1,070
Views
5
CrossRef citations to date
0
Altmetric
Review

Research progress on extraction technology and biological activity of polysaccharides from Edible Fungi: A review

ORCID Icon, ORCID Icon, &

References

  • Ren, L.; Perera, C.; Hemar, Y. Antitumor Activity of Mushroom Polysaccharides: A Review. Food Funct. 2012, 3(11), 1118–1130. DOI: 10.1039/c2fo10279j.
  • Zhang, M.; Cui, S.-W.; Cheung, P. C. K.; Wang, Q. Antitumor Polysaccharides from Mushrooms: A Review on Their Isolation Process, Structural Characteristics and Antitumor Activity. Trends Food Sci. Tech. 2007, 18(1), 4–19. DOI: 10.1016/j.tifs.2006.07.013.
  • Zhang, C.; Zhang, L.; Liu, H.; Zhang, J.-J.; Hu, C.-L.; Jia, L. Antioxidation, Anti-Hyperglycaemia and Renoprotective Effects of Extracellular Polysaccharides from Pleurotus Eryngii SI-04. Int. J. Biol. Macromol. 2018, 111, 219–228. DOI: 10.1016/j.ijbiomac.2018.01.009.
  • Ren, D.-Y.; Zhao, Y.; Nie, Y.; Lu, X.-S.; Sun, Y.-F.; Yang, X.-B. Chemical Composition of Pleurotus Eryngii Polysaccharides and Their Inhibitory Effects on High-Fructose Diet-Induced Insulin Resistance and Oxidative Stress in Mice. Food Funct. 2014, 5(10), 2609–2620. DOI: 10.1039/c3fo60640f.
  • Dai, Y.-C. Hymenochaetaceae (Basidiomycota) in China. Fungal Divers. 2010, 45(1), 131–343. DOI: 10.1007/s13225-010-0066-9.
  • Meng, X.; Liang, H.-B.; Luo, L.-X. Antitumor Polysaccharides from Mushrooms: A Review on the Structural Characteristics, Antitumor Mechanisms and Immunomodulating Activities. Carbohydr. Res. 2016, 424, 30–41. DOI: 10.1016/j.carres.2016.02.008.
  • Li, Y.; Yuan, Y.; Lei, L.; Li, F.-H.; Zhang, Y.-Q.; Chen, J.-L.; Zhao, G.-H.; Wu, S.-R.; Yin, R.; Ming, J. Carboxymethylation of Polysaccharide from Morchella Angusticepes Peck Enhances Its Cholesterol-Lowering Activity in Rats. Carbohydr. Polym. 2017, 172, 85–92. DOI: 10.1016/j.carbpol.2017.05.033.
  • Perera, N.; Yang, F.-L.; Chern, J.; Chiu, H.-W.; Hsieh, C.-Y.; Li, L.-H.; Zhang, Y.-L.; Hua, K.-F.; Wu, S.-H. Carboxylic and O-Acetyl Moieties are Essential for the Immunostimulatory Activity of Glucuronoxylomannan: A Novel TLR4 Specific Immunostimulator from Auricularia Auricula-Judae. Chem. Commun. 2018, 54(51), 6995–6998. DOI: 10.1039/c7cc09927d.
  • Sun, Y.-N.; Zhang, M.; Fang, Z.-X. Efficient Physical Extraction of Active Constituents from Edible Fungi and Their Potential Bioactivities: A Review. Trends Food Sci. Tech. 2019. DOI: 10.1016/j.tifs.2019.02.026.
  • Zhao, R.-L.; He, Y.-M. Network Pharmacology Analysis of the Anti-Cancer Pharmacological Mechanisms of Ganoderma Lucidum Extract with Experimental Support Using Hepa1-6-Bearing C57 BL/6 Mice. J. Ethnopharmacol. 2018, 210, 287–295. DOI: 10.1016/j.jep.2017.08.041.
  • Qu, L.-J.; Li, S.-M.; Zhuo, Y.-M.; Chen, J.-F.; Qin, X.-P.; Guo, G.-Q. Anticancer Effect of Triterpenes from Ganoderma Lucidum in Human Prostate Cancer Cells. Oncol. Lett. 2017, 14(6), 7467–7472. DOI: 10.3892/ol.2017.7153.
  • Yu, Y.; Qian, L.-Q.; Du, N.; Liu, Y.-X.; Zhao, X.; Zhang, X. Ganoderma Lucidum Polysaccharide Enhances Radiosensitivity of Hepatocellular Carcinoma Cell Line HepG2 Through Akt Signaling Pathway. Exp. Ther. Med. 2017, 14(6), 5903–5907. DOI: 10.3892/etm.2017.5340.
  • Lee, J.-S.; Lee, K.-R.; Lee, S.; Lee, H.-J.; Yang, H.-S.; Yeo, J.; Park, J.-M.; Choi, B.-H.; Hong, E.-K. Polysaccharides Isolated from Liquid Culture Broth of Inonotus Obliquus Inhibit the Invasion of Human Non-Small Cell Lung Carcinoma Cell. Biotechnol. Bioprocess Eng. 2017, 22(1), 45–51. DOI: 10.1007/s12257-016-0458-0.
  • Zhao, F.-Q.; Xia, G.-Y.; Chen, L.-X.; Zhao, J.-L.; Xie, Z.-F.; Qiu, F.; Han, G. Chemical Constituents from Inonotus Obliquus and Their Antitumor Activities. J. Nat. Med. 2016, 70(4), 721–730. DOI: 10.1007/s11418-016-1002-4.
  • Zhang, Y.; Liu, W.; Xu, C.-P.; Huang, W.; He, P.-X. Characterization and Antiproliferative Effect of Novel Acid Polysaccharides from the Spent Substrate of Shiitake Culinary-Medicinal Mushroom Lentinus Edodes (Agaricomycetes) Cultivation. Int. J. Med. Mushrooms. 2017, 19(5), 395–403. DOI: 10.1615/IntJMedMushrooms.v19.i5.20.
  • Zhao, Y.-M.; Wang, J.; Wu, Z.-G.; Yang, J.-M.; Li, W.; Shen, L.-X. Extraction, Purification and Anti-Proliferative Activities of Polysaccharides from Lentinus Edodes. Int. J. Biol. Macromol. 2016, 93, 136–144. DOI: 10.1016/j.ijbiomac.2016.05.100.
  • Klimaszewska, M.; Górska, S.; Dawidowski, M.; Podsadni, P.; Szczepanska, A.; Orzechowska, E.; Kurpios-Piec, D.; Grosicka Maciag, E.; Rahden Staroń, I.; Turło, J. Selective Cytotoxic Activity of Se-Methyl-Seleno-L-Cysteine– and Se-Polysaccharide–containing Extracts from Shiitake Medic-Inal Mushroom, Lentinus Edodes (Agaricomycetes). Int. J. Med. Mushrooms. 2017, 19(8), 709–716. DOI: 10.1615/IntJMedMushrooms.2017021250.
  • Chen, P.-Y.; Yong, Y.-Y.; Gu, Y.-F.; Wang, Z.-L.; Zhang, S.-Z.; Lu, L. Comparison of Antioxidant and Antiproliferation Activities of Polysaccharides from Eight Species of Medicinal Mushrooms. Int. J. Med. Mushrooms. 2015, 17(3), 287–295. DOI: 10.1615/IntJMedMushrooms.v17.i3.80.
  • Wang, Y.-Q.; Bao, L.; Yang, X.-L.; Li, L.; Li, S.-F.; Gao, H.; Yao, X.-S.; Wen, H.-A.; Liu, H.-W. Bioactive Sesquiterpenoids from the Solid Culture of the Edible Mushroom Flammulina Velutipes Growing on Cooked Rice. Food Chem. 2012, 132(3), 1346–1353. DOI: 10.1016/j.foodchem.2011.11.117.
  • Mau, J.-L.; Lin, H.-C.; Song, S.-F. Antioxidant Properties of Several Specialty Mushrooms. Food Res. Int. 2002, 35(6), 519–526. DOI: 10.1016/s0963-9969(01)00150-8.
  • Zeng, W.-C.; Zhang, Z.; Gao, H.; Jia, L.-R.; Chen, W.-Y. Characterization of Antioxidant Polysachanidsfrom Aricularia Auricular Using Microwave Asited Extraction. Carbohydr. Polym. 2012, 89(2), 694–700. DOI: 10.1016/j.carbpol.2012.03.078.
  • Ratz-Lyko, A.; Arct, J.; Pytkowska, K. Methods for Evaluation of Cosmetic Antioxidant Capacity. Skin Res. Technol. 2012, 18(4), 421–430. DOI: 10.1111/j.1600-0846.2011.00588.x.
  • Kho, Y.-S.; Vikineswary, S.; Abdullah, N.; Kuppusamy, U.-R.; Oh, H.-I. Antioxidant Capacity of Fresh and Processed Fruit Bodies and Mycelium of Auricularia Auricula-Judae (Fr.) Quel. J. Med. Food. 2009, 12(1), 167–174. DOI: 10.1089/jmf.2007.0568.
  • Saidu, S.; Eleazu, C.-O.; Ebuka, D.; Ikechukwu, A.; Blessing, M.; Chibuike, N.; Chukwuma, C. Starch Hydrolysis, Polyphenol Contents, and in vitro Alpha Amylase Inhibitory Properties of Some Nigerian Foods as Affected by Cooking. Front. Nutr. 2017, 4, 60. DOI: 10.3389/fnut.2017.00060.
