier, N. Nutritional and Health Benefits of Quinoa (Chenopodium Quinoa Willd.). J. Cereal Sci. 2016, 69, 371–376. DOI: 10.1016/j.jcs.2016.05.004.
  • Keramat, J.; LeBail, A.; Prost, C.; Jafari, M. Acrylamide in Baking Products: A Review Article. Food Bioprocess Technol. 2011, 4(4), 530–543. DOI: 10.1007/s11947-010-0495-1.
  • Mesias, M.; Morales, F. J. Acrylamide in Bakery Products. In Acrylamide in Food: Analysis, Content and Potential Health Effects; Gökmen, V., Ed.; Oxford, United Kingdom: Elsevier Inc, 2016; 131–157, IBSN: 9780128028322. DOI: 10.1016/B978-0-12-802832-2.00007-3.
  • Mesías, M.; Delgado-Andrade, C.; Morales, F. J. Risk/Benefits Evaluation of Acrylamide Mitigation Initiatives in Cereal Products. In Mitigating Contamination from Food Processing; Birch, C.S., and Bonwick, G.A., Eds.; The Royal Society of Chemistry: Croydon, United Kingdom, 2020; pp 45–68. DOI: 10.1039/9781788016438-00045.
  • Ramadan, A.H. Influence of Addition of Different Types of Sugar and Leavening Agents on the Acrylamide Content in Biscuits. J. Food Dairy Sci. 2012, 3(1), 33–44. DOI: 10.21608/jfds.2012.75293.
  • Gallagher, E.; O’Brien, C. M.; Scannell, A. G. M.; Arendt, E. K. Evaluation of Sugar Replacers in Short Dough Biscuit Production. J. Food Eng. 2003, 56(2–3), 261–263. DOI: 10.1016/S0260-8774(02)00267-4.
  • Amrein, T. M.; Schönbächler, B.; Escher, F.; Amadò, R. Acrylamide in Gingerbread: Critical Factors for Formation and Possible Ways for Reduction. J. Agric. Food Chem. 2004, 52(13), 4282–4288. DOI: 10.1021/jf049648b.
  • Graf, M.; Amrein, T. M.; Graf, S.; Szalay, R.; Escher, F.; Amadò, R. Reducing the Acrylamide Content of a Semi-Finished Biscuit on Industrial Scale. LWT - Food Sci. Technol. 2006, 39(7), 724–728. DOI: 10.1016/j.lwt.2005.05.010.
  • Summa, C.; Wenzl, T.; Brohee, M.; De La Calle, B.; Anklam, E. Investigation of the Correlation of the Acrylamide Content and the Antioxidant Activity of Model Cookies. J. Agric. Food Chem. 2006, 54(3), 853–859. DOI: 10.1021/jf051660w.
  • Gökmen, V.; Açar, Ö. Ç.; Köksel, H.; Acar, J. Effects of Dough Formula and Baking Conditions on Acrylamide and Hydroxymethylfurfural Formation in Cookies. Food Chem. 2007, 104(3), 1136–1142. DOI: 10.1016/j.foodchem.2007.01.008.
  • Morales, F. J.; Martin, S.; Açar, Ö. Ç.; Arribas-Lorenzo, G.; Gökmen, V. Antioxidant Activity of Cookies and Its Relationship with Heat-Processing Contaminants: A Risk/Benefit Approach. Eur. Food Res. Technol. 2009, 228(3), 345–354. DOI: 10.1007/s00217-008-0940-9.
  • Sung, W. C.; Chen, C. Y. Influence of Cookies Formulation on the Formation of Acrylamide. J. Food Nutr. Res. 2017, 5(6), 370–378. DOI: 10.12691/JFNR-5-6-3.
  • Miśkiewicz, K.; Rosicka-Kaczmarek, J.; Nebesny, E. Effects of Chickpea Protein on Carbohydrate Reactivity in Acrylamide Formation in Low Humidity Model Systems. Foods. 2020, 9(2), 1–12. DOI: 10.3390/foods9020167.
