788
Views
2
CrossRef citations to date
0
Altmetric
Review

Nuts and Nut-Based Products: A Meta-Analysis from Intake Health Benefits and Functional Characteristics from Recovered Constituents

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon

References

  • INC, I. N. & D. Nuts & Dried Fruits Statistical Yearbook 2018/2019. 80, 2019. DOI: 10.1002/9781118464663.
  • Kartika, A. I.; Pontalier, P. Y.; Rigal, L. Twin-Screw Extruder for Oil Processing of Sunflower Seeds: Thermo-Mechanical Pressing and Solvent Extraction in a Single Step. Ind. Crops Prod. 2010, 32(3), 297–304. DOI: 10.1016/j.indcrop.2010.05.005.
  • Foschia, M.; Horstmann, S.; Arendt, E. K.; Zannini, E. Nutritional Therapy – Facing the Gap Between Coeliac Disease and Gluten-Free Food. Int. J. Food Microbiol. 2016, 239, 113–124. DOI: 10.1016/j.ijfoodmicro.2016.06.014.
  • Sethi, S.; Tyagi, S. K.; Anurag, R. K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53(9), 3408–3423. DOI: 10.1007/s13197-016-2328-3.
  • Kahleova, H.; Levin, S.; Barnard, N. D. Vegetarian Dietary Patterns and Cardiovascular Disease. Prog. Cardiovasc. Dis. 2018, 61(1), 54–61. DOI: 10.1016/j.pcad.2018.05.002.
  • Liu, R. H. Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action. J. Nutr. 2004, 134(12), 3479S–3485S. DOI: 10.1093/jn/134.12.3479s.
  • Chang, S. K.; Alasalvar, C.; Bolling, B. W.; Shahidi, F. Nuts and Their Co-Products: The Impact of Processing (Roasting) on Phenolics, Bioavailability, and Health Benefits - A Comprehensive Review. J. Funct. Foods. 2016, 26, 88–122. DOI: 10.1016/j.jff.2016.06.029.
  • Kochar, J.; Gaziano, J. M.; Djoussé, L. Nut Consumption and Risk of Type II Diabetes in the Physicians Health Study. Eur. J. Clin. Nutr. 2010, 64(1), 75–79. DOI: 10.1038/ejcn.2009.121.
  • Kendall, C. W. C.; Esfahani, A.; Josse, A. R.; Augustin, L. S. A.; Vidgen, E.; Jenkins, D. J. A. The Glycemic Effect of Nut-Enriched Meals in Healthy and Diabetic Subjects. Nutr. Metab. Cardiovasc. Dis. 2011, 21, S34–S39. DOI: 10.1016/j.numecd.2011.03.013.
  • Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of Nuts and Legumes and Risk of Incident Ischemic Heart Disease, Stroke, and Diabetes: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2014, 100(1), 278–288. DOI: 10.3945/ajcn.113.076901.
  • Luo, C.; Zhang, Y.; Ding, Y.; Shan, Z.; Chen, S.; Yu, M., Hu, F. B., Liu, L. Nut Consumption and Risk of Type 2 Diabetes, Cardiovascular Disease, and All-Cause Mortality: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2014, 100(1), 256–269. https://doi.org/10.1001/jama.290.1.38.
  • Grosso, G.; Yang, J.; Marventano, S.; Micek, A.; Galvano, F.; Kales, S. N. Nut Consumption on All-Cause, Cardiovascular, and Cancer Mortality Risk: A Systematic Review and Meta-Analysis of Epidemiologic Studies. Am. J. Clin. Nutr. 2015, 101(4), 783–793. DOI: 10.3945/ajcn.114.099515.
  • Mukuddem-Petersen, J.; Oosthuizen, W.; Jerling, J. C. A Systematic Review of the Effects of Nuts on Blood Lipid Profiles in Humans. J. Nutr. 2005, 135(9), 2082–2089. DOI: 10.1093/jn/135.9.2082.