  • Zhang, W.; Qu, W.-J.; Zhang, X.-L.; Deng, Y.-X.; Zhu, S.-D. The Anti-Hyperglycemic Activity of Polysaccharides from Tremella Aurantialba Mycelium. Acta Nutrimenta Sinica. 2004, 26(4), 300–303. DOI: 10.1007/BF02911031.
  • Kim, Y.-O.; Lee, S.-W.; Kim, J. S. A Comprehensive Review of the Therapeutic Effects of Hericium Erinaceus in Neurodegenerative Disease. J. Mushroom. 2014, 12(2), 77–81. DOI: 10.14480/JM.2014.12.2.77.
  • Minato, K.; Laan, L.-C.; van Die, I.; Mizuno, M. Pleurotus Citrinopileatus Polysaccharide Stimulates Anti-Inflammatory Properties During Monocyte-to-Macrophage Differentiation. Int. J. Biol. Macromol. 2019, 122, 705–712. DOI: 10.1016/j.ijbiomac.2018.10.157.
  • Wang, J.-L.; Li, Y.-B.; Liu, R.-M.; Zhong, J.-J. A New Ganoderic Acid from Ganoderma Lucidum Mycelia. J. Asian Nat. Prod. Res. 2010, 12(8), 727–730. DOI: 10.1080/10286020.2010.493506.
  • Jeong, S.-C.; Koyyalamudi, S.-R.; Jeong, Y.-T.; Song, C.-H.; Pang, G. Macrophage Immunomodulating and Antitumor Activities of Polysaccharides Isolated from Agaricus Bisporus White Button Mushrooms. J. Med. Food. 2012, 15(1), 58–65. DOI: 10.1089/jmf.2011.1704.
  • Jiang, X.-G.; Lian, M.-X.; Han, Y.; Lv, S.-M. Antitumor and Immunomodulatory Activityof a Polysaccharide from Fungus Coprinus Comatus (Mull.:Fr.) Gray. Int. J. Biol. Macromol. 2013, 58, 349–353. DOI: 10.1016/j.ijbiomac.2013.04.033.
  • Li, H.-P.; Liu, L.-Z.; Tao, Y.-Q.; Zhao, P.; Wang, F.-L.; Huai, L.-H.; Zhi, D.-X.; Liu, J.-M.; Li, G.-L.; Dang, C.-L., et al. Effects of Polysaccharides from Pholiota Nameko on Maturation Ofmurine Bone Marrow-Derived Dendritic Cells. Int. J. Biol. Macromol. 2014, 63, 188–197. DOI: 10.1016/j.ijbiomac.2013.11.002.
  • Sheu, F.; Chien, P.-J.; Wang, H.-K.; Chang, H.-H.; Shyu, Y.-T. New Protein PCiP from Edible Golden Oyster Mushroom (Pleurotus citrinopileatus) Activating Murine Macrophages and Splenocytes. J. Sci. Food Agric. 2007, 87(8), 1550–1558. DOI: 10.1002/jsfa.2887.
  • Saadeldeen, F.-S.-A.; Niu, Y.; Wang, H.-L.; Zhou, L.; Meng, L.-J.; Chen, S.-T.; Waterhouse, D.-X.-S.; Waterhouse, G.-I.-N.; Liu, Z.-H.; Kang, W.-Y. Natural Products: Regulating Glucose Metabolism and Improving Insulin Resistance. Food Sci. Hum. Wellness. 2020, 9(3), 214–228. DOI: 10.1016/j.fshw.2020.04.005.
  • Liu, E.-C.; Ji, Y.; Zhang, F.; Liu, B.-J.; Meng, X.-H. Review on Auricularia Auricula-Judae as a Functional Food: Growth, Chemical Composition, and Biological Activities. J. Agric. Food Chem. 2021, 69(6), 1739–1750. DOI: 10.1021/acs.jafc.0c05934.
  • Xue, Z.-H.; Gao, X.-D.; Jia, Y.-N.; Wang, Y.-J.; Lu, Y.-P.; Zhang, M.; Panichayupakaranant, P.; Chen, H.-X. Structure Characterization of High Molecular Weight Soluble Dietary Fiber from Mushroom Lentinula Edodes (Berk.) Pegler and Its Interaction Mechanism with Pancreatic Lipase and Bile Salts. Int. J. Biol. Macromol. 2020, 153, 1281–1290. DOI: 10.1016/j.ijbiomac.2019.10.263.
  • Yang, B.-K.; Park, J.-B.; Song, C.-H. Hypolipidemic Effect of an Exo-Biopolymer Produced from a Submerged Mycelial Culture of Hericium Erinaceus (Food & Nutrition Science). Biosci. Biotech. Bioch. 2003, 67(6), 1292–1298. DOI: 10.1271/bbb.67.1292.
  • Zheng, L.; Zhai, G.-Y.; Zhang, J.-J.; Wang, L.-Q.; Ma, Z.; Jia, M.-S.; Jia, L. Antihyperlipidemic and Hepatoprotective Activities of Mycelia Zinc Polysacharide from Pholiota Nameko SW-02. Int. J. Biol. Macromol. 2014, 70, 523–529. DOI: 10.1016/j.ijbiomac.2014.07.037.
  • Wasser, S.-P. Medicinal Mushroom Science: Current Perspectives, Advances, Evidences, and Challenges. Biomed. J. 2014, 37(6), 345–356. DOI: 10.4103/2319-4170.138318.
  • Vetvickaa, V.; Goverb, O.; Karpovskyb, M.; Haybyb, H.; Danayc, O.; Ezovd, N.; Hadare, Y.; Schwartz, B. Immune-Modulating Activities of Glucans Extracted from Pleurotus Ostreatus and Pleurotus Eryngii. J. Funct. Foods. 2019, 54, 81–91. DOI: 10.1016/j.jff.2018.12.034.
  • Heitman, J. Evolution of Sexual Reproduction: A View from the Fungal Kingdom Supports an Evolutionary Epoch with Sex Before Sexes. Fungal. Biol. Rev. 2015, 29(3–4), 108–117. DOI: 10.1016/j.fbr.2015.08.002.
  • Umen, J.; Heitman, J. Evolution of Sex: Mating Rituals of a Pre-Metazoan. Curr. Biol. 2013, 23(22), R1006–R1008. DOI: 10.1016/j.cub.2013.10.009.
  • Barbosa, J.-R. Occurrence and Possible Roles of Polysaccharides in Fungi and Their Influence on the Development of New Technologies. Carbohydr. Polym. 2020, 246, 116613. DOI: 10.1016/j.carbpol.2020.116613.
  • Hou, X.-J.; Wei, C. Optimization of Extraction Process of Crude Polysaccharides from Wild Edible BaChu Mushroom by Response Surface Methodology. Carbohydr. Polym. 2008, 72(1), 67–74. DOI: 10.1016/j.carbpol.2007.07.034.
  • Liu, C.-R.; Choi, M.-W.; Li, X.-J.; Cheung, P. C. K. Immunomodulatory Effect of Structurally-Characterized Mushroom Sclerotial Polysaccharides Isolated from Polyporus Rhinocerus on Human Monoctyes THP-1. J. Funct. Foods. 2018, 41, 90–99. DOI: 10.1016/j.jff.2017.12.039.
  • Ke, L. Q. Optimization of Ultrasonic Extraction of Polysaccharides from Lentinus Edodes Based on Enzymatic Treatment. J. Food Process Pres. 2015, 39(3), 254–259. DOI: 10.1111/jfpp.12228.
  • Roselló-Soto, E.; Parniakov, O.; Deng, Q.; Patras, A.; Koubaa, M.; Grimi, N.; Boussetta, N.; Tiwari, B. K.; Vorobiev, E.; Lebovka, N., et al. Application of Non-Conventional Extraction Methods: Toward a Sustainable and Green Production of Valuable Compounds from Mushrooms. Food Eng. Rev. 2016, 8(2), 214–234. DOI: 10.1007/s12393-015-9131-1.
  • Barbosa, J.-R.-;.; Freitas, M.-M.-S.; Oliveira, L.-C.; Martins, L.-H.-S.; Almada-Vilhena, A.-O.; Oliveira, R.-M.; Pieczarka, J.-C.; Brasil, D.-S.-B.; Junior, R.-N.-C. Obtaining Extracts Rich in Antioxidant Polysaccharides from the Edible Mushroom Pleurotus Ostreatus Using Binary System with Hot Water and Supercritical Co2. Food Chem. 2020, 330, 127173. DOI: 10.1016/j.foodchem.2020.127173.
  • Barbosa, J.-R.; Freitas, M.-M.-S.; Martins, L.-H.-S.; Junior, R.-N.-C. Polysaccharides of Mushroom Pleurotus Spp: New Extraction Techniques, Biological Activities and Development of New Technologies. Carbohydr. Polym. 2019, 229(1), 115550. DOI: 10.1016/j.carbpol.2019.115550.
  • Li, S.-Q.; Shah, N.-P. Characterization, Antioxidative and Bifidogenic Effects of Polysaccharides from Pleurotus Eryngii After Heat Treatments. Food Chem. 2016, 197(APR.15PT.A), 240–249. DOI: 10.1016/j.foodchem.2015.10.113.
