1,600
Views
8
CrossRef citations to date
0
Altmetric
Review

A Review on Fruit and Vegetable Fermented Beverage-Benefits of Microbes and Beneficial Effects

ORCID Icon, , , , ORCID Icon, ORCID Icon, , ORCID Icon, , & show all

References

  • Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and Vegetables, as a Source of Nutritional Compounds and Phytochemicals: Changes in Bioactive Compounds during Lactic Fermentation. Food Res. Int. 2018, 104, 86–99. DOI: 10.1016/j.foodres.2017.09.031.
  • Garcia, C.; Guerin, M.; Souidi, K.; Remize, F. Lactic Fermented Fruit or Vegetable Juices: Past, Present and Future. Beverages. 2020, 6, 8. DOI: 10.3390/beverages6010008.
  • Costa, A. G. V.; Garcia-Diaz, D. F.; Jimenez, P.; Silva, P. I. Bioactive Compounds and Health Benefits of Exotic Tropical Red-black Berries. J. Funct. Foods. 2013, 5, 539–549. DOI: 10.1016/j.jff.2013.01.029.
  • Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; ,E.Leschik-Bonnet; Müller, M. J.; Oberritter, H.; Schulze, M., et al. Critical Review: Vegetables and Fruit in the Prevention of Chronic Diseases. Eur. J. Nutr . 2012,51, 637–663. DOI: 10.1007/s00394-012-0380-y.
  • Leite, A. V.; Malta, L. G.; Riccio, M. F.; Eberlin, M. N.; Pastore, G. M.; Maróstica Júnior, M. R. Antioxidant Potential of Rat Plasma by Administration of Freeze-dried Jaboticaba Peel (Myrciaria Jaboticaba Vell Berg). J. Agric. Food Chem. 2011, 59, 2277–2283. DOI: 10.1021/jf103181x.
  • Swain, M. R.; Anandharaj, M.; Ray, R. C.; Parveen Rani, R. Fermented Fruits and Vegetables of Asia: A Potential Source of Probiotics. Biotechnol. Res. Int. 2014, 2014, 1–19. DOI: 10.1155/2014/250424.
  • Siriwardhana, N.; Kalupahana, N. S.; Cekanova, M.; LeMieux, M.; Greer, B.; Moustaid-Moussa, N. Modulation of Adipose Tissue Inflammation by Bioactive Food Compounds. J. Nutr. Biochem. 2013, 24, 613–623. DOI: 10.1016/j.jnutbio.2012.12.013.
  • Kaur, M.; Kumar, M. An Innovation in Magnetic Field Assisted Freezing of Perishable Fruits and Vegetables: A Review. Food Rev. Int. 2019,36,761–780. DOI:10.1080/87559129.2019.1683746 .
  • Demir, N.; Bahçeci, K. S.; Acar, J. The Effects of Different Initial Lactobacillus Plantarum Concentrations on Some Properties of Fermented Carrot Juice. J. Food Process. Preserv. 2006, 30, 352–363. DOI: 10.1111/j.1745-4549.2006.00070.x.
  • Di Cagno, R.; Coda, R.; De Angelis, M.; Gobbetti, M. Exploitation of Vegetables and Fruits through Lactic Acid Fermentation. Food Microbiol. 2013, 33, 1–10. DOI: 10.1016/j.fm.2012.09.003.
  • Dahal, N. R.; Karki, T. B.; Swamylingappa, B.; Li, Q.; Gu, G. Traditional Foods and Beverages of Nepal-a Review. Food Rev. Int. 2005, 21, 1–25. DOI: 10.1081/FRI-200040579.
  • McGovern, P. E.; Zhang, J.; Tang, J.; Zhang, Z.; Hall, G. R.; Moreau, R. A.; Nuñez, A.; Butrym, E. D.; Richards, M. P.; Wang, C. S., et al. Fermented Beverages of Pre- and Proto-historic China. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 17593–17598. DOI: 10.1073/pnas.0407921102.
  • Garcia-Diaz, D. F.; Johnson, M. H., and De Mejia, E. G. Anthocyanins from Fermented Berry Beverages Inhibit Inflammation-Related Adiposity Response in Vitro. J. Med. Food. 2015, 18, 489–496. DOI: 10.1089/jmf.2014.0039.
  • Karovičová, J.; Drdák, M.; Greif, G.; Hybenová, E. The Choice of Strains of Lactobacillus Species for the Lactic Acid Fermentation of Vegetable Juices. Eur. Food Res. Technol. 1999. DOI: 10.1007/s002170050532.
  • Wouters, D., Grosu-Tudor, S.; Zamfir, M., and De Vuyst, L. Applicability of Lactobacillus Plantarum IMDO 788 as a Starter Culture to Control Vegetable Fermentations. J. Sci. Food Agric. 2013, 93, 3352–3361. DOI: 10.1002/jsfa.6184.
  • Tamang, B.; Tamang, J. P. In Situ Fermentation Dynamics during Production of Gundruk and Khalpi, Ethnic Fermented Vegetable Products of the Himalayas. Indian J. Microbiol. 2010, 50, 93–98. DOI: 10.1007/s12088-010-0058-1.
  • Chanprasartsuk, O. O.; Prakitchaiwattana, C.; Sanguandeekul, R.; Fleet, G. H. Autochthonous Yeasts Associated with Mature Pineapple Fruits, Freshly Crushed Juice and Their Ferments; and the Chemical Changes during Natural Fermentation. Bioresour. Technol. 2010, 101, 7500–7509. DOI: 10.1016/j.biortech.2010.04.047.
  • Gardner, N. J.; Savard, T.; Obermeier, P.; Caldwell, G.; Champagne, C. P. Selection and Characterization of Mixed Starter Cultures for Lactic Acid Fermentation of Carrot, Cabbage, Beet and Onion Vegetable Mixtures. Int. J. Food Microbiol. 2001, 64, 261–275. DOI: 10.1016/S0168-1605(00)00461-X.
  • Mantzourani, I.; Kazakos, S.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A.; Plessas, S. Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice. Foods. 2019, 8. DOI: 10.3390/foods8010004.
  • Escudero-López, B.; Berná, G.; Ortega, Á.; Herrero-Martín, G.; Cerrillo, I.; Martín, F.; Fernández-Pachón, M. S. Consumption of Orange Fermented Beverage Reduces Cardiovascular Risk Factors in Healthy Mice. Food Chem. Toxicol. 2015, 78, 78–85. DOI: 10.1016/j.fct.2015.02.006.
  • Pereira, A. L. F.; Feitosa, W. S. C.; Abreu, V. K. G.; de O. Lemos, T.; Gomes, W. F.; Narain, N.; Rodrigues, S. Impact of Fermentation Conditions on the Quality and Sensory Properties of a Probiotic Cupuassu (Theobroma Grandiflorum) Beverage. Food Res. Int. 2017, 100, 603–611. DOI: 10.1016/j.foodres.2017.07.055.
  • Dias, C. O.; Dos Santos Opuski de Almeida, J.; Pinto, S. S.; de Oliveira Santana, F. C.; Verruck, S.; Müller, C. M. O.; Prudêncio, E. S.; de Mello Castanho Amboni, R. D. Development and Physico-chemical Characterization of Microencapsulated Bifidobacteria in Passion Fruit Juice: A Functional Non-dairy Product for Probiotic Delivery. Food Biosci. 2018, 24, 26–36. DOI: 10.1016/j.fbio.2018.05.006.
  • Zhang, Z. P.; Ma, J.; He, Y. Y.; Lu, J.; Ren, D. F. Antioxidant and Hypoglycemic Effects of Diospyros Lotus Fruit Fermented with Microbacterium Flavum and Lactobacillus Plantarum. J. Biosci. Bioeng. 2018, 125, 682–687. DOI: 10.1016/j.jbiosc.2018.01.005.
  • Song, Y. R.; Shin, N. S.; Baik, S. H. Physicochemical and Functional Characteristics of a Novel Fermented Pepper (Capsiccum Annuum L.) Leaves-based Beverage Using Lactic Acid Bacteria. Food Sci. Biotechnol. 2014, 23, 187–194. DOI: 10.1007/s10068-014-0025-4.
  • Marsh, A. J.; Hill, C.; Ross, R. P.; Cotter, P. D. Fermented Beverages with Health-promoting Potential: Past and Future Perspectives. Trends Food Sci. Technol. 2014, 38, 113–124. DOI: 10.1016/j.tifs.2014.05.002.
  • Wang, Y.; Yu, M.; Shi, Y.; Lu, T.; Xu, W.; Sun, Y.; Yang, L.; Gan, Z.; Xie, L. Effects of a Fermented Beverage of Changbai Mountain Fruit and Vegetables on the Composition of Gut Microbiota in Mice. Plant Foods Hum. Nutr. 2019, 74, 468–473. DOI: 10.1007/s11130-019-00761-7.
  • Pan, M.; Wu, Q.; Tao, X.; Wan, C.; Shah, N. P.; Wei, H. Fermentation of Allium Chinense Bulbs with Lactobacillus Plantarum ZDY 2013 Shows Enhanced Biofunctionalities, and Nutritional and Chemical Properties. J. Food Sci. 2015, 80, M2272–M2278. DOI: 10.1111/1750-3841.12994.
  • Lee, S. W.; Cho, J. Y.; Jeong, H. Y.; Na, T. W.; Lee, S. H.; Moon, J. H. Enhancement of Antioxidative and Antimicrobial Activities of Immature Pear (Pyrus Pyrifolia Cv. Niitaka) Fruits by Fermentation with Leuconostoc Mesenteroides. Food Sci. Biotechnol. 2016, 25, 1719–1726. DOI: 10.1007/s10068-016-0263-8.
  • Hashemi, S. M. B.; Mousavi Khaneghah, A.; Barba, F. J.; Nemati, Z.; Sohrabi Shokofti, S.; Alizadeh, F. Fermented Sweet Lemon Juice (Citrus Limetta) Using Lactobacillus Plantarum LS5: Chemical Composition, Antioxidant and Antibacterial Activities. J. Funct. Foods. 2017, 38, 409–414. DOI: 10.1016/j.jff.2017.09.040.
  • Kim, J.; Choi, K. B.; Park, J. H.; Kim, K. H. Metabolite Profile Changes and Increased Antioxidative and Antiinflammatory Activities of Mixed Vegetables after Fermentation by Lactobacillus Plantarum. PLoS One. 2019. DOI: 10.1371/journal.pone.0217180.
  • Ghosh, K.; Ray, M.; Adak, A.; Halder, S. K.; Das, A.; Jana, A.; Parua (Mondal), S.; Vágvölgyi, C.; Das Mohapatra, P. K.; Pati, B. R., et al. Role of Probiotic Lactobacillus Fermentum KKL1 in the Preparation of a Rice Based Fermented Beverage. Bioresour. Technol. 2015, 188, 161–168. DOI: 10.1016/j.biortech.2015.01.130.