  • Aarabi, F.; Ardebili, M. S. The Effect of Sugar Type and Baking Condition on Formation of Acrylamide in Industrial Rotary Moulded Biscuit. J. Food Meas. Charact. 2020, 14(4), 2230–2239. DOI: 10.1007/s11694-020-00470-9.
  • Passos, C. P.; Ferreira, S. S.; Serôdio, A.; Basil, E.; Marková, L.; Kukurová, K.; Ciesarová, Z.; Coimbra, M. A. Pectic Polysaccharides as an Acrylamide Mitigation Strategy – Competition between Reducing Sugars and Sugar Acids. Food Hydrocoll. 2018, 81, 113–119. DOI: 10.1016/j.foodhyd.2018.02.032.
  • Shyu, Y.S.; Hsiao, H.I.; Fang, J.Y.; Sung, W.C. Effects of Dark Brown Sugar Replacing Sucrose and Calcium Carbonate, Chitosan, and Chitooligosaccharide Addition on Acrylamide and 5-Hydroxymethylfurfural Mitigation in Brown Sugar Cookies. Processes. 2019, 7(360), 1–14. DOI: 10.2290/pr7060360.
  • Garcia-Serna, E.; Martinez-Saez, N.; Mesias, M.; Morales, F. J.; Castillo, M. D. D. Use of Coffee Silverskin and Stevia to Improve the Formulation of Biscuits. Polish J. Food Nutr. Sci. 2014, 64(4), 243–251. DOI: 10.2478/pjfns-2013-0024.
  • Singh, A.; Kumar, P. Gluten Free Approach in Fat and Sugar Amended Biscuits: A Healthy Concern for Obese and Diabetic Individuals. J. Food Process. Preserv. 2018, 42(3), e13546. DOI: 10.1111/jfpp.13546.
  • Suman, M.; Generotti, S.; Cirlini, M.; Dall’asta, C. Acrylamide Reduction Strategy in Combination with Deoxynivalenol Mitigation in Industrial Biscuits Production. Toxins (Basel). 2019, 11(9), 499. DOI: 10.3390/toxins11090499.
  • Sadd, P. A.; Hamlet, C. G.; Liang, L. Effectiveness of Methods for Reducing Acrylamide in Bakery Products. J. Agric. Food Chem. 2008, 56(15), 6154–6161. DOI: 10.1021/jf7037482.
  • Marconi, O.; Bravi, E.; Perretti, G.; Martini, R.; Montanari, L.; Fantozzi, P. Acrylamide Risk in Food Products: The Shortbread Case Study. Anal. Methods. 2010, 2(11), 1686–1691. DOI: 10.1039/c0ay00191k.
  • Courel, M.; Ait-Ameur, L.; Capuano, E.; Fogliano, V.; Morales, F. J.; Courtois, F.; Birlouez-Aragon, I. Effects of Formulation and Baking Conditions on Neo-Formed Contaminants in Model Cookies. Czech J. Food Sci. 2009, 27( Special Issue 1), 93–95. DOI: 10.17221/954-cjfs.
  • Kukurová, K.; Ciesarová, Z.; Mogol, B. A.; Açar, Ö. Ç.; Gökmen, V. Raising Agents Strongly Influence Acrylamide and HMF Formation in Cookies and Conditions for Asparagin. Eur. Food Res. Technol. 2013, 237(1), 1–8. DOI: 10.1007/s00217-013-1976-z.
  • Rydberg, P.; Eriksson, S.; Tareke, E.; Karlsson, P.; Ehrenberg, L.; Törnqvist, M. Factors that Influence the Acrylamide Content of Heated Foods. Adv. Exp. Med. Biol. 2005, 561, 317–328. DOI: 10.1007/0-387-24980-X_24.