  • Zdanowicz, M.; Wilpiszewska, K.; Spychaj, T. Deep Eutectic Solvents for Polysaccharides Processing. A Review. Carbohydr. Polym. 2018, 200, 361–380. DOI: 10.1016/j.carbpol.2018.07.078.
  • Yin, C.-M.; Fan, X.-Z.; Fan, Z.; Shi, D.-F.; Gao, H. Optimization of Enzymes-Microwave-Ultrasound Assisted Extraction of Lentinus Edodes Polysaccharides and Determination of Its Antioxidant Activity. Int. J. Biol. Macromol. 2018, 111, 446–454. DOI: 10.1016/j.ijbiomac.2018.01.007.
  • Churms, S.-C.; Stephen, A.-M. Structural Studies of an Arabinogalactan-Protein from the Gum Exudate of Acacia Robusta. Carbohydr. Res. 1984, 133(1), 105–123. DOI: 10.1016/0008-6215(84)85187-3.
  • Yang, X.-B.; Gao, X.-D.; Han, F.; Xu, B.-S.; Song, Y.-C.; Tan, R.-X. Purification, Characterization and Enzymatic Degradation of YCP, a Polysaccharide from Marine Filamentous Fungus Phoma Herbarum YS4108. Biochimie. 2005, 87(8), 747–754. DOI: 10.1016/j.biochi.2005.03.004.
  • Lu, A.-X.; Yu, M.-G.; Shen, M.; Xu, S.-Q.; Xu, Z.-Q.; Zhang, Y.-J.; Lin, Z.; Wang, W.-M. Preparation of the Auricularia Auricular Polysaccharides Simulated Hydrolysates and Their Hypoglycaemic Effect. Int. J. Biol. Macromol. 2018, 106, 1139–1145. DOI: 10.1016/j.ijbiomac.2017.08.118.
  • Chen, Y.; Xie, M.-Y.; Nie, S.-P.; Li, C.; Wang, Y.-X. Purification, Composition Analysis and Antioxidant Activity of a Polysaccharide from the Fruiting Bodies of Ganoderma Atrum. Food Chem. 2008, 107(1), 231–241. DOI: 10.1016/j.foodchem.2007.08.021.
  • Zhang, C.; Li, J.; Hu, C.-L.; Wang, J.; Zhang, J.-J.; Ren, Z.-Z.; Song, X.-L.; Jia, L. Antihyperglycaemic and Organic Protective Effects on Pancreas, Liver and Kidney by Polysaccharides from Hericium Erinaceus SG-02 in Streptozotocin-Induced Diabetic Mice. Sci. Rep-UK. 2017, 7(1). DOI: 10.1038/s41598-017-11457-w.
  • Choi, W. S.; Chung, K. J.; Chang, M. S.; Chun, J. K.; Lee, H. W.; Hong, S. Y. A Turbidimetric Determination of Protein by Trichloroacetic Acid. Arch. Pharm. Res. 1993, 16(1), 57–61. DOI: 10.1007/BF02974129.
  • Ma, C.; Guan, S.-H.; Yang, M.; Liu, X.; Guo, D.-A. Differential Protein Expression in Mouse Splenic Mononuclear Cells Treated with Polysaccharides from Spores of Ganoderma Lucidum. Phytomedicine. 2008, 15(4), 268–276. DOI: 10.1016/j.phymed.2007.11.015.
  • Bao, X.-F.; Wang, X.-S.; Dong, Q.; Fang, J.-N.; Li, X.-Y. Structural Features of Immunologically Active Polysaccharides from Ganoderma Lucidum. Ganoderma Lucidum. Phytochemistry. 2002, 59(2), 175–181. DOI: 10.1016/S0031-9422(01)00450-2.
  • Ruthes, A. C.; Smiderle, F. R.; Iacomini, M. D-Glucans from Edible Mushrooms: A Review on the Extraction, Purification and Chemical Characterization Approaches. Carbohydr. Polym. 2015, 117, 753–761. DOI: 10.1016/j.carbpol.2014.10.051.
  • Chen, J.-J.; Mao, D.; Yong, Y.-Y.; Li, J.-L.; Wei, H.; Lu, L. Hepatoprotective and Hypolipidemic Effects of Water-Soluble Polysaccharidic Extract of Pleurotus Eryngii. Food Chem. 2012, 130(3), 687–694. DOI: 10.1016/j.foodchem.2011.07.110.
  • Xu, X.-F.; Yan, H.-D.; Tang, J.; Chen, J.; Zhang, X.-W. Polysaccharides in Lentinus edodes: Isolation, Structure, Immunomodulating Activity and Future Prospective. Crit. Rev. Food Sci. 2014, 54(4), 474–487. DOI: 10.1080/10408398.2011.587616.
  • Siu, K.-C.; Xu, L.-J.; Chen, X.; Wu, J.-Y. Molecular Properties and Antioxidant Activities of Polysaccharides Isolated from Alkaline Extract of Wild Armillaria Ostoyae Mushrooms. Carbohydr. Polym. 2016, 137, 739–746. DOI: 10.1016/j.carbpol.2015.05.061.
  • Yin, Z.-H.; Zhang, W.; Zhang, J.-J.; Kang, W.-Y. Isolation, Purification, Structural Analysis and Coagulatory Activity of Water-Soluble Polysaccharides from Ligustrum Lucidum Ait Flowers. Chem. Cent. J. 2017, 11(1), 98. DOI: 10.1186/s13065-017-0332-y.
  • Zhang, Y.; Chen, Z.-H.; Huang, Z.; Wu, Z.-J.; Xu, J.-Y.; Wang, K.-P. A Comparative Study on the Structures of Grifola Frondosa Polysaccharides Obtained by Different Decolourization Methods and Their in vitro Antioxidant Activities. Food Funct. 2019, 10(10), 6720–6731. DOI: 10.1039/c9fo01511f.
  • Chen, G.-J.; Xie, M.-H.; Wan, P.; Chen, D.; Ye, H.; Chen, L.-G.; Zeng, X.-X.; Liu, Z.-H. Digestion Under Saliva, Simulated Gastric and Small Intestinal Conditions and Fermentation in vitro by Human Intestinal Microbiota of Polysaccharides from Fuzhuan Brick Tea. Food Chem. 2018, 244, 331–339. DOI: 10.1016/j.foodchem.2017.10.074.
  • Zhu, H.-J.; Kai, S.; Yan, E.-F.; Qiao, J.-J.; Lv, F. Extraction, Purification and Antibacterial Activities of a Polysaccharide from Spent Mushroom Substrate. Int. J. Biol. Macromol. 2012, 50(3), 840–843. DOI: 10.1016/j.ijbiomac.2011.11.016.
  • Du, X.-J.; Zhang, J.-S.; Yang, Y.; Tang, Q.-J.; Jia, W.; Pan, Y.-J. Purification, Chemical Modification and Immunostimulating Activity of Polysaccharides from Tremella Aurantialba Fruit Bodies. J. Zhejiang Univ-Sc B. 2010, 11(6), 437–442. DOI: 10.1631/jzus.B0900402.
  • Tseng, Y. H.; Yang, J. H.; Mau, J. L. Antioxidant Properties of Polysaccharides from Ganoderma Tsugae. Food Chem. 2008, 107(2), 732–738. DOI: 10.1016/j.foodchem.2007.08.073.
  • Liu, C.-R.; Chen, J.-L.; Chen, L.; Huang, X.-S.; Cheung, P. C. K. Immunomodulatory Activity of Polysaccharide-Protein Complex from the Mushroom Sclerotia of Polyporus Rhinocerus in Murine Macrophages. J. Agric. Food Chem. 2016, 64(16), 3206–3214. DOI: 10.1021/acs.jafc.6b00932.
  • Mohan, M. S. G.; Achary, A.; Mani, V.; Cicinskas, E.; Kalitnik, A. A.; Khotimchenko, M. Purification and Characterization of Fucose-Containing Sulphated Polysaccharides from Sargassum Tenerrimum and Their Biological Activity. J. Appl. Phycol. 2019, 31(5), 3101–3113. DOI: 10.1007/s10811-019-01797-7.
  • Ling, C.; Huang, G.-L.; Hu, J.-C. Preparation, Deproteinization, Characterisation, and Antioxidant Activity of Polysaccharide from Cucumber (Cucumis Saticus L.). Int. J. Biol. Macromol. 2018, 108, 408–411. DOI: 10.1016/j.ijbiomac.2017.12.034.
  • Xu, J.; Yue, R.-Q.; Liu, J.; Ho, H.-M.; Yi, T.; Chen, H.-B.; Han, Q.-B. Structural Diversity Requires Individual Optimization of Ethanol Concentration in Polysaccharide Precipitation. Int. J. Biol. Macromol. 2014, 67, 205–209. DOI: 10.1016/j.ijbiomac.2014.03.036.
  • Sung, T. J.; Wang, Y.-Y.; Liu, K.-L.; Chou, C.-H.; Lai, P.-S.; Hsieh, C. W. Pholiota Nameko Polysaccharides Promotes Cell Proliferation and Migration and Reduces ROS Content in H2O2-Induced L929 Cells. Antioxidants-Basel. 2020, 9(1), 65. DOI: 10.3390/antiox9010065.
  • Chou, C.-H.; Sung, T.-J.; Hu, Y.-N.; Lu, H.-Y.; Yang, L.-C.; Cheng, K.-C.; Lai, P.-S.; Hsieh, C.-W. Chemical Analysis, Moisture-Preserving, and Antioxidant Activities of Polysaccharides from Pholiota Nameko by Fractional Precipitation. Int. J. Biol. Macromol. 2019, 131, 1021–1031. DOI: 10.1016/j.ijbiomac.2019.03.154.