  • Xu, J.; Jönsson, T.; Plaza, M.; Håkansson, Å.; Antonsson, M.; Ahrén, I. L.; Turner, C.; Spégel, P.; Granfeldt, Y. Probiotic Fruit Beverages with Different Polyphenol Profiles Attenuated Early Insulin Response. Nutr. J. 2018, 17. DOI: 10.1186/s12937-018-0335-0.
  • Yang, X.; Zhou, J.; Fan, L.; Qin, Z.; Chen, Q.; Zhao, L. Antioxidant Properties of a Vegetable–fruit Beverage Fermented with Two Lactobacillus Plantarum Strains. Food Sci. Biotechnol. 2018, 27, 1719–1726. DOI: 10.1007/s10068-018-0411-4.
  • Czyżowska, A.; Kucharska, A. Z.; Nowak, A.; Sokół-Łętowska, A.; Motyl, I.; Piórecki, N. Suitability of the Probiotic Lactic Acid Bacteria Strains as the Starter Cultures in Unripe Cornelian Cherry (Cornus Mas L.) Fermentation. J. Food Sci. Technol. 2017, 54, 2936–2946. DOI: 10.1007/s13197-017-2732-3.
  • Ng, C. C.; Wang, C. Y.; Wang, Y. P.; Tzeng, W. S.; Shyu, Y. T. Lactic Acid Bacterial Fermentation on the Production of Functional Antioxidant Herbal Anoectochilus Formosanus Hayata. J. Biosci. Bioeng. 2011, 111, 289–293. DOI: 10.1016/j.jbiosc.2010.11.011.
  • Markkinen, N.; Laaksonen, O.; Nahku, R.; Kuldjärv, R.; Yang, B. Impact of Lactic Acid Fermentation on Acids, Sugars, and Phenolic Compounds in Black Chokeberry and Sea Buckthorn Juices. Food Chem. 2019, 286, 204–215. DOI: 10.1016/j.foodchem.2019.01.189.
  • Lu, Y.; Putra, S. D.; Liu, S. Q. A Novel Non-dairy Beverage from Durian Pulp Fermented with Selected Probiotics and Yeast. Int. J. Food Microbiol. 2018, 265, 1–8. DOI: 10.1016/j.ijfoodmicro.2017.10.030.
  • Vanajakshi, V.; Vijayendra, S. V. N.; Varadaraj, M. C.; Venkateswaran, G.; Agrawal, R. Optimization of a Probiotic Beverage Based on Moringa Leaves and Beetroot. LWT - Food Sci. Technol. 2015, 63, 1268–1273. DOI: 10.1016/j.lwt.2015.04.023.
  • Verón, H. E.; Gauffin Cano, P.; Fabersani, E.; Sanz, Y.; Isla, M. I.; Fernández Espinar, M. T.; Gil Ponce, J. V.; Torres, S. Cactus Pear (Opuntia Ficus-indica) Juice Fermented with Autochthonous Lactobacillus Plantarum S-811. Food Funct. 2019, 10, 1085–1097. DOI: 10.1039/c8fo01591k.
  • Yoon, K. Y.; Woodams, E. E.; Hang, Y. D. Production of Probiotic Cabbage Juice by Lactic Acid Bacteria. Bioresour. Technol. 2006, 97, 1427–1430. DOI: 10.1016/j.biortech.2005.06.018.
  • Yunita, D.; Dodd, C. E. R. Microbial Community Dynamics of a Blue-veined Raw Milk Cheese from the United Kingdom. J. Dairy Sci. 2018, 101, 4923–4935. DOI: 10.3168/jds.2017-14104.
  • Pawar, S. V.; Rathod, V. K. Role of Ultrasound in Assisted Fermentation Technologies for Process Enhancements. Prep. Biochem. Biotechnol. 2020, 50, 627–634. DOI: 10.1080/10826068.2020.1725773.
  • Nobre, C.; Cruz, M.; Rodriguez-jasso, R. M.; Ruíz, H. A.; Loredo-treviño, A.; Texeira, J. A.; Belmares, R.; Nobre, C.; Cruz, M.; Rodriguez-jasso, R. M. Spontaneously Fermented Traditional Beverages as a Source of Bioactive Compounds : An Overview. Crit. Rev. Food Sci. Nutr. 2020, 1–23. DOI: 10.1080/10408398.2020.1791050.
  • Cagno Di, R.; Filannino, P.; Gobbetti, M. Vegetable and Fruit Fermentation by Lactic Acid Bacteria. Biotechnol. Lact. Acid Bact. Nov. Appl. Second Ed. 2015, 216–230. DOI: 10.1002/9781118868386.ch14.
  • Hansen, E.B. 2014. STARTER CULTURES | Uses in the Food Industry. Encyclopedia of Food Microbiology. 3, 529–534. doi:10.1016/B978-0-12-384730-0.00320-7.
  • Bourdichon F et al . (2012). Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology, 154(3), 87–97. 10.1016/j.ijfoodmicro.2011.12.030
  • Vogel R F, Hammes W P, Habermeyer M, Engel K, Knorr D and Eisenbrand G. (2011). Microbial food cultures - opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG). Mol. Nutr. Food Res., 55(4), 654–662. 10.1002/mnfr.201100010
  • Hatti-Kaul, R.; Chen, L.; Dishisha, T.; Enshasy, H. El Lactic Acid Bacteria: From Starter Cultures to Producers of Chemicals. FEMS Microbiol. Lett. 2018, 365. DOI: 10.1093/femsle/fny213.
  • Corona-Hernandez, R. I.; Álvarez-Parrilla, E.; Lizardi-Mendoza, J.; Islas-Rubio, A. R.; de La Rosa, L. A.; Wall-Medrano, A. Structural Stability and Viability of Microencapsulated Probiotic Bacteria: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 614–628. DOI: 10.1111/1541-4337.12030.
  • Barrangou, R.; Yoon, S. S.; Breidt, F.; Fleming, H. P.; Klaenhammer, T. R. Identification and Characterization of Leuconostoc Fallax Strains Isolated from an Industrial Sauerkraut Fermentation. Appl. Environ. Microbiol. 2002. DOI: 10.1128/AEM.68.6.2877-2884.2002.
  • Parvez, S.; Malik, K. A.; Ah Kang, S.; Kim, H. Y. Probiotics and Their Fermented Food Products are Beneficial for Health. J. Appl. Microbiol. 2006, 100, 1171–1185. DOI: 10.1111/j.1365-2672.2006.02963.x.
  • Wuyts, S.; Van Beeck, W.; Allonsius, C. N.; van Den Broek, M. F.; Lebeer, S. Applications of Plant-based Fermented Foods and Their Microbes. Curr. Opin. Biotechnol. 2020, 61, 45–52. DOI: 10.1016/j.copbio.2019.09.023.
  • Marco, M. L.; Heeney, D.; Binda, S.; Cifelli, C. J.; Cotter, P. D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A., et al. Health Benefits of Fermented Foods: Microbiota and Beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. DOI: 10.1016/j.copbio.2016.11.010.
  • Cui, S.; Zhao, N.; Lu, W.; Zhao, F.; Zheng, S.; Wang, W.; Chen, W. Effect of Different Lactobacillus Species on Volatile and Nonvolatile Flavor Compounds in Juices Fermentation. Food Sci. Nutr. 2019, 7, 2214–2223. DOI: 10.1002/fsn3.1010.
  • Ardö, Y. Flavour Formation by Amino Acid Catabolism. Biotechnol. Adv. 2006, 24, 238–242. DOI: 10.1016/j.biotechadv.2005.11.005.
  • Jung, J. Y.; Lee, S. H.; Lee, H. J.; Seo, H. Y.; Park, W. S.; Jeon, C. O. Effects of Leuconostoc Mesenteroides Starter Cultures on Microbial Communities and Metabolites during Kimchi Fermentation. Int. J. Food Microbiol. 2012, 153, 378–387. DOI: 10.1016/j.ijfoodmicro.2011.11.030.
  • Blandino, A.; Al-Aseeri, M. E.; Pandiella, S. S.; Cantero, D.; Webb, C. Cereal-based Fermented Foods and Beverages. Food Res. Int. 2003, 36, 527–543. DOI: 10.1016/S0963-9969(03)00009-7.
  • Cuvas-Limon, R. B.; Nobre, C.; Cruz, M.; Rodriguez-Jasso, R. M.; Ruíz, H. A.; Loredo-Treviño, A.; Texeira, J. A.; Belmares, R. Spontaneously Fermented Traditional Beverages as a Source of Bioactive Compounds: An Overview. Crit. Rev. Food Sci. Nutr. 2020, 2, 1–23. DOI: 10.1080/10408398.2020.1791050.
  • Torres-Maravilla, E.; Lenoir, M.; Mayorga-Reyes, L.; Allain, T.; Sokol, H.; Langella, P.; Sánchez-Pardo, M. E.; Bermúdez-Humarán, L. G. Identification of Novel Anti-inflammatory Probiotic Strains Isolated from Pulque. Appl. Microbiol. Biotechnol. 2016, 100, 385–396. DOI: 10.1007/s00253-015-7049-4.
  • Murofushi, Y.; Villena, J.; Morie, K.; Kanmani, P.; Tohno, M.; Shimazu, T.; Aso, H.; Suda, Y.; Hashiguchi, K.; Saito, T., et al. The Toll-like Receptor Family Protein RP105/MD1 Complex Is Involved in the Immunoregulatory Effect of Exopolysaccharides from Lactobacillus Plantarum N14. Mol. Immunol. 2015, 64, 63–75. DOI: 10.1016/j.molimm.2014.10.027.
  • Ducrotté, P.; Sawant, P.; Jayanthi, V. Clinical Trial: Lactobacillus Plantarum 299v (DSM 9843) Improves Symptoms of Irritable Bowel Syndrome. World J. Gastroenterol. 2012, 18, 4012–4018. DOI: 10.3748/wjg.v18.i30.4012.
  • Park, M. Y.; Kim, J.; Kim, S.; Whang, K. Y. Lactobacillus Curvatus KFP419 and Leuconostoc Mesenteroides Subsp. Mesenteroides KDK411 Isolated from Kimchi Ameliorate Hypercholesterolemia in Rats. J. Med. Food. 2018, 21, 647–653. DOI: 10.1089/jmf.2017.4125.
  • Armitage, J. The Safety of Statins in Clinical Practice. Lancet. 2007, 370, 1781–1790. DOI: 10.1016/S0140-6736(07)60716-8.
  • Gotto, A. M. S. Cardiovascular Disease, and Drug Safety. Am. J. Cardiol. 2006, 97, 2005–2007. DOI: 10.1016/j.amjcard.2005.12.005.