  • Lai, H.-M.; Lin, T. C. Bakery Products: Science and Technology. In Bakery Products: Science and Technology 1st; Hui, Y.H. Ed.,Ames, Iowa, USA: Blackwell, 2006; 3–68, IBSN: 0813801877. DOI: 10.1002/9780470277553.ch1.
  • Arribas-Lorenzo, G.; Fogliano, V.; Morales, F. J. Acrylamide Formation in a Cookie System as Influenced by the Oil Phenol Profile and Degree of Oxidation. Eur. Food Res. Technol. 2009, 229(1), 63–72. DOI: 10.1007/s00217-009-1026-z.
  • Anese, M.; Quarta, B.; Peloux, L.; Calligaris, S. Effect of Formulation on the Capacity of L-Asparaginase to Minimize Acrylamide Formation in Short Dough Biscuits. Food Res. Int. 2011, 44(9), 2837–2842. DOI: 10.1016/j.foodres.2011.06.025.
  • Friedman, M.; Mottram, D. Chemistry and Safety of Acrylamide in Food; Springer: Boston, USA, 2005. DOI: 10.1007/B106417.
  • Khezerlou, A.; Alizadeh-Sani, M.; Firouzsalari, N. Z.; Ehsani, A. Formation, Properties, and Reduction Methods of Acrylamide in Foods: A Review Study. J. Nutr. Fasting Heal. 2018, 6(1), 52–59. DOI: 10.22038/JNFH.2018.34179.1133.
  • Stadler, R. H.; Scholz, G. Acrylamide: An Update on Current Knowledge in Analysis, Levels in Food, Mechanisms of Formation, and Potential Strategies of Control. Nutr. Rev. 2004, 62(12), 449–467. DOI: 10.1301/nr.2004.janr.449-467.
  • Yaylayan, V. A.; Stadler, R. H. Acrylamide Formation in Food: A Mechanistic Perspective. J. AOAC Int. 2005, 88(1), 262–267. DOI: 10.1093/jaoac/88.1.262.
  • Fiore, A.; Troise, A. D.; Ataç Mogol, B.; Roullier, V.; Gourdon, A.; El Mafadi Jian, S.; Hamzalioǧlu, B. A.; Gökmen, V.; Fogliano, V. Controlling the Maillard Reaction by Reactant Encapsulation: Sodium Chloride in Cookies. J. Agric. Food Chem. 2012, 60(43), 10808–10814. DOI: 10.1021/jf3026953.
  • Van Der Fels-Klerx, H. J.; Capuano, E.; Nguyen, H. T.; Ataç Mogol, B.; Kocadaǧli, T.; Göncüoǧlu Taş, N.; Hamzalioǧlu, A.; Van Boekel, M. A. J. S.; Gökmen, V. Acrylamide and 5-Hydroxymethylfurfural Formation during Baking of Biscuits: NaCl and Temperature-Time Profile Effects and Kinetics. Food Res. Int. 2014, 57, 210–217. DOI: 10.1016/j.foodres.2014.01.039.
  • Quarta, B.; Anese, M. The Effect of Salts on Acrylamide and 5-Hydroxymethylfurfural Formation in Glucose-Asparagine Model Solutions and Biscuits. J. Food Nutr. Res. 2010, 49(2), 69–77.
  • Açar, Ö. Ç.; Pollio, M.; Di Monaco, R.; Fogliano, V.; Gökmen, V. Effect of Calcium on Acrylamide Level and Sensory Properties of Cookies. Food Bioprocess Technol. 2012, 5(2), 519–526. DOI: 10.1007/s11947-009-0317-5.
  • Chang, L. B. K.; Wang, J.S.; Sung, W.C. Calcium Salts Reduce Acrylamide Formation and Improve Qualities of Cookies. J. Food Nutr. Res. 2014, 2(11), 857–866. DOI: 10.12691/jfnr-2-11-16.