  • Zhang, Z.-F.; Lv, G.-Y.; Pan, H.-J.; Pandey, A.; He, W.-Q.; Fan, L.-F. Antioxidant and Hepatoprotective Potential of Endo-Polysaccharides from Hericium Erinaceus Grown on Tofu Whey. Int. J. Biol. Macromol. 2012, 51(5), 1140–1146. DOI: 10.1016/j.ijbiomac.2012.09.002.
  • . Zhu, F.-M.; Du, B.; Xu, B.-J. Preparation and Characterization of Polysaccharides from Mushrooms. Polysaccharides. 2014, 1–16. DOI: 10.1007/978-3-319-03751-6_10-1.
  • Zhang, L.-N.; Yang, L.-Q.; Ding, Q.; Chen, X.-F. Studies on Molecular Weights of Polysaccharides of Auricularia Auricula-Judae. Carbohyd. Res. 1995, 270(1), 1–10. DOI: 10.1016/0008-6215(94)00008-4.
  • Chen, Y.-G.; Shen, Z.-J.; Chen, X.-P. Modulatory Effect of Ganoderma Lucidum Polysaccharides on Serum Antioxidant Enzymes Activities in Ovarian Cancer Rats. Carbohydr. Polym. 2009, 78(2), 258–262. DOI: 10.1016/j.carbpol.2009.03.030.
  • Gao, Y.-N.; Tian, C.-R.; Zhao, L.-L. Extraction, Purification and Antioxidant Activity of Polysaccharides from Bamboo Leaves. J. Forestry Res. 2012, 23(1), 139–143. DOI: 10.1007/s11676-012-0223-y.
  • Li, Y.-X.; Sheng, Y.; Lu, X.-C.; Guo, X.; Xu, G.-Y.; Han, X.; An, L.-P.; Du, P.-G. Isolation and Purification of Acidic Polysaccharides from Agaricus Blazei Murill and Evaluation of Their Lipid-Lowering Mechanism. Int. J. Biol. Macromol. 2020, 157, 276–287. DOI: 10.1016/j.ijbiomac.2020.04.190.
  • Yan, J.-M.; Zhu, L.; Qu, Y.-H.; Qu, X.; Mu, M.-X.; Zhang, M.-S.; Muneer, G.; Zhou, Y.-F.; Sun, L. Analyses of Active Antioxidant Polysaccharides from Four Edible Mushrooms. Int. J. Biol. Macromol. 2019, 123, 945–956. DOI: 10.1016/j.ijbiomac.2018.11.079.
  • Liu, X.-K.; Wang, L.; Zhang, C.-M.; Wang, H.-M.; Zhang, X.-H.; Li, Y.-X.; Yang, Z.-Y.; Song, B. Structure Characterization and Antitumor Activity of a Polysaccharide from the Alkaline Extract of King Oyster Mushroom. Carbohydr. Polym. 2015, 118, 101–106. DOI: 10.1016/j.carbpol.2014.10.058.
  • Zhang, A.-Q.; Zhang, Y.; Yang, J.; Jiang, J.; Huang, F.-F.; Sun, P.-L. Structural Elucidation of a Novel Water-Soluble Fructan Isolated from Wedelia Prostrata. Carbohyd. Res. 2013, 376(1), 24–28. DOI: 10.1016/j.carres.2013.04.014.
  • Ferreira, S.-S.; Passos, C.-P.; Madureira, P.; Vilanova, M.; Coimbraa, M.-A. Structure-Function Relationships of Immunostimulatory Polysaccharides: A Review. Carbohydr. Polym. 2015, 132, 378–396. DOI: 10.1016/j.carbpol.2015.05.079.
  • Kozarski, M.; Klaus, A.; Nikšić, M.; Vrvić, M. M.; Todorović, N.; Jakovljević, D.; Van Griensven, L. J. L. D. Antioxidative Activities and Chemical Characterization of Polysaccharide Extracts from the Widely Used Mushrooms Ganoderma applanatum, Ganoderma Lucidum, Lentinus Edodes and Trametes Versicolor. J. Food Compos. Anal. 2012, 26(1–2), 144–153. DOI: 10.1016/j.jfca.2012.02.004.
  • Chen, L.; Liu, J.; Zhang, Y.-Q.; Dai, B.; An, Y.; Yu, L. Structural, Thermal, and Anti-Inflammatory Properties of a Novel Pectic Polysaccharide from Alfalfa (Medicago Sativa L.) Stem. J. Agric. Food Chem. 2015, 63(12), 3219–3228. DOI: 10.1021/acs.jafc.5b00494.
  • Zhang, J.; Wen, C.; Gu, J.; Ji, C.; Duan, Y.; Zhang, H. Effects of Subcritical Water Extraction Microenvironment on the Structure and Biological Activities of Polysaccharides from Lentinus Edodes. Int. J. Biol. Macromol. 2018, 123, 1002–1011. DOI: 10.1016/j.ijbiomac.2018.11.194.
  • Pillai, T. G.; Nair, C. K. K.; Janardhanan, K. K. Enhancement of Repair of Radiation Induced DNA Strand Breaks in Human Cells by Ganoderma Mushroom Polysaccharides. Food Chem. 2010, 119(3), 1040–1043. DOI: 10.1016/j.foodchem.2009.08.013.
  • Lin, L.; Cui, F.-Y.; Zhang, J.-J.; Gao, X.; Zhou, M.; Xu, N.; Zhao, H.-J.; Liu, M.; Zhang, C.; Jia, L. Antioxidative and Renoprotective Effects of Residue Polysaccharides from Flammulina Velutipes. Carbohydr. Polym. 2016, 146, 388–395. DOI: 10.1016/j.carbpol.2016.03.071.
  • Huang, Q.-L.; Siu, K.-C.; Wang, W.-Q.; Cheung, Y.-C.; Wu, J.-Y. Fractionation, Characterization and Antioxidant Activity of Exopolysaccharides from Fermentation Broth of a Cordyceps Sinensis Fungus. Process Biochem. 2013, 48(2), 380–386. DOI: 10.1016/j.procbio.2013.01.001.
  • Gerwig, G. J.; Kamerling, J. P.; Vliegenthart, J. F. G. Determination of the D and L Configuration of Neutral Monosaccharides by High-Resolution Capillary G.L.C. Carbohyd. Res. 1978, 62(2), 349–357. DOI: 10.1016/s0008-6215(00)80881-2.
  • Ciucanu, I.; Kerek, F. A Simple and Rapid Method for the Permethylation of Carbohydrates. Carbohyd. Res. 1984, 131(2), 209–217. DOI: 10.1016/0008-6215(84)85242-8.
  • Bhunia, S. K.; Dey, B.; Maity, K. K.; Patra, S.; Mandal, S.; Maiti, S.; Maiti, T. K.; Sikdar, S. R.; Islam, S. S. Isolation and Characterization of an Immunoenhancing Glucan from Alkaline Extract of an Edible Mushroom, Lentinus Squarrosulus (Mont.) Singer. Carbohyd. Res. 2011, 346(13), 2039–2044. DOI: 10.1016/j.carres.2011.05.029.
  • Maity, K. K.; Patra, S.; Dey, B.; Bhunia, S. K.; Mandal, S.; Bahera, B.; Tapas, K. M.; Samir, R. S.; Islam, S. S. A β-Glucan from the Alkaline Extract of a Somatic Hybrid (PfloVv5fb) of Pleurotus Florida and Volvariella volvacea: Structural Characterization and Study of Immunoactivation. Carbohyd. Res. 2013, 370, 13–18. DOI: 10.1016/j.carres.2013.01.016.
  • Bhunia, S. K.; Dey, B.; Maity, K. K.; Patra, S.; Mandal, S.; Maiti, S.; Maiti, T. K.; Sikdar, S. R.; Islam, S. S. Heteroglycan from an Alkaline Extract of a Somatic Hybrid Mushroom (PfloVv1afb) of Pleurotus Florida and Volvariella volvacea: Structural Characterization and Study of Immunoenhancing Properties. Carbohyd. Res. 2012, 354, 110–115. DOI: 10.1016/j.carres.2012.03.043.
  • Ojha, A. K.; Chandra, K.; Ghosh, K.; Islam, S. S. Glucans from the Alkaline Extract of an Edible Mushroom, Pleurotus florida, Cv Assam Florida: Isolation, Purification, and Characterization. Carbohyd. Res. 2010, 345(15), 2157–2163. DOI: 10.1016/j.carres.2010.06.015.
  • Nie, S.; Xie, M.; Fu, Z.; Wan, Y.; Yan, A. Study on the Purification and Chemical Compositions of Tea Glycoprotein. Carbohydr. Polym. 2008, 71(4), 626–633. DOI: 10.1016/j.carbpol.2007.07.005.
  • Zhang, H.-F.; Niu, L.-L.; Yang, X.-H.; Li, L. Analysis of Water-Soluble Polysaccharides in an Edible Medicinal Plant Epimedium: Method Development, Validation, and Application. J. AOAC Int. 2014, 97(3), 784–790. DOI: 10.5740/jaoacint.12-379.
  • Khatua, S.; Acharya, K. Alkaline Extractive Crude Polysaccharide from Russula Senecis Possesses Antioxidant Potential and Stimulates Innate Immunity Response. J. Pharm. Pharmacol. 2017, 69(12), 1817–1828. DOI: 10.1111/jphp.12813.