  • Chiu, H. H.; Tsai, C. C.; Hsih, H. Y.; Tsen, H. Y. Screening from Pickled Vegetables the Potential Probiotic Strains of Lactic Acid Bacteria Able to Inhibit the Salmonella Invasion in Mice. J. Appl. Microbiol. 2008. DOI: 10.1111/j.1365-2672.2007.03573.x.
  • Tsai, C. C.; Lin, P. P.; Hsieh, Y. M.; Zhang, Z. Y.; Wu, H. C.; Huang, C. C. Cholesterol-Lowering Potentials of Lactic Acid Bacteria Based on Bile-Salt Hydrolase Activity and Effect of Potent Strains on Cholesterol Metabolism in Vitro and in Vivo. Sci. World J. 2014, 2014, 10. DOI: 10.1155/2014/690752.
  • Kumar, R.; Grover, S.; Batish, V. K. Hypocholesterolaemic Effect of Dietary Inclusion of Two Putative Probiotic Bile Salt Hydrolase-producing Lactobacillus Plantarum Strains in Sprague-Dawley Rats. Br. J. Nutr. 2011, 105, 561–573. DOI: 10.1017/S0007114510003740.
  • Choi, E. A.; Chang, H. C. Cholesterol-lowering Effects of a Putative Probiotic Strain Lactobacillus Plantarum EM Isolated from Kimchi. LWT - Food Sci. Technol. 2015, 62, 210–217. DOI: 10.1016/j.lwt.2015.01.019.
  • Kumar, M.; Nagpal, R.; Kumar, R.; Hemalatha, R.; Verma, V.; Kumar, A.; Chakraborty, C.; Singh, B.; Marotta, F.; Jain, S., et al. Cholesterol-lowering Probiotics as Potential Biotherapeutics for Metabolic Diseases. Exp. Diabetes Res. 2012, 2012, 14. DOI: 10.1155/2012/902917.
  • Kumar, R.; Grover, S.; Batish, V. K. Bile Salt Hydrolase (Bsh) Activity Screening of Lactobacilli: In Vitro Selection of Indigenous Lactobacillus Strains with Potential Bile Salt Hydrolysing and Cholesterol-Lowering Ability. Probiotics Antimicrob. Proteins. 2012, 4, 162–172. DOI: 10.1007/s12602-012-9101-3.
  • Saikia, D.; Manhar, A. K.; Deka, B.; Roy, R.; Gupta, K.; Namsa, N. D.; Chattopadhyay, P.; Doley, R.; Mandal, M. Hypocholesterolemic Activity of Indigenous Probiotic Isolate Saccharomyces Cerevisiae ARDMC1 in a Rat Model. J. Food Drug Anal. 2018, 26, 154–162. DOI: 10.1016/j.jfda.2016.12.017.
  • Azcárate-Peril, M. A.; Sikes, M.; Bruno-Bárcena, J. M. The Intestinal Microbiota, Gastrointestinal Environment and Colorectal Cancer: A Putative Role for Probiotics in Prevention of Colorectal Cancer? Am. J. Physiol. - Gastrointest. Liver Physiol. 2011, 301, G401–G424. DOI: 10.1152/ajpgi.00110.2011.
  • Macfarlane, G. T.; Cummings, J. H. Probiotics, Infection and Immunity. Curr. Opin. Infect. Dis. 2002, 15, 501–506. DOI: 10.1097/00001432-200210000-00008.
  • Tytgat, H. L. P.; van Teijlingen, N. H.; Sullan, R. M. A.; Douillard, F. P.; Rasinkangas, P.; Messing, M.; Reunanen, J.; Satokari, R.; Vanderleyden, J.; Dufrêne, Y. F., et al. Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili. PLoS One. 2016, 11, e0151824. DOI: 10.1371/journal.pone.0151824.
  • Clua, P.; Kanmani, P.; Zelaya, H.; Tada, A.; Humayun Kober, A. K. M.; Salva, S.; Alvarez, S.; Kitazawa, H.; Villena, J. Peptidoglycan from Immunobiotic Lactobacillus Rhamnosus Improves Resistance of Infant Mice to Respiratory Syncytial Viral Infection and Secondary Pneumococcal Pneumonia. Front. Immunol. 2017, 8. DOI: 10.3389/fimmu.2017.00948.
  • Malamud, M.; Carasi, P.; Assandri, M. H.; Freire, T.; Lepenies, B.; De Los Ángeles Serradell, M. S-Layer Glycoprotein from Lactobacillus Kefiri Exerts Its Immunostimulatory Activity through Glycan Recognition by Mincle. Front. Immunol. 2019, 10. DOI: 10.3389/fimmu.2019.01422.
  • Riehl, T. E.; Alvarado, D.; Ee, X.; Zuckerman, A.; Foster, L.; Kapoor, V.; Thotala, D.; Ciorba, M. A.; Stenson, W. F. Lactobacillus Rhamnosus GG Protects the Intestinal Epithelium from Radiation Injury through Release of Lipoteichoic Acid, Macrophage Activation and the Migration of Mesenchymal Stem Cells. Gut. 2019, 68, 1003–1013. DOI: 10.1136/gutjnl-2018-316226.
  • Lebeer, S.; Vanderleyden, J.; De Keersmaecker, S. C. J. Host Interactions of Probiotic Bacterial Surface Molecules: Comparison with Commensals and Pathogens. Nat. Rev. Microbiol. 2010, 8, 171–184. DOI: 10.1038/nrmicro2297.
  • Sugita, T.; Takashima, M. Y. A Taxonomic Study. Japanese J. Med. Mycol. 2011. DOI: 10.3314/jjmm.52.107.
  • Chaves-López, C.; Tofalo, R.; Serio, A.; Paparella, A.; Sacchetti, G.; Suzzi, G. Yeasts from Colombian Kumis as Source of Peptides with Angiotensin I Converting Enzyme (ACE) Inhibitory Activity in Milk. Int. J. Food Microbiol. 2012, 159, 39–46. DOI: 10.1016/j.ijfoodmicro.2012.07.028.
  • Chi, Z.; Liu, G. L.; Lu, Y.; Jiang, H.; Chi, Z. M. Bio-products Produced by Marine Yeasts and Their Potential Applications. Bioresource Technology. 2016, 202, 244–252. DOI: 10.1016/j.biortech.2015.12.039.
  • Mu, Z.; Yang, X.; Yuan, H. Detection and Identification of Wild Yeast in Koumiss. Food Microbiol. 2012, 31, 301–308. DOI: 10.1016/j.fm.2012.04.004.
  • Viljoen, B. C. The Interaction between Yeasts and Bacteria in Dairy Environments. In Proceedings of the International Journal of Food Microbiology, 2001. 37-44,69 DOI:10.1016/s0168-1605(01)00570-0.
  • Omemu, A. M.; Oyewole, O. B.; Bankole, M. O. Significance of Yeasts in the Fermentation of Maize for Ogi Production. Food Microbiol. 2007, 24, 571–576. DOI: 10.1016/j.fm.2007.01.006.
  • Ashraf, R.; Shah, N. P. Immune System Stimulation by Probiotic Microorganisms. Crit. Rev. Food Sci. Nutr. 2014, 54, 938–956. DOI: 10.1080/10408398.2011.619671.
  • Czerucka, D.; Piche, T.; Rampal, P. Review Article: Yeast as Probiotics - Saccharomyces Boulardii. Aliment. Pharmacol. Ther. 2007, 26, 767–778. DOI: 10.1111/j.1365-2036.2007.03442.x.
  • Li, S. Y.; Sha, Z.; Wang, X.; Bu, Z.; Wang, L.; Guan, X.; Lang, X.; Wang, X. Yeast Surface Display of Escherichia Coli Enterotoxin and Its Effects of Intestinal Microflora and Mucosal Immunity. Curr. Microbiol. 2017, 74, 854–862. DOI: 10.1007/s00284-017-1259-1.
  • Ragavan, M. L.; Das, N. In Vitro Studies on Therapeutic Potential of Probiotic Yeasts Isolated from Various Sources. Curr. Microbiol. 2020, 77, 2821–2830. DOI: 10.1007/s00284-020-02100-5.
  • Balabekyan, T. R.; Karapetyan, K. J.; Khachatryan, T. V.; Khachatryan, G. E.; Tatikyan, S. S. Antimicrobial Activity of Preparations after Combined Cultivation of Lactic Acid Bacteria and Yeast Strains. J. Anim. Physiol. Anim. Nutr. (Berl). 2018, 102, 933–938. DOI: 10.1111/jpn.12891.
  • Furukawa, S.; Watanabe, T.; Toyama, H.; Morinaga, Y. Significance of Microbial Symbiotic Coexistence in Traditional Fermentation. J. Biosci. Bioeng. 2013, 116, 533–539. DOI: 10.1016/j.jbiosc.2013.05.017.
  • Gadaga, T. H.; Mutukumira, A. N.; Narvhus, J. A. The Growth and Interaction of Yeasts and Lactic Acid Bacteria Isolated from Zimbabwean Naturally Fermented Milk in UHT Milk. Int. J. Food Microbiol. 2001, 68, 21–32. DOI: 10.1016/S0168-1605(01)00466-4.
  • Leroi, F.; Pidoux, M. Detection of Interactions between Yeasts and Lactic Acid Bacteria Isolated from Sugary Kefir Grains. J. Appl. Bacteriol. 1993, 74, 48–53. DOI: 10.1111/j.1365-2672.1993.tb02995.x.
  • Wood, B.; Holzapfel, W. H. The Genera of Lactic Acid Bacteria. Genera Lact. Acid Bact. 1995. DOI: 10.1007/978-1-4615-5817-0.
  • Prado, C.; Parada, J. L.; Pandey, A.; Soccol, C. R. Trends in Non-dairy Probiotic Beverages. Food Research International . 2008, 41, 111–123. DOI:10.1016/j.foodres.2007.10.010.
  • Sun-Waterhouse, D. The Development of Fruit-based Functional Foods Targeting the Health and Wellness Market: A Review. Int. J. Food Sci. Technol. 2011, 46, 899–920. DOI: 10.1111/j.1365-2621.2010.02499.x.
  • Zheng, J.; Zhou, Y.; Li, S.; Zhang, P.; Zhou, T.; Xu, D. P.; Li, H. Bin Effects and Mechanisms of Fruit and Vegetable Juices on Cardiovascular Diseases. Int. J. Mol. Sci. 2017, 18. DOI: 10.3390/ijms18030555.
  • Costa, M. G. M.; Fonteles, T. V.; De Jesus, A. L. T.; Rodrigues, S. Sonicated Pineapple Juice as Substrate for L. Casei Cultivation for Probiotic Beverage Development: Process Optimisation and Product Stability. Food Chem. 2013, 139, 261–266. DOI: 10.1016/j.foodchem.2013.01.059.