  • Mesías, M.; Holgado, F.; Márquez-Ruiz, G.; Morales, F. J. Effect of Sodium Replacement in Cookies on the Formation of Process Contaminants and Lipid Oxidation. LWT - Food Sci. Technol. 2015, 62(1), 633–639. DOI: 10.1016/j.lwt.2014.11.028.
  • Gökmen, V.; Şenyuva, H. Z. Effects of Some Cations on the Formation of Acrylamide and Furfurals in Glucose–Asparagine Model System. Eur. Food Res. Technol. 2007, 225, 815–820. DOI: 10.1007/s00217-006-0486-7.
  • Levine, R. A.; Ryan, S. M. Determining the Effect of Calcium Cations on Acrylamide Formation in Cooked Wheat Products Using a Model System N. J. Agric. Food Chem. 2009, 57(15), 6823–6829. DOI: 10.1021/jf901120m.
  • Claus, A.; Mongili, M.; Weisz, G.; Schieber, A.; Carle, R. Impact of Formulation and Technological Factors on the Acrylamide Content of Wheat Bread and Bread Rolls. J. Cereal Sci. 2008, 47(3), 546–554. DOI: 10.1016/j.jcs.2007.06.011.
  • Kolek, E.; Šimko, P.; Simon, P. Inhibition of Acrylamide Formation in Asparagine/d-Glucose Model System by NaCl Addition. Eur. Food Res. Technol. 2006, 224(2), 283–284. DOI: 10.1007/s00217-006-0319-8.
  • Nguyen, H. T.; van der Fels-klerx, H. J. ; van Boekel, M. A. J. S. Acrylamide and 5-Hydroxymethylfurfural Formation during Biscuit Baking. Part II: Effect of the Ratio of Reducing Sugars and Asparagine. Food Chem. 2017, 230, 14–23. DOI: 10.1016/j.foodchem.2017.03.009.
  • Mogol, B. A.; Gökmen, V. Effect of Chitosan on the Formation of Acrylamide and Hydroxymethylfurfural in Model, Biscuit and Crust Systems. Food Funct. 2016, 7(8), 3431–3436. DOI: 10.1039/c6fo00755d.
  • Salazar, R.; Arámbula-Villa, G.; Vázquez-Landaverde, P. A.; Hidalgo, F. J.; Zamora, R. Mitigating Effect of Amaranth (Amarantus Hypochondriacus) Protein on Acrylamide Formation in Foods. Food Chem. 2012, 135(4), 2293–2298. DOI: 10.1016/j.foodchem.2012.06.089.
  • Zou, Y.; Huang, C.; Pei, K.; Cai, Y.; Zhang, G.; Hu, C.; Ou, S. Cysteine Alone or in Combination with Glycine Simultaneously Reduced the Contents of Acrylamide and Hydroxymethylfurfural. LWT - Food Sci. Technol. 2015, 63(1), 275–280. DOI: 10.1016/j.lwt.2015.03.104.
  • Hendriksen, H. V.; Kornbrust, B. A.; Ostergaard, P. R.; Stringer, M. A. Evaluating the Potential for Enzymatic Acrylamide Mitigation in a Range of Food Products Using an Asparaginase from Aspergillus Oryzae. J. Agric. Food Chem. 2009, 57(10), 4168–4176. DOI: 10.1021/jf900174q.
  • Huang, L.; Liu, Y.; Sun, Y.; Yan, Q.; Jiang, Z. Biochemical Characterization of a Novel L-Asparaginase with Low Glutaminase Activity from Rhizomucor Miehei and Its Application in Food Safety and Leukemia Treatment. Appl. Environ. Microbiol. 2014, 80(5), 1561–1569. DOI: 10.1128/AEM.03523-13.
  • Anese, M.; Quarta, B.; Frias, J. Modelling the Effect of Asparaginase in Reducing Acrylamide Formation in Biscuits. Food Chem. 2011, 126(2), 435–440. DOI: 10.1016/j.foodchem.2010.11.007.