  • Sassaki, G. L.; Souza, L. M.; Serrato, R. V.; Cipriani, T. R.; Gorin, P. A. J.; Iacomini, M. Application of Acetate Derivatives for Gas Chromatography–mass Spectrometry: Novel Approaches on Carbohydrates, Lipids and Amino Acids Analysis. J. Chromatogr. A. 2008, 1208(1–2), 215–222. DOI: 10.1016/j.chroma.2008.08.083.
  • Xu, N.; Gao, Z.; Zhang, J.; Jing, H.; Li, S.; Ren, Z.; Wang, S.-X.; Jia, L. Hepatoprotection of Enzymatic-Extractable Mycelia Zinc Polysaccharides by Pleurotus Eryngii Var. Tuoliensis. Carbohydr. Polym. 2017, 157, 196–206. DOI: 10.1016/j.carbpol.2016.09.082.
  • Lv, Y.; Yang, X.; Zhao, Y.; Ruan, Y.; Yang, Y.; Wang, Z. Separation and Quantification of Component Monosaccharides of the Tea Polysaccharides from Gynostemma Pentaphyllum by HPLC with Indirect UV Detection. Food Chem. 2009, 112(3), 742–746. DOI: 10.1016/j.foodchem.2008.06.042.
  • Fu, D.-T.; Oneill, R. A. Monosaccharide Composition Analysis of Oligosaccharides and Glycoproteins by High-Performance Liquid Chromatography. Anal. Biochem. 1995, 227(2), 377–384. DOI: 10.1006/abio.1995.1294.
  • Song, G.; Du, Q. Structure Characterization and Antitumor Activity of an α β-Glucan Polysaccharide from Auricularia Polytricha. Food Res. Int. 2012, 45(1), 381–387. DOI: 10.1016/j.foodres.2011.10.035.
  • Sun, Y.-X.; Liu, J.-C.; Kennedy, J. F. Purification, Composition Analysis and Antioxidant Activity of Different Polysaccharide Conjugates (APPs) from the Fruiting Bodies of Auricularia Polytricha. Carbohydr. Polym. 2010, 82(2), 299–304. DOI: 10.1016/j.carbpol.2010.04.056.
  • Wang, Y.; Tian, Y.; Shao, J.; Shu, X.; Jia, J.; Ren, X.; Guan, Y. Macrophage Immunomodulatory Activity of the Polysaccharide Isolated from Collybia Radicata Mushroom. Int. J. Biol. Macromol. 2018, 108, 300–306. DOI: 10.1016/j.ijbiomac.2017.12.025.
  • Sun, Y.; Li, T.; Liu, J. Structural Characterization and Hydroxyl Radicals Scavenging Capacity of a Polysaccharide from the Fruiting Bodies of Auricularia Polytricha. Carbohydr. Polym. 2010, 80(2), 377–380. DOI: 10.1016/j.carbpol.2009.11.033.
  • Li, Q.; Zhang, L.; Li, W.; Li, X.; Huang, W.; Yang, H.; Zheng, L. Chemical Compositions and Volatile Compounds of Tricholoma Matsutake from Different Geographical Areas at Different Stages of Maturity. Food Sci. Biotechnol. 2016, 25(1), 71–77. DOI: 10.1007/s10068-016-0010-1.
  • Wu, Q.; Tan, Z.-P.; Liu, H.-D.; Gao, L.; Wu, S.-J.; Luo, J.-W.; Zhang, W.-Z.; Zhao, T.-L.; Yu, J.-F.; Xu, X.-H. Chemical Characterization of Auricularia Auricula Polysaccharides and Its Pharmacological Effect on Heart Antioxidant Enzyme Activities and Left Ventricular Function in Aged Mice. Int. J. Biol. Macromol. 2010, 46(3), 284–288. DOI: 10.1016/j.ijbiomac.2010.01.016.
  • Chen, Y.; Du, X.-J.; Zhang, Y.; Liu, X.-H.; Wang, X.-D. Ultrasound Extraction Optimization, Structural Features, and Antioxidant Activity of Polysaccharides from Tricholoma Matsutake. J. Zhejiang Univ-SC. B. 2017, 18(8), 674–684. DOI: 10.1631/jzus.b1600239.
  • Luo, A.; Luo, A.; Huang, J.-D.; Fan, Y.-J. Purification, Characterization and Antioxidant Activities in vitro and in vivo of the Polysaccharides from Boletus Edulis Bull. Molecules. 2012, 17(7), 8079–8090. DOI: 10.3390/molecules17078079.
  • Yuan, T.-Q.; Sun, S.-N.; Xu, F.; Sun, R.-C. Characterization of Lignin Structures and Lignin–carbohydrate Complex (LCC) Linkages by Quantitative13c and 2D HSQC NMR Spectroscopy. J. Agric. Food Chem. 2011, 59(19), 10604–10614. DOI: 10.1021/jf2031549.
  • Mondal, S.; Chakraborty, I.; Pramanik, M.; Rout, D.; Islam, S. S. Structural Studies of Water-Soluble Polysaccharides of an Edible Mushroom, Termitomyces eurhizus. A Reinvestigation. Carbohyd. Res. 2004, 339(6), 1135–1140. DOI: 10.1016/j.carres.2004.02.019.
  • Schmid, F.; Stone, B. A.; McDougall, B. M.; Bacic, A.; Martin, K. L.; Brownlee, R. T. C.; Chai, E.; Seviour, R. J. Tructure of Epiglucan, a Highly Side-Chain/branched (1→3;1→6)-β-Glucan from the Micro Fungus Epicoccum Nigrum Ehrenb. Ex Schlecht. Carbohyd. Res. 2001, 331(2), 163–171. DOI: 10.1016/s0008-6215(01)00023-4.
  • Chen, S.-G.; Xue, C.-H.; Yin, L.-A.; Tang, Q.-J.; Yu, G.-L.; Chai, W.-G. Comparison of Structures and Anticoagulant Activities of Fucosylated Chondroitin Sulfates from Different Sea Cucumbers. Carbohydr. Polym. 2011, 83(2), 688–696. DOI: 10.1016/j.carbpol.2010.08.040.
  • Li, B.; Dobruchowska, J. M.; Gerwig, G. J.; Dijkhuizen, L.; Kamerling, J. P. Structural Investigation of Water-Soluble Polysaccharides Extracted from the Fruit Bodies of Coprinus Comatus. Carbohydr. Polym. 2013, 91(1), 314–321. DOI: 10.1016/j.carbpol.2012.08.045.
  • Zhu, K.-X.; Nie, S.-P.; Li, C.; Lin, S.; Xing, M.-M.; Li, W.-J.; Gong, D.; Xie, M.-Y. A Newly Identified Polysaccharide from Ganoderma Atrum Attenuates Hyperglycemia and Hyperlipidemia. Int. J. Biol. Macromol. 2013, 57, 142–150. DOI: 10.1016/j.ijbiomac.2013.03.009.
  • Lin, P.-C.; Wu, D.-T.; Xie, J.; Zhao, J.; Li, S.-P. Characterization and Comparison of Bioactive Polysaccharides from the Tubers of Gymnadenia Conopsea. Food Hydrocolloid. 2015, 43, 199–206. DOI: 10.1016/j.foodhyd.2014.05.015.
  • Wu, D.-T.; Xie, J.; Wang, L.-Y.; Ju, Y.-J.; Lv, G.-P.; Leong, F.; Zhao, L.; Li, S.-P. Characterization of Bioactive Polysaccharides from Cordyceps Militaris Produced in China Using Saccharide Mapping. J. Funct. Foods. 2014, 9, 315–323. DOI: 10.1016/j.jff.2014.05.005.
  • Chen, L.; Pan, J.-Z.; Li, X.; Zhou, Y.; Meng, Q.-L.; Wang, Q. Endo-Polysaccharide of Phellinus Igniarius Exhibited Anti-Tumor Effect Through Enhancement of Cell Mediated Immunity. Int. Immunopharmacol. 2011, 11(2), 255–259. DOI: 10.1016/j.intimp.2010.11.033.
  • Zong, A.; Cao, H.; Wang, F. Anticancer Polysaccharides from Natural Resources: A Review of Recent Research. Carbohydr. Polym. 2012, 90(4), 1395–1410. DOI: 10.1016/j.carbpol.2012.07.026.
  • Wasser, S. P. Medicinal Mushrooms as a Source of Antitumor and Immunomodulating Polysaccharides. Appl. Microbiol. Biot. 2002, 60(3), 258–274. DOI: 10.1007/s00253-002-1076-7.
  • Chihara, G.; Hamuro, J.; Maeda, Y.; Arai, Y.; Fukuoka, F. Fractionation and Purification of the Polysaccharides with Marked Antitumor Activity, Especially Lentinan, from Lentinus Edodes (Berk.) Sing. (an Edible Mushroom). Cancer Res. 1970, 30(11), 2776–2781. DOI: 10.2138/am.2007.2184.
  • Ren, D.-Y.; Jiao, Y.-D.; Yang, X.-B.; Yuan, L.; Guo, J.-J.; Zhao, Y. Antioxidant and Antitumor Effects of Polysaccharides from the Fungus Pleurotus Abalonus. Chem. Biol. Interact. 2015, 237, 166–174. DOI: 10.1016/j.cbi.2015.06.017.