  • Kim, J.; Choi, K. B.; Park, J. H.; Kim, K. H.; Jung, Y. H. Metabolite Profile Changes and Increased Antioxidative and Antiinflammatory Activities of Mixed Vegetables after Fermentation by Lactobacillus Plantarum. PLoS One. 2019, 14, e0217180. DOI: 10.1371/journal.pone.0217180.
  • Champagne, C. P.; Fustier, P. Microencapsulation for the Improved Delivery of Bioactive Compounds into Foods. Curr. Opin. Biotechnol. 2007, 18, 184–190. DOI: 10.1016/j.copbio.2007.03.001.
  • Najafpour, G.; Younesi, H.; Ku Ismail, K. S. Ethanol Fermentation in an Immobilized Cell Reactor Using Saccharomyces Cerevisiae. Bioresour. Technol. 2004, 92, 251–260. DOI: 10.1016/j.biortech.2003.09.009.
  • Armani, M.; Morozova, K.; Scampicchio, M. A. C. S. C. Immobilization of Saccharomyces cerevisiae on nylon-6 nanofibrous membranes for grape juice fermentation.LWT - Food Sci. Technol. 2018 . DOI: 10.1016/j.lwt.2018.05.006.
  • Vivek, K.; Mishra, S.; Pradhan, R. C.; Jayabalan, R. Effect of Probiotification with Lactobacillus Plantarum MCC 2974 on Quality of Sohiong Juice. Lwt. 2019, 108, 55–60. DOI: 10.1016/j.lwt.2019.03.046.
  • Ankolekar, C.; Pinto, M.; Greene, D.; Shetty, K. In Vitro Bioassay Based Screening of Antihyperglycemia and Antihypertensive Activities of Lactobacillus Acidophilus Fermented Pear Juice. Innov. Food Sci. Emerg. Technol. 2012, 13, 221–230. DOI: 10.1016/j.ifset.2011.10.008.
  • Saikia, S.; Mahnot, N. K.; Mahanta, C. L. A Comparative Study on the Effect of Conventional Thermal Pasteurisation, Microwave and Ultrasound Treatments on the Antioxidant Activity of Five Fruit Juices. Food Sci. Technol. Int. 2016, 22, 288–301. DOI: 10.1177/1082013215596466.
  • Sivudu, S. N.; Umamahesh, K.; Reddy, O. V. S. A Comparative Study on Probiotication of Mixed Watermelon and Tomato Juice by Using Probiotic Strains of Lactobacilli. International Journal of Current Microbiology and Applied Sciences . 2014, 3, 977–984.
  • Koh, J. H.; Kim, Y.; Oh, J. H. Chemical Characterization of Tomato Juice Fermented with Bifidobacteria. J. Food Sci. 2010, 75. DOI: 10.1111/j.1750-3841.2010.01632.x.
  • Petruzzi, L.; Campaniello, D.; Speranza, B.; Corbo, M. R.; Sinigaglia, M.; Bevilacqua, A. Thermal Treatments for Fruit and Vegetable Juices and Beverages: A Literature Overview. Compr. Rev. Food Sci. Food Saf. 2017, 16, 668–691. DOI: 10.1111/1541-4337.12270.
  • Gonzalez, M. E.; Barrett, D. M. Thermal, High Pressure, and Electric Field Processing Effects on Plant Cell Membrane Integrity and Relevance to Fruit and Vegetable Quality. J. Food Sci. 2010, 75, R121–R130. DOI: 10.1111/j.1750-3841.2010.01763.x.
  • Achir, N.; Dhuique-Mayer, C.; Hadjal, T.; Madani, K.; Pain, J. P.; Dornier, M. Pasteurization of Citrus Juices with Ohmic Heating to Preserve the Carotenoid Profile. Innov. Food Sci. Emerg. Technol. 2016, 33, 397–404. DOI: 10.1016/j.ifset.2015.11.002.
  • Marszałek, K.; Krzyżanowska, J.; Woźniak, Ł.; Skąpska, S. Kinetic Modelling of Polyphenol Oxidase, Peroxidase, Pectin Esterase, Polygalacturonase, Degradation of the Main Pigments and Polyphenols in Beetroot Juice during High Pressure Carbon Dioxide Treatment. Lwt. 2017, 85, 412–417. DOI: 10.1016/j.lwt.2016.11.018.
  • Chen, Y.; Yu, L. J.; Rupasinghe, H. V. Effect of Thermal and Non-thermal Pasteurisation on the Microbial Inactivation and Phenolic Degradation in Fruit Juice: A Mini-review. J. Sci. Food Agric. 2013, 93, 981–986. DOI: 10.1002/jsfa.5989.
  • Stratakos, A. C.; Delgado-Pando, G.; Linton, M.; Patterson, M. F.; Koidis, A. Industrial Scale Microwave Processing of Tomato Juice Using a Novel Continuous Microwave System. Food Chem. 2016, 190, 622–628. DOI: 10.1016/j.foodchem.2015.06.015.
  • Gonçalves, L. C. P.; Di Genova, B. M.; Dörr, F. A.; Pinto, E.; Bastos, E. L. Effect of Dielectric Microwave Heating on the Color and Antiradical Capacity of Betanin. J. Food Eng. 2013, 118, 49–55. DOI: 10.1016/j.jfoodeng.2013.03.022.
  • Dhumal, S. S.; Karale, A. R.; More, T. A.; Nimbalkar, C. A.; Chavan, U. D.; Jadhav, S. B. Preparation of Pomegranate Juice Concentrate by Various Heating Methods and Appraisal of Its Physicochemical Characteristics. Acta Hortic. 2015, 1089, 473–484. DOI: 10.17660/ActaHortic.2015.1089.65.
  • Mercali, G. D.; Gurak, P. D.; Schmitz, F.; Marczak, L. D. F. Evaluation of Non-thermal Effects of Electricity on Anthocyanin Degradation during Ohmic Heating of Jaboticaba (Myrciaria Cauliflora) Juice. Food Chem. 2015, 171, 200–205. DOI: 10.1016/j.foodchem.2014.09.006.
  • Lee, J. Y.; Kim, S. S.; Kang, D. H. Effect of pH for Inactivation of Escherichia Coli O157: H7, Salmonella Typhimurium and Listeria Monocytogenes in Orange Juice by Ohmic Heating. LWT - Food Sci. Technol. 2015, 62, 83–88. DOI: 10.1016/j.lwt.2015.01.020.
  • Bhat, S.; Saini, C. S.; Kumar, M.; Sharma, H. K. Effect of Thermal and Alternate Thermal Processing on Bottle Gourd (Lagenaria Siceraria) Juice. J. Food Process. Preserv. 2017, 41, 1–9. DOI: 10.1111/jfpp.12911.
  • Dima, F.; Istrati, D.; Garnai, M.; Serea, V. V. Study on Obtaining Vegetables Juices with High Antioxidant Potential,preserved by Ohmic Pasteurization. J. Agroaliment. Process. Technol. 2015, 21, 67–74.
  • Park, I. K.; Kang, D. H. Effect of Electropermeabilization by Ohmic Heating for Inactivation of Escherichia Coli O157: H7, Salmonella Enterica Serovar Typhimurium, and Listeria Monocytogenes in Buffered Peptone Water and Apple Juice. Appl. Environ. Microbiol. 2013, 79, 7122–7129. DOI: 10.1128/AEM.01818-13.
  • Barba, F. J.; Esteve, J.; Fr, A. High Pressure Treatment Effect on Physicochemical and Nutritional Properties of Fluid Foods during Storage : A Review. Comprehensive Reviews in Food Science and Food Safety . 2012, 11, 307–322. DOI:10.1111/j.1541-4337.2012.00185.x.
  • Moaddabdoost, B. Z.; Leonard, W.; Guibing, C. Design of a Batch Ultrasonic Reactor for Rapid Pasteurization of Juices. Journal of Food Engineering . 2020, 268. DOI: 10.1016/j.jfoodeng.2019.109736.
  • Jiménez-Sánchez, C.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Alternatives to Conventional Thermal Treatments in Fruit-juice Processing. Part 2: Effect on Composition, Phytochemical Content, and Physicochemical, Rheological, and Organoleptic Properties of Fruit Juices. Crit. Rev. Food Sci. Nutr. 2017, 57, 637–652. DOI: 10.1080/10408398.2014.914019.
  • Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M. T.; Wu, M.; Sackey, A. S.; Xiao, L.; Tahir, H. E. Effect of Lactobacillus Strains on Phenolic Profile, Color Attributes and Antioxidant Activities of Lactic-acid-fermented Mulberry Juice. Food Chem. 2018, 250, 148–154. DOI: 10.1016/j.foodchem.2018.01.009.
  • Cusano, E.; Simonato, B.; Consonni, R. Fermentation Process of Apple Juice Investigated by NMR Spectroscopy. LWT - Food Sci. Technol. 2018, 96, 147–151. DOI: 10.1016/j.lwt.2018.05.021.
  • Randazzo, W.; Corona, O.; Guarcello, R.; Francesca, N.; Germanà, M. A.; Erten, H.; Moschetti, G.; Settanni, L. Development of New Non-dairy Beverages from Mediterranean Fruit Juices Fermented with Water Kefir Microorganisms. Food Microbiol. 2016, 54, 40–51. DOI: 10.1016/j.fm.2015.10.018.
  • Wang, C. Y.; Ng, C. C.; Su, H.; Tzeng, W. S.; Shyu, Y. T. Probiotic Potential of Noni Juice Fermented with Lactic Acid Bacteria and Bifidobacteria. Int. J. Food Sci. Nutr. 2009, 60, 98–106. DOI: 10.1080/09637480902755095.
  • Mousavi, Z. E.; Mousavi, S. M.; Razavi, S. H.; Emam-Djomeh, Z.; Kiani, H. Fermentation of Pomegranate Juice by Probiotic Lactic Acid Bacteria. World J. Microbiol. Biotechnol. 2011, 27, 123–128. DOI: 10.1007/s11274-010-0436-1.
  • Kun, S.; Rezessy-Szabó, J. M.; Nguyen, Q. D.; Hoschke, Á. Changes of Microbial Population and Some Components in Carrot Juice during Fermentation with Selected Bifidobacterium Strains. Process Biochem. 2008, 43, 816–821. DOI: 10.1016/j.procbio.2008.03.008.
  • Di Cagno, R.; Filannino, P.; Vincentini, O.; Lanera, A.; Cavoski, I.; Gobbetti, M. Exploitation of Leuconostoc Mesenteroides Strains to Improve Shelf Life, Rheological, Sensory and Functional Features of Prickly Pear (Opuntia Ficus-indica L.) Fruit Puree. Food Microbiol. 2016, 59, 176–189. DOI: 10.1016/j.fm.2016.06.009.