  • Zhu, F.; Cai, Y. Z.; Ke, J.; Corke, H. Dietary Plant Materials Reduce Acrylamide Formation in Cookie and Starch-Based Model Systems. J. Sci. Food Agric. 2011, 91(13), 2477–2483. DOI: 10.1002/jsfa.4491.
  • Li, D.; Chen, Y.; Zhang, Y.; Lu, B.; Jin, C.; Wu, X.; Zhang, Y. Study on Mitigation of Acrylamide Formation in Cookies by 5 Antioxidants. J. Food Sci. 2012, 77(11), C1144–C1149. DOI: 10.1111/j.1750-3841.2012.02949.x.
  • Oral, R. A.; Dogan, M.; Sarioglu, K. Effects of Certain Polyphenols and Extracts on Furans and Acrylamide Formation in Model System, and Total Furans during Storage. Food Chem. 2014, 142, 423–429. DOI: 10.1016/j.foodchem.2013.07.077.
  • Passos, C. P.; Kukurová, K.; Basil, E.; Fernandes, P. A. R.; Neto, A.; Nunes, F. M.; Murkovic, M.; Ciesarová, Z.; Coimbra, M. A. Instant Coffee as a Source of Antioxidant-Rich and Sugar-Free Coloured Compounds for Use in Bakery: Application in Biscuits. Food Chem. 2017, 231, 114–121. DOI: 10.1016/j.foodchem.2017.03.105.
  • Miśkiewicz, K.; Nebesny, E.; Rosicka-Kaczmarek, J.; Żyżelewicz, D.; Budryn, G. The Effects of Baking Conditions on Acrylamide Content in Shortcrust Cookies with Added Freeze-Dried Aqueous Rosemary Extract. J. Food Sci. Technol. 2018, 55(10), 4184–4196. DOI: 10.1007/s13197-018-3349-x.
  • AL-Ansi, W.; Mahdi, A. A.; Al-Maqtari, Q. A.; Fan, M.; Wang, L.; Li, Y.; Qian, H.; Zhang, H. Evaluating the Role of Microwave-Baking and Fennel (Foeniculum Vulgare L.)/Nigella (Nigella Sativa L.) On Acrylamide Growth and Antioxidants Potential in Biscuits. J. Food Meas. Charact. 2019, 13(3), 2426–2437. DOI: 10.1007/s11694-019-00163-y.
  • Yang, H.; Li, L.; Yin, Y.; Li, B.; Zhang, X.; Jiao, W.; Liang, Y. Effect of Ground Ginger on Dough and Biscuit Characteristics and Acrylamide Content. Food Sci. Biotechnol. 2019, 28(5), 1359–1366. DOI: 10.1007/s10068-019-00592-x.
  • Desai, N. M.; Mallik, B.; Sakhare, S. D.; Murthy, P. S. Prebiotic Oligosaccharide Enriched Green Coffee Spent Cookies and Their Nutritional, Physicochemical and Sensory Properties. Lwt. 2020, 134(July), 109924. DOI: 10.1016/j.lwt.2020.109924.
  • Troise, A. D.; Colantuono, A.; Fiore, A. Spray-Dried Olive Mill Wastewater Reduces Maillard Reaction in Cookies Model System. Food Chem. 2020, 323(April), 126793. DOI: 10.1016/j.foodchem.2020.126793.
  • Zhu, Y.; Luo, Y.; Sun, G.; Wang, P.; Hu, X.; Chen, F. Inhibition of Acrylamide by Glutathione in Asparagine/Glucose Model Systems and Cookies. Food Chem. 2020, 329(April), 127171. DOI: 10.1016/j.foodchem.2020.127171.
  • Martinez-Saez, N.; García, A. T.; Pérez, I. D.; Rebollo-Hernanz, M.; Mesías, M.; Morales, F. J.; Martín-Cabrejas, M. A.; Del Castillo, M. D. Use of Spent Coffee Grounds as Food Ingredient in Bakery Products. Food Chem. 2017, 216, 114–122. DOI: 10.1016/j.foodchem.2016.07.173.