  • Ma, G.-X.; Yang, W.-J.; Mariga, A. M.; Fang, Y.; Ma, N.; Pei, F.; Hu, Q.-H. Purification, Characterization and Antitumor Activity of Polysaccharides from Pleurotus Eryngii Residue. Carbohydr. Polym. 2014, 114, 297–305. DOI: 10.1016/j.carbpol.2014.07.069.
  • Wu, D.-T.; Meng, L.-Z.; Wang, L.-Y.; Lv, G.-P.; Cheong, K.-L.; Hu, D.-J.; Guan, J.; Zhao, J.; Li, S.-P. Chain Conformation and Immunomodulatory Activity of a Hyperbranched Polysaccharide from Cordyceps Sinensis. Carbohydr. Polym. 2014, 110, 405–414. DOI: 10.1016/j.carbpol.2014.04.044.
  • Liu, D.; Sun, Q.-W.; Xu, J.; Li, N.; Lin, J.-N.; Chen, S.; Li, F. Purification, Characterization, and Bioactivities of a Polysaccharide from Mycelial Fermentation of Bjerkandera Fumosa. Carbohydr. Polym. 2017, 167, 115–122. DOI: 10.1016/j.carbpol.2017.03.029.
  • Coskun, M. Intestinal Epithelium in Inflammatory Bowel Disease. Front. Med. Lausanne. 2014, 1, 24. DOI: 10.3389/fmed.2014.00024.
  • Chambrun, G.-P.-P.; Sandborn, W.-J. IBD in 2011: Advances in IBD Management–towards a Tailored Approach. Nat. Rev. Gastro. Hepat. 2012, 9(2), 70. DOI: 10.1038/nrgastro.2011.248.
  • Kanwal, S.; Joseph, T.-P.; Aliya, S.; Song, S.-Y.; Saleem, M.-Z.; Nisar, M.-A.; Wang, Y.; Meyiah, A.; Ma, Y.-F.; Xin, Y. Attenuation of DSS Induced Colitis by Dictyophora Indusiata Polysaccharide (DIP) via Modulation of Gut Microbiota and Inflammatory Related Signaling Pathways. J. Funct. Foods. 2019, 64, 103641. DOI: 10.1016/j.jff.2019.103641.
  • Zhao, D.; Dai, W.-J.; Tao, H.; Zhuang, W.; Qu, M.; Chang, Y.-N. Polysaccharide Isolated from Auricularia Auricular-Judae (Bull.) Prevents Dextran Sulfate Sodium‐induced Colitis in Mice Through Modulating the Composition of the Gut Microbiota. J. Food Sci. 2020, 85(9), 2943–2951. DOI: 10.1111/1750-3841.15319.
  • Barbosa, J.-R.; Junior, R.-N.-C. Polysaccharides Obtained from Natural Edible Sources and Their Role in Modulating the Immune System: Biologically Active Potential That Can Be Exploited Against COVID-19. Trends Food Sci. Tech. 2021, 108, 223–235. DOI: 10.1016/j.tifs.2020.12.026.
  • Chen, G.-J.; Yuan, Q.-X.; Saeeduddin, M.; Ou, S.-Y.; Zeng, X.-X.; Ye, H. Recent Advances in Tea Polysaccharides: Extraction, Purification, Physicochemical Characterization and Bioactivities. Carbohydr. Polym. 2016, 153, 663–678. DOI: 10.1016/j.carbpol.2016.08.022.
  • Fu, W.; Chen, J.-L.; Cai, Y.-L.; Lei, Y.-F.; Chen, L.; Pei, L.; Zhou, D.-N.; Liang, X.-F.; Ruan, J.-L. Antioxidant, Free Radical Scavenging, Anti-Inflammatory and Hepatoprotective Potential of the Extract from Parathelypteris Nipponica (Franch. Et Sav.) Ching. J. Ethnopharmacol. 2010, 130(3), 521–528. DOI: 10.1016/j.jep.2010.05.039.
  • Wang, C.-R.; Ng, T. B.; Li, L.; Fang, J.-C.; Jiang, Y.; Wen, T.-Y.; Wen, T.-Q.; Ning, L.; Liu, F. Isolation of a Polysaccharide with Antiproliferative, Hypoglycemic, Antioxidant and HIV-1 Reverse Transcriptase Inhibitory Activities from the Fruiting Bodies of the Abalone Mushroom Pleurotus Abalonus. J. Pharm. Pharmacol. 2011, 63(6), 825–832. DOI: 10.1111/j.2042-7158.2011.01274.x.
  • Pan, K.; Jiang, Q.; Liu, G.; Miao, X.; Zhong, D. Optimization Extraction of Ganoderma Lucidum Polysaccharides and Its Immunity and Antioxidant Activities. Int. J. Biol. Macromol. 2013, 55, 301–306. DOI: 10.1016/j.ijbiomac.2013.01.022.
  • Wild, S. H.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global Prevalence of Diabetes: Estimates for the Year 2000 and Projections for 2030: Response to Rathman and Giani. Diabetes Care. 2004, 27(10), 2569–2570. DOI: 10.2337/diacare.27.10.2569a.
  • Adler, A.-I.; Stevens, R.-J.; Neil, A.; Stratton, I.-M.; Boulton, A.-J.-M.; Holman, R.-R. UKPDS 59: Hyperglycemia and Other Potentially Modifiable Risk Factors for Peripheral Vascular Disease in Type 2 Diabetes. Diabetes Care. 2002, 25(5), 894–899. DOI: 10.2337/diacare.25.5.894.
  • Zhu, K.-X.; Nie, S.-P.; Li, C.; Gong, D.; Xie, M.-Y. Ganoderma Atrum Polysaccharide Improves Aortic Relaxation in Diabetic Rats via Pi3k/akt Pathway. Carbohydr. Polym. 2014, 103, 520–527. DOI: 10.1016/j.carbpol.2013.12.080.
  • Jia, J.; Zhang, X.; Hu, Y.-S.; Wu, Y.; Wang, Q.-Z.; Li, N.-N.; Guo, Q.-C.; Dong, X.-C. Evaluation of in vivo Antioxidant Activities of Ganoderma Lucidum Polysaccharides in STZ-Diabetic Rats. Food Chem. 2009, 115(1), 32–36. DOI: 10.1016/j.foodchem.2008.11.043.
  • Ostrau, C.; Hülsenbeck, J.; Herzog, M.; Schad, A.; Torzewski, M.; Lackner, K. J.; Fritz, G. Lovastatin Attenuates Ionizing Radiation-Induced Normal Tissue Damage in vivo. Radiother. Oncol. 2009, 92(3), 492–499. DOI: 10.1016/j.radonc.2009.06.020.
  • Zhao, W.; Jiang, X.-J.; Deng, W.-W.; Lai, Y.-H.; Wu, M.; Zhang, Z. Antioxidant Activities of Ganoderma Lucidum Polysaccharides and Their Role on DNA Damage in Mice Induced by Cobalt-60 Gamma-Irradiation. Food Chem. Toxicol. 2012, 50(2), 303–309. DOI: 10.1016/j.fct.2011.10.071.
  • Joseph, J.; Smina, T.-P.-P.; Janardhanan, K.-K. Polysaccharide Protein Complex Isolated from Mushroom Phellinus Rimosus (Berk.) Pilat Alleviates γ Radiation-Induced Toxicity in Mice. Cancer Biother. Radio. 2011, 26(3), 299–308. DOI: 10.1089/cbr.2010.0905.
  • Li, C.; Mao, X.; Xu, B. Pulsed Electric Field Extraction Enhanced Anti-Coagulant Effect of Fungal Polysaccharide from Jewʻs Ear (Auricularia auricula). Phytochem. Anal. 2012, 24(1), 36–40. DOI: 10.1002/pca.2376.
  • . Ganesan, K.; Sukalingam, K.; Xu, B. Impact of Consumption of Repeatedly Heated Cooking Oils on the Incidence of Various Cancers-A Critical Review. Crit. Rev. Food Sci. 2017, 1–18. DOI: 10.1080/10408398.2017.1379470.
  • Kumar, G.; Murugesan, A. G. Hypolipidaemic Activity of Helicteres Isora L. Bark Extracts in Streptozotocin Induced Diabetic Rats. J. Ethnopharmacol. 2008, 116(1), 161–166. DOI: 10.1016/j.jep.2007.11.020.
  • Giavasis, I. Bioactive Fungal Polysaccharides as Potential Functional Ingredients in Food and Nutraceuticals. Curr. Opin. Biotech. 2014, 26, 162–173. DOI: 10.1016/j.copbio.2014.01.010.
  • Zeng, F.; Zhao, C.; Pang, J.; Lin, Z.; Huang, Y.; Liu, B. Chemical Properties of a Polysaccharide Purified from Solid-State Fermentation of Auricularia Auricular and Its Biological Activity as a Hypolipidemic Agent. J. Food Sci. 2013, 78(9), H1470–H1475. DOI: 10.1111/1750-3841.12226.
  • Yoshimoto, S.; Loo, T.-M.; Atarashi, K.; Kanda, H.; Sato, S.; Oyadomari, S.; Iwakura, Y.; Oshima, K.; Morita, H.; Hattori, M., et al. Obesity-Induced Gut Microbial Metabolite Promotes Liver Cancer Through Senescence Secretome. Nature. 2013, 499(7456), 97–101. DOI: 10.1038/nature12347.