  • Panda, S. K.; Behera, S. K.; Qaku, X. W.; Sekar, S.; Ndinteh, D. T.; Nanjundaswamy, H. M.; Ray, R. C.; Kayitesi, E. Quality Enhancement of Prickly Pears (Opuntia Sp.) Juice through Probiotic Fermentation Using Lactobacillus Fermentum - ATCC 9338. LWT - Food Sci. Technol. 2016. DOI: 10.1016/j.lwt.2016.09.026.
  • Gao, H.; Wen, J. J.; Hu, J. L.; Nie, Q. X.; Chen, H. H.; Nie, S. P.; Xiong, T.; Xie, M. Y. Momordica Charantia Juice with Lactobacillus Plantarum Fermentation: Chemical Composition, Antioxidant Properties and Aroma Profile. Food Biosci. 2019, 29, 62–72. DOI: 10.1016/j.fbio.2019.03.007.
  • Zheng, X.; Yu, Y.; Xiao, G.; Xu, Y.; Wu, J.; Tang, D.; Zhang, Y. Comparing Product Stability of Probiotic Beverages Using Litchi Juice Treated by High Hydrostatic Pressure and Heat as Substrates. Innov. Food Sci. Emerg. Technol. 2014, 1–7. DOI: 10.1016/j.ifset.2014.01.013.
  • Chen, H.; Xiao, G.; Xu, Y.; Yu, Y.; Wu, J.; Zou, B. High Hydrostatic Pressure and Co-fermentation by Lactobacillus Rhamnosus and Gluconacetobacter Xylinus Improve Flavor of Yacon-litchi-longan Juice. Foods. 2019, 8, 308. DOI: 10.3390/foods8080308.
  • Lu, Y.; Tan, C. W.; Chen, D.; Liu, S. Q. Potential of Three Probiotic Lactobacilli in Transforming Star Fruit Juice into Functional Beverages. Food Sci. Nutr. 2018, 6, 2141–2150. DOI: 10.1002/fsn3.775.
  • Filannino, P.; Azzi, L.; Cavoski, I.; Vincentini, O.; Rizzello, C. G.; Gobbetti, M.; Di Cagno, R. Exploitation of the Health-promoting and Sensory Properties of Organic Pomegranate (Punica Granatum L.) Juice through Lactic Acid Fermentation. Int. J. Food Microbiol. 2013, 163, 184–192. DOI: 10.1016/j.ijfoodmicro.2013.03.002.
  • Jeong, S. Y.; Velmurugan, P.; Lim, J. M.; Oh, B. T.; Jeong, D. Y. Photobiological (LED Light)-mediated Fermentation of Blueberry (Vaccinium Corymbosum L.) Fruit with Probiotic Bacteria to Yield Bioactive Compounds. Lwt. 2018, 93, 158–166. DOI: 10.1016/j.lwt.2018.03.038.
  • Di Cagno, R.; Surico, R. F.; Siragusa, S.; De Angelis, M.; Paradiso, A.; Minervini, F.; De Gara, L.; Gobbetti, M. Selection and Use of Autochthonous Mixed Starter for Lactic Acid Fermentation of Carrots, French Beans or Marrows. Int. J. Food Microbiol. 2008, 127, 220–228. DOI: 10.1016/j.ijfoodmicro.2008.07.010.
  • Kyung, Y. Y.; Woodams, E. E.; Hang, Y. D. Fermentation of Beet Juice by Beneficial Lactic Acid Bacteria. LWT - Food Sci. Technol. 2005, 38, 73–75. DOI: 10.1016/j.lwt.2004.04.008.
  • Nazzaro, F.; Fratianni, F.; Sada, A.; Orlando, P. Synbiotic Potential of Carrot Juice Supplemented with Lactobacillus Spp. And Inulin or Fructooligosaccharides. Journal of the Science of Food and Agriculture. 2008, 2276, 2271–2276. DOI:10.1002/jsfa.
  • Fonteles, T. V.; Costa, M. G. M.; de Jesus, A. L. T.; Rodrigues, S. Optimization of the Fermentation of Cantaloupe Juice by Lactobacillus Casei NRRL B-442. Food Bioprocess Technol. 2012, 5, 2819–2826. DOI: 10.1007/s11947-011-0600-0.
  • Pereira, A. L. F.; Maciel, T. C.; Rodrigues, S. Probiotic Beverage from Cashew Apple Juice Fermented with Lactobacillus Casei. Food Res. Int. 2011, 44, 1276–1283. DOI: 10.1016/j.foodres.2010.11.035.
  • Sheehan, V. M.; Ross, P.; Fitzgerald, G. F. Assessing the Acid Tolerance and the Technological Robustness of Probiotic Cultures for Fortification in Fruit Juices. Innov. Food Sci. Emerg. Technol. 2007, 8, 279–284. DOI: 10.1016/j.ifset.2007.01.007.
  • Perricone, M.; Bevilacqua, A.; Altieri, C.; Sinigaglia, M.; Corbo, M. Challenges for the Production of Probiotic Fruit Juices. Beverages. 2015, 1, 95–103. DOI: 10.3390/beverages1020095.
  • Parvez, S.; Malik, K. A.; Ah Kang, S.; Kim, H.-Y. Probiotics and Their Fermented Food Products are Beneficial for Health. J. Appl. Microbiol. 2006, 100, 1171–1185. DOI: 10.1111/j.1365-2672.2006.02963.x.
  • Gibson, G. R.; Roberfroid, M. B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. DOI: 10.1093/jn/125.6.1401.
  • Munir, M. B.; Hashim, R.; Chai, Y. H.; Marsh, T. L.; Nor, S. A. M. Dietary Prebiotics and Probiotics Influence Growth Performance, Nutrient Digestibility and the Expression of Immune Regulatory Genes in Snakehead (Channa Striata) Fingerlings. Aquaculture. 2016, 460, 59–68. DOI: 10.1016/j.aquaculture.2016.03.041.
  • Faria, D. A. F.; Van Dender, A. G. F.; Cruz, A. G.; Doyle, J. Packaging System and Probiotic Dairy Foods. Bone Marrow Transplantation. 2007, 40, 951–956. DOI: 10.1016/j.foodres.2007.05.003.
  • Shah, N. P.; Ding, W. K.; Fallourd, M. J.; Leyer, G. Improving the Stability of Probiotic Bacteria in Model Fruit Juices Using Vitamins and Antioxidants. J. Food Sci. 2010, 75, 278–282. DOI: 10.1111/j.1750-3841.2010.01628.x.
  • Holzapfel, W. H.; Schillinger, U. Introduction to Pre- and Probiotics. Food Res. Int. 2002, 35, 109–116. DOI: 10.1016/S0963-9969(01)00171-5.
  • Roberfroid, M. B. Concepts in Functional Foods: The Case of Inulin and Oligofructose. J. Nutr. 1999, 129, 1398S–401S. DOI: 10.1093/jn/129.7.1398S.
  • Beezer, R. P.; Mattinson, D. S.; Fellman, J. K.; Ewing, B. L.; Edwards, C. G. Impacts of Depectinization of Pear Juice on Alcoholic Fermentation and Indole Formation. J. Sci. Food Agric. 2019, 99, 5792–5798. DOI: 10.1002/jsfa.9848.
  • Valero-Cases, E.; Frutos, M. J. Effect of Inulin on the Viability of L. Plantarum during Storage and in Vitro Digestion and on Composition Parameters of Vegetable Fermented Juices. Plant Foods Hum. Nutr. 2017, 72, 161–167. DOI: 10.1007/s11130-017-0601-x.
  • Valero-Cases, E.; Frutos, M. J. Development of Prebiotic Nectars and Juices as Potential Substrates for Lactobacillus Acidophilus: Special Reference to Physicochemical Characterization and Consumer Acceptability during Storage. LWT - Food Sci. Technol. 2017, 81, 136–143. DOI: 10.1016/j.lwt.2017.03.047.
  • Mantzourani, I.; Terpou, A.; Bekatorou, A.; Mallouchos, A.; Alexopoulos, A.; Kimbaris, A.; Bezirtzoglou, E.; Koutinas, A. A.; Plessas, S. Functional Pomegranate Beverage Production by Fermentation with a Novel Synbiotic L. Paracasei Biocatalyst. Food Chem. 2020, 308, 125658. DOI: 10.1016/j.foodchem.2019.125658.
  • Mantzourani, I.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A.; Plessas, S. Production of a Potentially Synbiotic Fermented Cornelian Cherry (Cornus Mas L.) Beverage Using Lactobacillus Paracasei K5 Immobilized on Wheat Bran. Biocatal. Agric. Biotechnol. 2019, 17, 347–351. DOI: 10.1016/j.bcab.2018.12.021.
  • Pimentel, T. C.; Madrona, G. S.; Prudencio, S. H. Probiotic Clarified Apple Juice with Oligofructose or Sucralose as Sugar Substitutes: Sensory Profile and Acceptability. LWT - Food Sci. Technol. 2015, 62, 838–846. DOI: 10.1016/j.lwt.2014.08.001.
  • Da Costa, G. M.; de Carvalho Silva, J. V.; Mingotti, J. D.; Barão, C. E.; Klososki, S. J.; Pimentel, T. C. Effect of Ascorbic Acid or Oligofructose Supplementation on L. Paracasei Viability, Physicochemical Characteristics and Acceptance of Probiotic Orange Juice. LWT - Food Sci. Technol. 2017, 75, 195–201. DOI: 10.1016/j.lwt.2016.08.051.
  • Miranda, R. F.; Da Silva, J. P.; Machado, A. R. F.; Da Silva, E. C.; de Souza, R. C.; Marcolino, V. A.; Klososki, S. J.; Pimentel, T. C.; Barão, C. E. Impact of the Addition of Lactobacillus Casei and Oligofructose on the Quality Parameters of Orange Juice and Hibiscus Tea Mixed Beverage. J. Food Process. Preserv. 2019, 43, 1–11. DOI: 10.1111/jfpp.14249.
  • Bernal-Castro, C. A.; Díaz-Moreno, C.; Gutiérrez-Cortés, C. Inclusion of Prebiotics on the Viability of a Commercial Lactobacillus Casei Subsp. Rhamnosus Culture in a Tropical Fruit Beverage. J. Food Sci. Technol. 2019, 56, 987–994. DOI: 10.1007/s13197-018-03565-w.
  • Tsen, J. H.; Lin, Y. P.; Huang, H. Y.; King, V. A. E. Studies on the Fermentation of Tomato Juice by Using κ-carrageenan Immobilized Lactobacillus Acidophilus. J. Food Process. Preserv. 2008, 32, 178–189. DOI: 10.1111/j.1745-4549.2008.00191.x.
  • Vivek, K.; Mishra, S.; Pradhan, R. C. Characterization of Spray Dried Probiotic Sohiong Fruit Powder with Lactobacillus Plantarum. Lwt. 2020, 117, 108699. DOI: 10.1016/j.lwt.2019.108699.