  • Troise, A. D.; Wilkin, J. D.; Fiore, A. Impact of Rapeseed Press-Cake on Maillard Reaction in a Cookie Model System. Food Chem. 2018, 243(September 2017), 365–372. DOI: 10.1016/j.foodchem.2017.09.153.
  • Bartkiene, E.; Jakobsone, I.; Pugajeva, I.; Bartkevics, V.; Vidmantiene, D.; Juodeikiene, G. Influence of the Addition of Helianthus Tuberosus L. Fermented with Different Lactobacilli on Acrylamide Content in Biscuits. Int. J. Food Sci. Technol. 2015, 50(2), 431–439. DOI: 10.1111/ijfs.12643.
  • Mousa, R. M. A. Simultaneous Mitigation of 4(5)-Methylimidazole, Acrylamide, and 5-Hydroxymethylfurfural in Ammonia Biscuits by Supplementing with Food Hydrocolloids. Food Sci. Nutr. 2019, 7(12), 3912–3921. DOI: 10.1002/fsn3.1250.
  • Ning, X.; Wu, J.; Luo, Z.; Chen, Y.; Mo, Z.; Luo, R.; Bai, C.; Du, W.; Wang, L. Cookies Fortified with Purple Passion Fruit Epicarp Flour: Impact on Physical Properties, Nutrition, in Vitro Starch Digestibility, and Antioxidant Activity. Cereal Chem. 2021, 98(2), 328–336. DOI: 10.1002/cche.10367.
  • Pedreschi, F.; Kaack, K.; Granby, K.; Troncoso, E. Acrylamide Reduction under Different Pre-Treatments in French Fries. J. Food Eng. 2007, 79(4), 1287–1294. DOI: 10.1016/j.jfoodeng.2006.04.014.
  • Stadler, R. H.; Studer, A. Acrylamide Formation Mechanisms. In Acrylamide in Food: Analysis, Content and Potential Health Effects; Gökmen, V., Ed.; Oxford, United Kingdom: Elsevier Inc, 2016; pp 1–17, IBSN: 9780128028322. DOI: 10.1016/B978-0-12-802832-2.00001-2.
  • Demirok, E.; Kolsarici, N. Effect of Green Tea Extract and Microwave Pre-Cooking on the Formation of Acrylamide in Fried Chicken Drumsticks and Chicken Wings. Food Res. Int. 2014, 63, 290–298. DOI: 10.1016/j.foodres.2014.04.003.
  • Kotsiou, K.; Tasioula-Margari, M.; Fiore, A.; Gökmen, V.; Fogliano, V. Acrylamide Formation and Colour Development in Low-Fat Baked Potato Products as Influenced by Baking Conditions and Oil Type. Eur. Food Res. Technol. 2013, 236(5), 843–851. DOI: 10.1007/s00217-013-1935-8.
  • Sordini, B.; Veneziani, G.; Servili, M.; Esposto, S.; Selvaggini, R.; Lorefice, A.; Taticchi, A. A Quanti-Qualitative Study of A Phenolic Extract as A Natural Antioxidant in the Frying Processes. Food Chem. 2019, 279(December 2018), 426–434. DOI: 10.1016/j.foodchem.2018.12.029.
  • Mertens, N.; Heymann, T.; Glomb, M. A. Oxidative Fragmentation of Aspalathin Leads to the Formation of Dihydrocaffeic Acid and the Related Lysine Amide Adduct. J. Agric. Food Chem. 2020, 68(46), 13111–13120. DOI: 10.1021/acs.jafc.9b07689.
  • Pourfarzad, A.; Mahdavian-Mehr, H.; Sedaghat, N. Coffee Silverskin as a Source of Dietary Fiber in Bread-Making: Optimization of Chemical Treatment Using Response Surface Methodology. LWT - Food Sci. Technol. 2013, 50(2), 599–606. DOI: 10.1016/j.lwt.2012.08.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.