  • El-Sayed Moustafa, J.-S.; Froguel, P. From Obesity Genetics to the Future of Personalized Obesity Therapy. Nat. Rev. Endocrinol. 2013, 9(7), 402–413. DOI: 10.1038/nrendo.2013.57.
  • Hoyt, C.-L.; Burnette, J.-L.; Auster-Gussman, L. “Obesity is a Disease”: Examining the Self-Regulatory Impact of This Public-Health Message. Psychol. Sci. 2014, 25(4), 997–1002. DOI: 10.1177/0956797613516981.
  • Ganesan, K.; Xu, B. Anti-Obesity Effects of Medicinal and Edible Mushrooms. Molecules. 2018, 23(11), 2880. DOI: 10.3390/molecules23112880.
  • Ley, R.-E.; Turnbaugh, P.-J.; Klein, S.; Gordon, J.-I. Human Gut Microbes Associated with Obesity. Nature. 2006, 444(7122), 1022–1023. DOI: 10.1038/4441022a.
  • Chang, C.-J.; Lin, C.-S.; Lu, C.-C.; Martel, J.; Ko, Y.-F.; Ojcius, D.-M.; Tseng, S.-F.; Wu, T.-R.; Margaret Chen, Y.-Y.; Young, J.-D., et al. Ganoderma Lucidum Reduces Obesity in Mice by Modulating the Composition of the Gut Microbiota. Nat. Commun. 2015, 6(1), 4789. DOI: 10.1038/ncomms8489.
  • Chen, G.; Luo, Y.-C.; Ji, B.-P.; Li, B.; Guo, Y.; Li, Y.; Su, W.; Xiao, Z.-L. Effect of Polysaccharide from Auricularia Auricula on Blood Lipid Metabolism and Lipoprotein Lipase Activity of ICR Mice Fed a Cholesterol-Enriched Diet. J. Food Sci. 2008, 73(6), H103–H108. DOI: 10.1111/j.1750-3841.2008.00821.x.
  • Malik, S. Impact of the Metabolic Syndrome on Mortality from Coronary Heart Disease, Cardiovascular Disease, and All Causes in United States Adults. Circulation 2004, 110(10), 1245–1250. DOI: 10.1161/01.cir.0000140677.20606.0e.
  • Mohamed Yahaya, N.-F.; Rahman, M.-A.; Abdullah, N. Therapeutic Potential of Mushrooms in Preventing and Ameliorating Hypertension. Trends Food Sci. Tech. 2014, 39(2), 104–115. DOI: 10.1016/j.tifs.2014.06.002.
  • Lau, C. C.; Abdullah, N.; Shuib, A. S.; Aminudin, N. Novel Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Edible Mushroom Agaricus Bisporus (J.E. Lange) Imbach Identified by LC-MS/MS. Food Chem. 2014, 148, 396–401. DOI: 10.1016/j.foodchem.2013.10.053.
  • Miyazawa, N.; Okazaki, M.; Ohga, S. Antihypertensive Effect of Pleurotus Nebrodensis in Spontaneously Hypertensive Rats. J. Oleo Sci. 2008, 57(12), 675–681. DOI: 10.5650/jos.57.675.
  • Shan, Q.; Lu, J.; Zheng, Y.-L.; Li, J.; Zhou, Z.; Hu, B.; Zhang, Z.-F.; Fan, S.-H.; Mao, Z.; Wang, Y.-J., et al. Purple Sweet Potato Color Ameliorates Cognition Deficits and Attenuates Oxidative Damage and Inflammation in Aging Mouse Brain Induced by D-Galactose. J. Biomed. Biotechnol. 2009, 2009, 1–9. DOI: 10.1155/2009/564737.
  • Govindan, S.; Johnson, E.-E.-R.; Christopher, J.; Shanmugam, J.; Thirumalairaj, V.; Gopalan, J. Antioxidant and Anti-Aging Activities of Polysaccharides from Calocybe Indica Var. APK2. Exp. Toxicol. Pathol. 2016, 68(6), 329–334. DOI: 10.1016/j.etp.2016.04.001.
  • Yin, Z.; Yang, B.; Ren, H. Preventive and Therapeutic Effect of Ganoderma (Lingzhi) on Skin Diseases and Care. Adv. Exp. Med. Biol. 2019, 1182, 311–321. DOI: 10.1007/978-981-32-9421-9_14.
  • Mahmoud, M. E.; Hesham, A.-E.-L.; Ahmed, Y.-A.-G.; Sayed, M. Inhibition of Melanogenesis by the Extract from Agaricus Blazei Without Affecting iNos Gene Expression. World J. Microb. Biot. 2010, 26(11), 2029–2035. DOI: 10.1007/s11274-010-0387-6.
  • Hu, S.-H.; Huang, J.-H.; Pei, S.-Y.; Ouyang, Y.-J.; Ding, Y.-F.; Jiang, L.; Lu, J.-Y.; Kang, L.-Y.; Huang, L.-H.; Xiang, H., et al. Ganoderma Lucidum Polysaccharide Inhibits UVB-Induced Melanogenesis by Antagonizing cAmp/pka and ROS/MAPK Signaling Pathways. J. Cell. Physiol. 2019, 234(5), 7330–7340. DOI: 10.1002/jcp.27492.
  • Chen, W.; Wang, W.-P.; Zhang, H.-S.; Huang, Q. Optimization of Ultrasonic-Assisted Extraction of Water-Soluble Polysaccharides from Boletus Edulis Mycelia Using Response Surface Methodology. Carbohydr. Polym. 2012, 87(1), 614–619. DOI: 10.1016/j.carbpol.2011.08.029.
  • Chen, C.; Shao, Y.; Tao, Y.; Wen, H. Optimization of Dynamic Microwave-Assisted Extraction of Armillaria Polysaccharides Using RSM, and Their Biological Activity. Food Sci. Technol. 2015, 64(2), 1263–1269. DOI: 10.1016/j.lwt.2015.07.009.
  • Wang, Y.; Jia, J.; Ren, X.; Li, B.; Zhang, Q. Extraction, Preliminary Characterization and in vitro Antioxidant Activity of Polysaccharides from Oudemansiella Radicata Mushroom. Int. J. Biol. Macromol. 2018, 120, 1760–1769. DOI: 10.1016/j.ijbiomac.2018.09.209.
  • Liu, Y.; Zhang, Z.; Hu, L. High Efficient Freeze-Drying Technology in Food Industry. Crit. Rev. Food Sci. 2021, 11, 1–19. DOI: 10.1080/10408398.2020.1865261.
  • Zhang, H.; Wang, Z.-Y.; Zhang, Z.; Wang, X. Purified Auricularia Auricular-Judae Polysaccharide (AAP I-a) Prevents Oxidative Stress in an Ageing Mouse Model. Carbohydr. Polym. 2011, 84(1), 638–648. DOI: 10.1016/j.carbpol.2010.12.044.
  • Wei, Y.-B.; Zhao, Q.; Wu, Q.-Q.; Zhang, H.; Kong, W.-B.; Liang, J.-Y.; Yao, J.; Zhang, J.; Wang, J.-L. Efficient Synthesis of Polysaccharide with High Selenium Content Mediated by Imidazole-Based Acidic Ionic Liquids. Carbohydr. Polym. 2019, 203, 157–166. DOI: 10.1016/j.carbpol.2018.09.047.
  • Xu, D.-D.; Wang, H.-Y.; Zheng, W.; Gao, Y.; Wang, M.-X.; Zhang, Y.-Q.; Gao, Q.-P. Charaterization and Immunomodulatory Activities of Polysaccharide Isolated from Pleurotus Eryngii. Int. J. Biol. Macromol. 2016, 92, 30–36. DOI: 10.1016/j.ijbiomac.2016.07.016.
  • Xu, Y.; Wu, Y.-J.; Sun, P.-L.; Zhang, F.-M.; Linhardt, R.-J.; Zhang, A.-Q. Chemically Modified Polysaccharides: Synthesis, Characterization, Structure Activity Relationships of Action. Int. J. Biol. Macromol. 2019, 132, 970–977. DOI: 10.1016/j.ijbiomac.2019.03.213.
  • Chien, C.-C.; Tsai, M.-L.; Chen, C.-C.; Chang, S.-J.; Tseng, C.-H. Effects on Tyrosinase Activity by the Extracts of Ganoderma Lucidum and Related Mushrooms. Mycopathologia. 2008, 166(2), 117–120. DOI: 10.1007/s11046-008-9128-x.
  • Lindequist, U.; Niedermeyer, T.-H.-J.; Jülich, W.-D. The Pharmacological Potential of Mushrooms. Evid-Based Compl. Alt. 2010, 2(3), 285–299. DOI: 10.1093/ecam/neh107.
  • Cheng, P.-G.; Phan, C.-W.; Sabaratnam, V.; Abdullah, N.; Abdulla, M.-A.; Kuppusamy, U.-R. Polysaccharides-Rich Extract of Ganoderma Lucidum (M.A. Curtis:Fr.) P.Karst Accelerates Wound Healing in Streptozotocin-Induced Diabetic Rats. Evid-Based Compl. Alt. 2013, 2013, 1–9. DOI: 10.1155/2013/671252.
  • Fritz, H.; Kennedy, D.-A.; Ishii, M.; Fergusson, D.; Fernandes, R.; Cooley, K.; Seely, D. Polysaccharide K and Coriolus Versicolor Extracts for Lung Cancer: A Systematic Review. Integr. Cancer Ther. 2015, 14(3), 201–211. DOI: 10.1177/1534735415572883.