  • Haffner, F. B.; Pasc, A. Freeze-dried Alginate-silica Microparticles as Carriers of Probiotic Bacteria in Apple Juice and Beer. Lwt. 2018, 91, 175–179. DOI: 10.1016/j.lwt.2018.01.050.
  • Ricci, A.; Cirlini, M.; Maoloni, A.; Del Rio, D.; Calani, L.; Bernini, V.; Galaverna, G.; Neviani, E.; Lazzi, C. Use of Dairy and Plant-derived Lactobacilli as Starters for Cherry Juice Fermentation. Nutrients. 2019, 11, 1–14. DOI: 10.3390/nu11020213.
  • Filannino, P.; Cardinali, G.; Rizzello, C. G.; Buchin, S.; De Angelis, M.; Gobbetti, M.; Di Cagno, R.; Pettinari, M. J. Metabolic Responses of Lactobacillus Plantarum Strains during Fermentation and Storage of Vegetable and Fruit Juices. Appl. Environ. Microbiol. 2014, 80, 2206–2215. DOI: 10.1128/AEM.03885-13.
  • Mai, A.; Dam, M. S.; Bujna, E.; Annama, N. Lactic Acid Fermentation of Apricot Juice by Mono- and Mixed Cultures of Probiotic Lactobacillus and Bifidobacterium Strains. Food Science and biotechnology . 2018, 27, 547–554. DOI:10.1007/s10068-017-0269-x.
  • Xu, Y.; Hlaing, M. M.; Glagovskaia, O.; Augustin, M. A.; Terefe, N. S. Fermentation by Probiotic Lactobacillus Gasseri Strains Enhances the Carotenoid and Fibre Contents of Carrot Juice. Foods. 2020, 9, 1803. DOI: 10.3390/foods9121803.
  • Anwar, M. A.; Kralj, S.; Piqué, A. V.; Leemhuis, H.; van der Maarel, M. J. E. C.; Dijkhuizen, L. Inulin and Levan Synthesis by Probiotic Lactobacillus Gasseri Strains: Characterization of Three Novel Fructansucrase Enzymes and Their Fructan Products. Microbiology. 2010, 156, 1264–1274. DOI: 10.1099/mic.0.036616-0.
  • Nguyen, B. T.; Bujna, E.; Fekete, N.; Tran, A. T. M.; Rezessy-Szabo, J. M.; Prasad, R.; Nguyen, Q. D. Probiotic Beverage from Pineapple Juice Fermented with Lactobacillus and Bifidobacterium Strains. Front. Nutr. 2019, 6. DOI: 10.3389/fnut.2019.00054.
  • Onetto, C. A.; Borneman, A. R.; Schmidt, S. A. Investigating the Effects of Aureobasidium Pullulans on Grape Juice Composition and Fermentation. Food Microbiol. 2020, 90, 103451. DOI: 10.1016/j.fm.2020.103451.
  • Camargo Prado, F.; De Dea Lindner, J.; Inaba, J.; Thomaz-Soccol, V.; Kaur Brar, S.; Soccol, C. R. Development and Evaluation of a Fermented Coconut Water Beverage with Potential Health Benefits. J. Funct. Foods. 2015, 12, 489–497. DOI: 10.1016/j.jff.2014.12.020.
  • Li, Z.; Teng, J.; Lyu, Y.; Hu, X.; Zhao, Y.; Wang, M. Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus Plantarum ATCC14917. Molecules. 2019. DOI: 10.3390/molecules24010051.
  • Wei, M.; Wang, S.; Gu, P.; Ouyang, X.; Liu, S.; Li, Y.; Zhang, B.; Zhu, B. Comparison of Physicochemical Indexes, Amino Acids, Phenolic Compounds and Volatile Compounds in Bog Bilberry Juice Fermented by Lactobacillus Plantarum under Different pH Conditions. J. Food Sci. Technol. 2018, 55, 2240–2250. DOI: 10.1007/s13197-018-3141-y.
  • Goffin, P.; Van De Bunt, B.; Giovane, M.; Leveau, J. H. J.; Höppener-Ogawa, S.; Teusink, B.; Hugenholtz, J. Understanding the Physiology of Lactobacillus Plantarum at Zero Growth. Mol. Syst. Biol. 2010, 6, 413. DOI: 10.1038/msb.2010.67.
  • Xu, X.; Bao, Y.; Wu, B.; Lao, F.; Hu, X.; Wu, J. Chemical Analysis and Flavor Properties of Blended Orange, Carrot, Apple and Chinese Jujube Juice Fermented by Selenium-enriched Probiotics. Food Chem. 2019, 289, 250–258. DOI: 10.1016/j.foodchem.2019.03.068.
  • Wang, Q.; Huang, Q.; Liang, L.; Zhang, L.; Ping, Z.; Hu, B.; Ma, N. Research on Sugarcane Juice Fermentation by Ganoderma Lucidum and Assay of Antioxidant Activity of Exopolysaccharide. J. Food Process. Preserv. 2018, 42, 1–8. DOI: 10.1111/jfpp.13761.
  • Kim, J. Y.; Lee, M. Y.; Ji, G. E.; Lee, Y. S.; Hwang, K. T. Production of γ-aminobutyric Acid in Black Raspberry Juice during Fermentation by Lactobacillus Brevis GABA100. Int. J. Food Microbiol. 2009, 130, 12–16. DOI: 10.1016/j.ijfoodmicro.2008.12.028.
  • Li, H.; Cao, Y. Lactic Acid Bacterial Cell Factories for Gamma-aminobutyric Acid. Amino Acids. 2010, 39, 1107–1116. DOI: 10.1007/s00726-010-0582-7.
  • Zhou, C.; Li, J.; Mao, K.; Gao, J.; Li, X.; Zhi, T.; Sang, Y. Anti-hangover and Anti-hypertensive Effects in Vitro of Fermented Persimmon Juice. CYTA - J. Food. 2019, 17, 960–966. DOI: 10.1080/19476337.2019.1680578.
  • Puerari, C.; Magalhães, K. T.; Schwan, R. F. New Cocoa Pulp-based Kefir Beverages: Microbiological, Chemical Composition and Sensory Analysis. Food Res. Int. 2012, 48, 634–640. DOI: 10.1016/j.foodres.2012.06.005.
  • Hu, R.; Zeng, F.; Wu, L.; Wan, X.; Chen, Y.; Zhang, J.; Liu, B. Fermented Carrot Juice Attenuates Type 2 Diabetes by Mediating Gut Microbiota in Rats. Food Funct. 2019, 10, 2935–2946. DOI: 10.1039/c9fo00475k.
  • Yan, Y.; Zhang, F.; Chai, Z.; Liu, M.; Battino, M.; Meng, X. Mixed Fermentation of Blueberry Pomace with L. Rhamnosus GG and L. Plantarum-1: Enhance the Active Ingredient, Antioxidant Activity and Health-promoting Benefits. Food Chem. Toxicol. 2019, 131, 110541. DOI: 10.1016/j.fct.2019.05.049.
  • Wang, M.; Ouyang, X.; Liu, Y.; Liu, Y.; Cheng, L.; Wang, C.; Zhu, B.; Zhang, B. Comparison of Nutrients and Microbial Density in Goji Berry Juice during Lactic Acid Fermentation Using Four Lactic Acid Bacteria Strains. Journal of Food Processing and Preservation . 2021, 45 1–39. DOI:10.1111/jfpp.15059.
  • Chen, W.; Chen, R.; Chen, W.; Chen, H.; Zhang, G. Comparative Evaluation of the Antioxidant Capacities, Organic Acids, and Volatiles of Papaya Juices Fermented by Lactobacillus Acidophilus and Lactobacillus Plantarum. J. Food Qual. 2018, 2018. DOI: 10.1155/2018/9490435.
  • de La Fuente, B.; Luz, C.; Puchol, C.; Meca, G.; Barba, F. J. Evaluation of Fermentation Assisted by Lactobacillus Brevis POM, and Lactobacillus Plantarum (TR-7, TR-71, TR-14) on Antioxidant Compounds and Organic Acids of an Orange Juice-milk Based Beverage. Food Chem. 2021, 343, 128414. DOI: 10.1016/j.foodchem.2020.128414.
  • Alakomi, H.; Skyttä, E.; Saarela, M.; Helander, I. M.; Saarela, M. Lactic Acid Permeabilizes Gram-Negative Bacteria by Disrupting the Outer Membrane Lactic Acid Permeabilizes Gram-Negative Bacteria by Disrupting the Outer Membrane. Applied and Environmental Microbiology. 2005, 66, 2000–2005. DOI:10.1128/AEM.66.5.2001-2005.2000.Updated.
  • Johnstone, R. W. Histone-deacetylase Inhibitors : Novel Drugs for the Treatment of Cancer. Nature Reviews Drug Discovery . 2002, 1. DOI: 10.1038/nrd772.
  • Kimura, I.; Ozawa, K.; Inoue, D.; Imamura, T.; Kimura, K.; Maeda, T.; Terasawa, K.; Kashihara, D.; Hirano, K.; Tani, T., et al. The Gut Microbiota Suppresses Insulin-mediated Fat Accumulation via the Short-chain Fatty Acid Receptor GPR43. Nat. Commun. 2013, 4, 1–12. DOI: 10.1038/ncomms2852.
  • Park, J.; Kim, M.; Kang, S. G.; Jannasch, A. H.; Cooper, B.; Patterson, J.; Kim, C. H. Short-chain Fatty Acids Induce Both Effector and Regulatory T Cells by Suppression of Histone Deacetylases and Regulation of the mTOR – S6K Pathway. Mucosal Immunol. 2014, 8, 1–14. DOI: 10.1038/mi.2014.44.
  • Chen, C.; Lu, Y.; Yu, H.; Chen, Z.; Tian, H. Influence of 4 Lactic Acid Bacteria on the Flavor Profile of Fermented Apple juiceInfluence of 4 Lactic Acid Bacteria. Food Biosci. 2019, 27, 30–36. DOI: 10.1016/j.fbio.2018.11.006.
  • Kaprasob, R.; Kerdchoechuen, O.; Laohakunjit, N.; Sarkar, D. Fermentation-based Biotransformation of Biaoctive Phenolics and Volatile Compounds from Cashew Apple Juice by Select Lactic Acid Bacteria. Process Biochem. 2017, 0–1. DOI: 10.1016/j.procbio.2017.05.019.
  • Wu, C.; Li, T.; Qi, J.; Jiang, T.; Xu, H.; Lei, H. Effects of Lactic Acid Fermentation-based Biotransformation on Phenolic Profiles, Antioxidant Capacity and Flavor Volatiles of Apple Juice. LWT - Food Sci. Technol. 2020, 122, 109064. DOI: 10.1016/j.lwt.2020.109064.