  • Ghattas, M.; Dwivedi, G.; Lavertu, M.; Alameh, M.-G. Vaccine Technologies and Platforms for Infectious Diseases: Current Progress, Challenges, and Opportunities. Vaccines-Basel. 2021, 9, 1490. DOI: 10.3390/vaccines9121490.
  • DiPierro, F.; Bertuccioli, A.; Cavecchia, I. Possible Therapeutic Role of a Highly Standardized Mixture of Active Compounds Derived from Cultured Lentinula Edodes Mycelia (AHCC) in Patients Infected with 2019 Novel Coronavirus. Minerva Gastroenterol. 2020, 66(2), 172–176. DOI: 10.23736/S1121-421X.20.02697-5.
  • Roopngam, P.-E. Increased Response of Human T-Lymphocytes by Dendritic Cells Pulsed with HPV16E7 and Pleurotus Sajor-Caju-β-Glucan (PBG). Iran J. Immunol. 2018, 15(4), 246–255. DOI: 10.22034/IJI.2018.39394.
  • Tzianabos, A.-O. Polysaccharide Immunomodulators as Therapeutic Agents: Structural Aspects and Biologic Function. Clin. Microbiol. Rev. 2000, 13(4), 523–533. DOI: 10.1128/CMR.13.4.523.
  • Li, J.-Y.; Aipire, A.; Zhao, H.-X.; Yuan, P.-F.; Li, J.-Y. Pleurotus Ferulae Polysaccharides Improve the Antitumor Efficacy of Therapeutic Human Papillomavirus Dendritic Cell-Based Vaccine. Hum. Vaccines. 2019, 15(3), 611–619. DOI: 10.1080/21645515.2018.1547604.
  • He, J.; Liu, Z.-G.; Jiang, W.-M.; Zhu, T.-Y.; Wusiman, A.; Gu, P.-F.; Liu, J.-G.; Wang, D.-Y. Immune-Adjuvant Activity of Lentinan-Modified Calcium Carbonate Microparticles on a H5n1 Vaccine. Int. J. Biol. Macromol. 2020, 163, 1384–1392. DOI: 10.1016/j.ijbiomac.2020.08.005.
  • Bishop, K.-S.; Kao, C.-H.-J.; Xu, Y.-Y.; Glucina, M.-P.; Paterson, R.-R.-M.; Ferguson, L.-R. From 2000 Years of Ganoderma Lucidum to Recent Developments in Nutraceuticals. Phytochemistry. 2015, 114, 56–65. DOI: 10.1016/j.phytochem.2015.02.015.
  • Cheng, J.-J.; Chao, C.-H.; Lu, M.-K. Large-Scale Preparation of Sulfated Poly-Saccharides with Anti-Angionenic and Anti-Inflammatory Properties from Antrodia Cinnamomia. Int. J. Biol. Macromol. 2018, 113, 1198–1205. DOI: 10.1016/j.ijbiomac.2018.03.056.
  • Vetchinkina, E.; Fomin, A.; Navolokin, N.; Shirokov, A. Proteins and Polysaccharides from Vegetative Mycelium of Medicinal Basidiomycete Lentinus Edodes Display Cytotoxicity Towards Human and Animal Cancer Cell Lines. Int. J. Biol. Macromol. 2021, 195, 398–411. DOI: 10.1016/j.ijbiomac.2021.12.059.
  • Duvnjak, D.; Pantić, M.; Pavlović, V.; Nedović, V.; Lević, S.; Matijašević, D.; Sknepnek, A.; Nikšić, M. Advances in Batch Culture Fermented Coriolus Versicolor Medicinal Mushroom for the Production of Antibacterial Compounds. Innov. Food Sci. Emerg. 2016, 34, 1–8. DOI: 10.1016/j.ifset.2015.12.028.
  • Xu, C.-P.; Geng, L.-J.; Zhang, W.-Y. Production of Extracellular Polysaccharides by the Medicinal Mushroom Trametes Trogii (Higher Basidiomycetes) in Stirred-Tank and Airlift Reactors. Int. J. Med. Mushrooms. 2013, 15(2), 183–189. DOI: 10.1615/intjmedmushr.v15.i2.70.
  • Sun, M.; Wang, Y.-X.; Li, W.-D.; Cai, X.-Q.; Qi, D.-M.; Zhang, Y.-Q.; Han, C.-C. Comparison of the Structures and Prebiotic-Like Effects in vitro of Polysaccharides from Coprinus Comatus Fruit Body and Mycelium. Int. J. Biol. Macromol. 2020, 165, 2621–2629. DOI: 10.1016/j.ijbiomac.2020.10.163.
  • Hou, C.-L.; Liu, L.-Y.; Ren, J.-Y.; Huang, M.; Yuan, E.-D. Structural Characterization of Two Hericium Erinaceus Polysaccharides and Their Protective Effects on the Alcohol-Induced Gastric Mucosal Injury. Food Chem. 2021, 375, 131896. DOI: 10.1016/j.foodchem.2021.131896.
  • Cui, F.-J.; Wu, X.-H.; Tao, T.-L.; Zan, X.-Y.; Sun, W.-J.; Ma, D.-S.; Yang, Y.; Wu, D. Functions of a Glucan Synthase Gene GFGLS in Mycelial Growth and Polysaccharide Production of Grifola Frondosa. J. Agr. Food Chem. 2019, 67(32), 8875–8883. DOI: 10.1021/acs.jafc.9b03569.
  • Zan, X.-Y.; Wu, X.-H.; Cui, F.-J.; Zhu, H.-A.; Sun, W.-J.; Jiang, L.-H.; Tao, T.-L.; Zhao, X. UDP-Glucose Pyrophosphorylase Gene Affects Mycelia Growth and Polysaccharide Synthesis of Grifola Frondosa. Int. J. Biol. Macromol. 2020, 161, 1161–1170. DOI: 10.1016/j.ijbiomac.2020.06.139.
  • Zou, G.; Ren, J.-B.; Wu, D.; Zhang, H.-N.; Gong, M.; Li, W.; Zhang, J.-S.; Yang, Y. Characterization and Heterologous Expression of UDP-Glucose 4-Epimerase from a Hericium Erinaceus Mutant with High Polysaccharide Production. Front. Bioeng. Biotechnol. 2021, 9, 796278. DOI: 10.3389/fbioe.2021.796278.
  • Zan, X.-Y.; Zhu, H.-A.; Jiang, L.-H.; Liang, Y.-Y.; Sun, W.-J.; Tao, T.-L.; Cui, F.-J. The Role of Rho1 Gene in the Cell Wall Integrity and Polysaccharides Biosynthesis of the Edible Mushroom Grifola Frondosa. Int. J. Biol. Macromol. 2020, 165, 1593–1603. DOI: 10.1016/j.ijbiomac.2020.09.239.
  • Zheng, Y.-Y.; Monty, J.; Linhardt, R.-J. Polysaccharide-Based Nanocomposites and Their Applications. Carbohyd. Res. 2015, 405, 23–32. DOI: 10.1016/j.carres.2014.07.016.
  • Yang, J.-S.; Han, S.-Y.; Zheng, H.-C.; Dong, H.-B.; Liu, J.-B. Preparation and Application of Micro/nanoparticles Based on Natural Polysaccharides. Carbohydr. Polym. 2015, 123, 53–66. DOI: 10.1016/j.carbpol.2015.01.029.
  • Silva, A.-K.-A.; Letourneur, D.; Chauvierre, C. Polysaccharide Nanosystems for Future Progress in Cardiovascular Pathologies. Theranostics. 2014, 4(6), 579–591. DOI: 10.7150/thno.7688.
  • Cimini, D.; Rosa, M.-D.; Schiraldi, C. Production of Glucuronic Acid-Based Polysaccharides by Microbial Fermentation for Biomedical Applications. Biotechnol. J. 2012, 7(2), 237–250. DOI: 10.1002/biot.201100242.
  • Akhlaghi, S.-P.; Peng, B.; Yao, Z.; Tam, K.-C. Sustainable Nanomaterials Derived from Polysaccharides and Amphiphilic Compounds. Soft Matter. 2013, 9(33), 7905. DOI: 10.1039/c3sm50358e.
  • Fang, D.; Deng, Z.; Jung, J.; Hu, Q.; Zhao, Y. Mushroom Polysaccharides-Incorporated Cellulose Nanofiber Films with Improved Mechanical, Moisture Barrier, and Antioxidant Properties. J. Appl. Polym. Sci. 2017, 135(15), 46166. DOI: 10.1002/app.46166.
  • Chou, W.-T.; Sheih, I.-C.; Fang, T.-J. The Applications of Polysaccharides from Various Mushroom Wastes as Prebiotics in Different Systems. J. Food Sci. 2013, 78(7), M1041–M1048. DOI: 10.1111/1750-3841.12160.
  • Guo, F.-C.; Kwakkel, R.-P.; Williams, B.-A.; Li, W.-K.; Li, H.-S.; Luo, J.-Y.; Li, X.-P.; Wei, Y.-X.; Yan, Z.-T.; Verstegen, M.-W.-A. Effects of Mushroom and Herb Polysaccharides, as Alternatives for an Antibiotic, on Growth Performance of Broilers. Br. Poult. Sci. 2004, 45(50), 684–694. DOI: 10.1080/00071660400006214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.