  • Mantzourani, I.; Kazakos, S.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A.; Plessas, S. Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice. Foods (Basel, Switzerland). 2018, 8. DOI: 10.3390/foods8010004.
  • Rosend, J.; Kaleda, A.; Kuldjärv, R.; Arju, G.; Nisamedtinov, I. The Effect of Apple Juice Concentration on Cider Fermentation and Properties of the Final Product. Foods. 2020, 9(10), 1–12. DOI: 10.3390/foods9101401.
  • Zhang, X.; Duan, W.; Zou, J.; Zhou, H.; Liu, C.; Yang, H. Flavor and Antioxidant Activity Improvement of Carrot Juice by Fermentation with Lactobacillus Plantarum WZ ‑ 01. J. Food Meas. Charact. 2019, 13, 3366–3375. DOI: 10.1007/s11694-019-00260-y.
  • Park, J.; Lim, S.; Sim, H.; Park, J.; Kwon, H.; Nam, H. S.; Kim, M.; Baek, H.; Ha, S. Changes in Antioxidant Activities and Volatile Compounds of Mixed Berry Juice through Fermentation by Lactic Acid Bacteria. Food Science and Biotechnology. 2017, 26, 441–446. DOI: 10.1007/s10068-017-0060-z.
  • Smid, E. J.; Kleerebezem, M. Production of Aroma Compounds in Lactic Fermentations. Annu. Rev. Food Sci. Technol. 2014, 5, 313–326. DOI: 10.1146/annurev-food-030713-092339.
  • de Ovalle, S.; Cavello, I.; Brena, B. M.; Cavalitto, S.; González-Pombo, P. Production and Characterization of a β-glucosidase from Issatchenkia Terricola and Its Use for Hydrolysis of Aromatic Precursors in Cabernet Sauvignon Wine. LWT - Food Sci. Technol. 2018, 87, 515–522. DOI: 10.1016/j.lwt.2017.09.026.
  • Braga, C. M.; Zielinski, A. A. F.; Da Silva, K. M.; de Souza, F. K. F.; Pietrowski, G. D. A. M.; Couto, M.; Granato, D.; Wosiacki, G.; Nogueira, A. Classification of Juices and Fermented Beverages Made from Unripe, Ripe and Senescent Apples Based on the Aromatic Profile Using Chemometrics. Food Chem. 2013, 141, 967–974. DOI: 10.1016/j.foodchem.2013.04.007.
  • Gil, M.; Cabellos, J. M.; Arroyo, T.; Prodanov, M. Characterization of the Volatile Fraction of Young Wines from the Denomination of Origin “Vinos de Madrid” (Spain). Anal. Chim. Acta. 2006, 563, 145–153. DOI: 10.1016/j.aca.2005.11.060.
  • Di Cagno, R.; Filannino, P.; Gobbetti, M. Lactic Acid Fermentation Drives the Optimal Volatile Flavor-aroma Profile of Pomegranate Juice. Int. J. Food Microbiol. 2017, 248, 56–62. DOI: 10.1016/j.ijfoodmicro.2017.02.014.
  • Lu, Y.; Dai, C. T.; Liu, C. S. Potential of Three Probiotic Lactobacilli in Transforming Star Fruit Juice into Functional Beverages. Food Science and Nutrition. . 2018, 1–10. DOI:10.1002/fsn3.775.
  • Chemistry, F.; Zito, F. A.; Resta, L.; Popescu, O.; Rossi, R.; Montemurro, S.; Colucci, G. Aroma-Active Components of Lycii Fructus (Kukija) C : Food Chemistry. Urology. 2008, 73, 500–505. DOI: 10.1111/j.1750-3841.2008.00851.x.
  • LeBlanc, J. G.; Laiño, J. E.; Del Valle, M. J.; Vannini, V.; van Sinderen, D.; Taranto, M. P.; de Valdez, G. F.; de Giori, G. S.; Sesma, F. B-group Vitamin Production by Lactic Acid Bacteria–current Knowledge and Potential Applications. J. Appl. Microbiol. 2011, 111, 1297–1309. DOI: 10.1111/j.1365-2672.2011.05157.x.
  • Panda, S. K.; Behera, S. K.; Witness Qaku, X.; Sekar, S.; Ndinteh, D. T.; Nanjundaswamy, H. M.; Ray, R. C.; Kayitesi, E. Quality Enhancement of Prickly Pears (Opuntia Sp.) Juice through Probiotic Fermentation Using Lactobacillus Fermentum - ATCC 9338. LWT - Food Sci. Technol. 2017, 75, 453–459. DOI: 10.1016/j.lwt.2016.09.026.
  • Adetuyi, F. O.; Ibrahim, T. A. Effect of Fermentation Time on the Phenolic, Flavonoid and Vitamin C Contents and Antioxidant Activities of Okra (Abelmoschus Esculentus) Seeds. Niger. Food J. 2014, 32, 128–137. DOI: 10.1016/S0189-7241(15)30128-4.
  • Sciences, C.; Food, O.; Technology, P.; Sciences, A . Beetroot (Beta Vulgaris L.) And Naturally Fermented Beetroot Juices from Organic and Conventional Production: Metabolomics, Antioxidant Levels and Anti-cancer Activity. Journal of the Science of Food and Agriculture. 2014, 94, 2618–2629 . DOI: 10.1002/jsfa.6722.
  • Coley, P. D.; Bryant, J. P.; Chapin, F. S., 3rd. Resource Availability and Plant Antiherbivore Defense. Science. 1985, 230, 895–899. DOI: 10.1126/science.230.4728.895.
  • Plantarum, L.; Casei, L.; Liu, Y.; Chen, H.; Chen, W.; Zhong, Q.; Zhang, G.; Chen, W. Beneficial Effects of Tomato Juice Fermented by Lactobacillus Plantarum and Lactobacillus Casei : Antioxidation, Antimicrobial Effect, and Volatile Profiles. Molecules. . 2018, 1–18. DOI:10.3390/molecules23092366.
  • Jagannath, A.; Raju, P. S.; Bawa, A. S. Controlled Lactic Fermentative Stabilization of Ascorbic Acid in Amaranthus Paste. LWT - Food Sci. Technol. 2012, 48, 297–301. DOI: 10.1016/j.lwt.2012.04.003.
  • Escudero-López, B.; Cerrillo, I.; Herrero-Martín, G.; Hornero-Méndez, D.; Gil-Izquierdo, A.; Medina, S.; Ferreres, F.; Berná, G.; Martín, F.; Fernández-Pachón, M. S. Fermented Orange Juice: Source of Higher Carotenoid and Flavanone Contents. J. Agric. Food Chem. 2013, 61, 8773–8782. DOI: 10.1021/jf401240p.
  • Yu, Y.; Xiao, G.; Xu, Y.; Wu, J.; Fu, M.; Wen, J. Slight Fermentation with Lactobacillus Fermentium Improves the Taste (Sugar : Acid Ratio) of Citrus (Citrus Reticulata Cv . Chachiensis) Juice. Journal of Food Science . 2015, 80. DOI: 10.1111/1750-3841.13088.
  • Lopotek, Y. V. K.; Tto, K. O. O. Processing Strawberries to Different Products Alters Contents of Vitamin C, Total Phenolics, Total Anthocyanins, and Antioxidant Capacity. Journal of Agricultural and Food Chemistry. 2005, 53, 5640–5646. DOI:10.1021/jf047947v.
  • Mohammad, S.; Hashemi, B.; Jafarpour, D. Fermentation of Bergamot Juice with Lactobacillus Plantarum Strains in Pure and Mixed Fermentations : Chemical Composition, Antioxidant Activity and Sensorial Properties. LWT. 2020, 131, 109803. DOI: 10.1016/j.lwt.2020.109803.
  • Hassan, H. A.; Ghareb, N. E.; Azhari, G. F. Antioxidant Activity and Free Radical-scavenging of Cape Gooseberry (Physalis Peruviana L.) In Hepatocellular Carcinoma Rats Model. Hepatoma Res. 2017, 3, 27. DOI: 10.20517/2394-5079.2016.33.
  • Rattan, S. I. S. Theories of Biological Aging: Genes, Proteins, and Free Radicals. Free Radic. Res. 2006, 40, 1230–1238. DOI: 10.1080/10715760600911303.
  • Lee, J. S. Effects of Soy Protein and Genistein on Blood Glucose, Antioxidant Enzyme Activities, and Lipid Profile in Streptozotocin-induced Diabetic Rats. Life Sci. 2006, 79, 1578–1584. DOI: 10.1016/j.lfs.2006.06.030.
  • Halliwell, B. Role of Free Radicals in the Neurodegenerative Diseases: Therapeutic Implications for Antioxidant Treatment. Drugs Ag. 2001, 18, 685–716. DOI: 10.2165/00002512-200118090-00004.
  • Cook, N. Flavonoids?Chemistry, Metabolism, Cardioprotective Effects, and Dietary Sources. J. Eur. Ceram. Soc. 1996, 66–76. DOI: 10.1016/s0955-2863(95)00168-9.
  • Aruoma, O. I.; Grootveld, M.; Bahorun, T. Free Radicals in Biology and Medicine: From Inflammation to Biotechnology. BioFactors. 2006, 27, 1–3. DOI: 10.1002/biof.5520270101.
  • Liu, W.; Xu, J.; Jing, P.; Yao, W.; Gao, X.; Yu (Lucy), L. Preparation of a Hydroxypropyl Ganoderma Lucidum Polysaccharide and Its Physicochemical Properties. Food Chem. 2010. DOI: 10.1016/j.foodchem.2009.11.087.
  • Yuan, J. F.; Zhang, Z. Q.; Fan, Z. C.; Yang, J. X. Antioxidant Effects and Cytotoxicity of Three Purified Polysaccharides from Ligusticum Chuanxiong Hort. Carbohydr. Polym. 2008, 74, 822–827. DOI: 10.1016/j.carbpol.2008.04.040.
  • Liu, Y.; Cheng, H.; Liu, H.; Ma, R.; Ma, J.; Fang, H. Fermentation by Multiple Bacterial Strains Improves the Production of Bioactive Compounds and Antioxidant Activity of Goji Juice. Molecules. 2019. DOI: 10.3390/molecules24193519.
  • Rodríguez, H.; Curiel, J. A.; Landete, J. M.; de Las Rivas, B.; de Felipe, F. L.; Gómez-Cordovés, C.; Mancheño, J. M.; Muñoz, R. Food Phenolics and Lactic Acid Bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. DOI: 10.1016/j.ijfoodmicro.2009.03.025.
  • Hur, S. J.; Lee, S. Y.; Kim, Y. C.; Choi, I.; Kim, G. B. Effect of Fermentation on the Antioxidant Activity in Plant-based Foods. Food Chem. 2014, 160, 346–356. DOI: 10.1016/j.foodchem.2014.03.112.
  • Ayed, L.; M’Hir, S.; Hamdi, M. Microbiological, Biochemical, and Functional Aspects of Fermented Vegetable and Fruit Beverages. J. Chem. 2020, 2020, 12. DOI: 10.1155/2020/5790432.
  • Oh, B. T.; Jeong, S. Y.; Velmurugan, P.; Park, J. H.; Jeong, D. Y. Probiotic-mediated Blueberry (Vaccinium Corymbosum L.) Fruit Fermentation to Yield Functionalized Products for Augmented Antibacterial and Antioxidant Activity. J. Biosci. Bioeng. 2017, 124, 542–550. DOI: 10.1016/j.jbiosc.2017.05.011.
  • Mccue, P.; Kwon, Y. I.; Shetty, K. Anti-amylase, Anti-glucosidase and Anti-angiotensin I-converting Enzyme Potential of Selected Foods. J. Food Biochem. 2005, 29, 278–294. DOI: 10.1111/j.1745-4514.2005.00020.x.
  • Mustafa, S. M.; Chua, L. S.; El-Enshasy, H. A.; Abd Majid, F. A.; Hanapi, S. Z.; Abdul Malik, R. Effect of Temperature and pH on the Probiotication of Punica Granatum Juice Using Lactobacillus Species. J. Food Biochem. 2019, 43, e12805. DOI: 10.1111/jfbc.12805.
  • Gao, P.; Mao, D.; Luo, Y.; Wang, L.; Xu, B.; Xu, L. Occurrence of Sulfonamide and Tetracycline-resistant Bacteria and Resistance Genes in Aquaculture Environment. Water Res. 2012, 46, 2355–2364. DOI: 10.1016/j.watres.2012.02.004.
  • Battikh, H.; Bakhrouf, A.; Ammar, E. Antimicrobial Effect of Kombucha Analogues. LWT - Food Sci. Technol. 2012, 47, 71–77. DOI: 10.1016/j.lwt.2011.12.033.
  • Ayed, L.; Ben Abid, S.; Hamdi, M. Development of a Beverage from Red Grape Juice Fermented with the Kombucha Consortium. Ann. Microbiol. 2017, 67, 111–121. DOI: 10.1007/s13213-016-1242-2.
  • Zubaidah, E.; Dewantari, F. J.; Novitasari, F. R.; Srianta, I.; Blanc, P. J. Potential of Snake Fruit (Salacca Zalacca (Gaerth.) Voss) for the Development of a Beverage through Fermentation with the Kombucha Consortium. Biocatal. Agric. Biotechnol. 2018, 13, 198–203. DOI: 10.1016/j.bcab.2017.12.012.
  • Snijders, J. M. A.; van Logtestijn, J. G.; Mossel, D. A. A.; Smulderst, F. J. M. Lactic Acid as a Decontaminant in Slaughter and Processing Procedures. Vet. Q. 1985, 7, 277–282. DOI: 10.1080/01652176.1985.9694000.
  • Cushnie, T. P. T.; Lamb, A. J. Recent Advances in Understanding the Antibacterial Properties of Flavonoids. Int. J. Antimicrob. Agents. 2011, 38, 99–107. DOI: 10.1016/j.ijantimicag.2011.02.014.
  • Giles-Gómez, M.; Sandoval García, J. G.; Matus, V.; Campos Quintana, I.; Bolívar, F.; Escalante, A. In Vitro and in Vivo Probiotic Assessment of Leuconostoc Mesenteroides P45 Isolated from Pulque, a Mexican Traditional Alcoholic Beverage. Springerplus. 2016, 5. DOI: 10.1186/s40064-016-2370-7.
  • Valero-Cases, E.; Cerdá-Bernad, D.; Pastor, J. J.; Frutos, M. J. Non-dairy Fermented Beverages as Potential Carriers to Ensure Probiotics, Prebiotics, and Bioactive Compounds Arrival to the Gut and Their Health Benefits. Nutrients. 2020, 12, 1666. DOI: 10.3390/nu12061666.
  • Indiani, C. M. D. S. P.; Rizzardi, K. F.; Castelo, P. M.; Ferraz, L. F. C.; Darrieux, M.; Parisotto, T. M. Childhood Obesity and Firmicutes/Bacteroidetes Ratio in the Gut Microbiota: A Systematic Review. Child. Obes. 2018, 14, 501–509. DOI: 10.1089/chi.2018.0040.
  • Linares, R.; Leve, F. A.; Jah, M. K.; Crassidis, J. L. Space Object Mass-specific Inertia Matrix Estimation from Photometric Data. Adv. Astronaut. Sci. 2012, 144, 41–54. DOI: 10.1038/nature4441021a.
  • Salzman, N. H.; de Jong, H.; Paterson, Y.; Harmsen, H. J. M.; Welling, G. W.; Bos, N. A. Analysis of 16S Libraries of Mouse Gastrointestinal Microflora Reveals a Large New Group of Mouse Intestinal Bacteria. Microbiology. 2002, 148, 3651–3660. DOI: 10.1099/00221287-148-11-3651.
  • Serino, M.; Luche, E.; Gres, S.; Baylac, A.; Bergé, M.; Cenac, C.; Waget, A.; Klopp, P.; Iacovoni, J.; Klopp, C., et al. Metabolic Adaptation to a High-fat Diet Is Associated with a Change in the Gut Microbiota. Gut. 2012, 61, 543–553. DOI: 10.1136/gutjnl-2011-301012.
  • Werner, H.; Krasemann, C.; Ungerechts, J.; Schmitz, H.J. Die In-vitro-Aktivität von Mezlocillin, Azlocillin und Carbenicillin gegen Bacteroidaceae unter besonderer Berücksichtigung der Fragilis-Gruppe. Infection . 1977, 5, 17–21. DOI:10.1007/bf01639104.
  • O’Hara, A. M.; Shanahan, F. The Gut Flora as a Forgotten Organ. EMBO Rep. 2006, 7, 688–693. DOI: 10.1038/sj.embor.7400731.
  • Bell, V.; Ferrão, J.; Pimentel, L.; Pintado, M.; Fernandes, T. One Health, Fermented Foods, and Gut Microbiota. Foods. 2018, 7, 195. DOI: 10.3390/foods7120195.
  • Everard, A.; Cani, P. D. Diabetes, Obesity and Gut Microbiota. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 73–83. DOI: 10.1016/j.bpg.2013.03.007.
  • David, L. A.; Maurice, C. F.; Carmody, R. N.; Gootenberg, D. B.; Button, J. E.; Wolfe, B. E.; Ling, A. V.; Devlin, A. S.; Varma, Y.; Fischbach, M. A., et al. Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature. 2014, 505, 559–563. DOI: 10.1038/nature12820.
  • Willson, K.; Situ, C. Journal of Clinical Nutrition and Metabolism Systematic Review on Effects of Diet on Gut Microbiota in Relation to Metabolic Syndromes. J. Clin. Nutr. Metab. 2017, 1, 1–12.
  • König, J.; Wells, J.; Cani, P. D.; García-Ródenas, C. L.; MacDonald, T.; Mercenier, A.; Whyte, J.; Troost, F.; Brummer, R. J. Human Intestinal Barrier Function in Health and Disease. Clin. Transl. Gastroenterol. 2016, 7, e196. DOI: 10.1038/ctg.2016.54.
  • Valero-Cases, E.; Roy, N. C.; Frutos, M. J.; Anderson, R. C. Influence of the Fruit Juice Carriers on the Ability of Lactobacillus Plantarum DSM20205 to Improve in Vitro Intestinal Barrier Integrity and Its Probiotic Properties. Journal of Agricultural and Food Chemistry 2017, 65, 5632–5638. DOI: 10.1021/acs.jafc.7b01551.
  • Hiippala, K.; Jouhten, H.; Ronkainen, A.; Hartikainen, A.; Kainulainen, V.; Jalanka, J.; Satokari, R. The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients. 2018, 10, 988. DOI: 10.3390/nu10080988.
  • Harima-Mizusawa, N.; Iino, T.; Onodera-Masuoka, N.; Kato-Nagaoka, N.; Kiyoshima-Shibata, J.; Gomi, A.; Shibahara-Sone, H.; Kano, M.; Shida, K.; Sakai, M., et al. Beneficial Effects of Citrus Juice Fermented with Lactobacillus Plantarum YIT 0132 on Japanese Cedar Pollinosis. Biosci. Microbiota, Food Heal. 2014, 33, 147–155. DOI: 10.12938/bmfh.33.147.
  • Harima-Mizusawa, N.; Kano, M.; Nozaki, D.; Nonaka, C.; Miyazaki, K.; Enomoto, T. Citrus Juice Fermented with Lactobacillus Plantarum YIT 0132 Alleviates Symptoms of Perennial Allergic Rhinitis in a Double-blind, Placebo-controlled Trial. Benef. Microbes. 2016, 7, 649–658. DOI: 10.3920/BM2016.0003.
  • Harima-Mizusawa, N.; Kamachi, K.; Kano, M.; Nozaki, D.; Uetake, T.; Yokomizo, Y.; Nagino, T.; Tanaka, A.; Miyazaki, K.; Nakamura, S. Beneficial Effects of Citrus Juice Fermented with Lactobacillus Plantarum YIT 0132 on Atopic Dermatitis: Results of Daily Intake by Adult Patients in Two Open Trials. Biosci. Microbiota, Food Heal. 2015. DOI: 10.12938/bmfh.2015-010.
  • Gamboa-Gómez, C. I.; Simental-Mendía, L. E.; González-Laredo, R. F.; Alcantar-Orozco, E. J.; Monserrat-Juarez, V. H.; Ramírez-España, J. C.; Gallegos-Infante, J. A.; Moreno-Jiménez, M. R.; Rocha-Guzmán, N. E. In Vitro and in Vivo Assessment of Anti-hyperglycemic and Antioxidant Effects of Oak Leaves (Quercus Convallata and Quercus Arizonica) Infusions and Fermented Beverages. Food Res. Int. 2017, 102, 690–699. DOI: 10.1016/j.foodres.2017.09.040.
  • Simsek, S.; El, S. N.; Kancabas Kilinc, A.; Karakaya, S. Vegetable and Fermented Vegetable Juices Containing Germinated Seeds and Sprouts of Lentil and Cowpea. Food Chem. 2014, 156, 289–295. DOI: 10.1016/j.foodchem.2014.01.095.
  • Dickerson, R.; Banerjee, J.; Rauckhorst, A.; Pfeiffer, D. R.; Gordillo, G. M.; Khanna, S.; Osei, K.; Roy, S. Does Oral Supplementation of a Fermented Papaya Preparation Correct Respiratory Burst Function of Innate Immune Cells in Type 2 Diabetes Mellitus Patients? Antioxid. Redox Signal. 2015, 22, 339–345. DOI: 10.1089/ars.2014.6138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.