  • Hernáez, Á.; Castañer, O.; Elosua, R.; Pintó, X.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Arós, F.; Serra-Majem, L.; Fitó, M.; et al. Mediterranean Diet Improves High-Density Lipoprotein Function in High-Cardiovascular-Risk Individuals. Circulation. 2017, 135(7), 633–643. DOI: 10.1161/CIRCULATIONAHA.116.023712.
  • Orem, A.; Yucesan, F. B.; Orem, C.; Akcan, B.; Kural, B. V.; Alasalvar, C.; Shahidi, F. Hazelnut-Enriched Diet Improves Cardiovascular Risk Biomarkers Beyond a Lipid-Lowering Effect in Hypercholesterolemic Subjects. J. Clin. Lipidol. 2013, 7(2), 123–131. DOI: 10.1016/j.jacl.2012.10.005.
  • Lee, Y. J.; Nam, G. E.; Seo, J. A.; Yoon, T.; Seo, I.; Lee, J. H.; Im, D.; Bahn, K.; Jeong, S. A.; Kang, T. S., et al. Nut Consumption Has Favorable Effects on Lipid Profiles of Korean Women with Metabolic Syndrome. Nutr. Res. 2014, 34(9), 814–820. DOI: 10.1016/j.nutres.2014.08.011.
  • Sauder, K. A.; McCrea, C. E.; Ulbrecht, J. S.; Kris-Etherton, P. M.; West, S. G. Effects of Pistachios on the Lipid/lipoprotein Profile, Glycemic Control, Inflammation, and Endothelial Function in Type 2 Diabetes: A Randomized Trial. Metab. Clin. Exp. 2015, 64(11), 1521–1529. DOI: 10.1016/j.metabol.2015.07.021.
  • Mah, E.; Schulz, J. A.; Kaden, V. N.; Lawless, A. L.; Rotor, J.; Mantilla, L. B. Cashew Consumption Reduces Total and LDL Cholesterol: A Randomized, Crossover, Controlled-Feeding Trial. Am. J. Clin. Nutr. 2017, 105(5), 1070–1078. https://doi.org/10.3945/ajcn.116.150037.2.
  • Kamel, B. S., and Kakuda, Y. Technological Advances in Improved and Alternative Sources of Lipids; (Springer, ed.) Aspen Publishers: Hong Kong, 1994.
  • Rabadán, A.; Pardo, J. E.; Gómez, R.; Álvarez-Ortí, M. Influence of Temperature in the Extraction of Nut Oils by Means of Screw Pressing. LWT - Food Sci. Technol. 2018, 93, 354–361. DOI: 10.1016/j.lwt.2018.03.061.
  • Matthäus, B. Utilization of High-Oleic Rapeseed Oil for Deep-Fat Frying of French Fries Compared to Other Commonly Used Edible Oils. Eur. J. Lipid Sci. Technol. 2006, 108(3), 200–211. DOI: 10.1002/ejlt.200500249.
  • Ryan, E.; Galvin, K.; O’-Connor, T. P.; Maguire, A. R.; O’-Brien, N. M. Fatty Acid Profile, Tocopherol, Squalene and Phytosterol Content of Brazil, Pecan, Pine, Pistachio and Cashew Nuts. Int. J. Food Sci. Nutr. 2006, 57(3–4), 219–228. DOI: 10.1080/09637480600768077.
  • Costa, P. A. D.; Ballus, C. A.; Teixeira-Filho, J.; Godoy, H. T. Phytosterols and Tocopherols Content of Pulps and Nuts of Brazilian Fruits. Food Res. Int. 2010, 43(6), 1603–1606. DOI: 10.1016/j.foodres.2010.04.025.
  • Cheng, M. H.; Dien, B. S.; Singh, V. Economics of Plant Oil Recovery: A Review. Biocatal. Agric. Biotechnol. 2019, 18, 101056. https://doi.org/10.1016/j.bcab.2019.101056.
  • Santos, O. V.; CorrêCorrêA, N. C. F.; Soares, F. A. S. M.; Gioielli, L. A.; Costa, C. E. F.; Lannes, S. C. S. Chemical Evaluation and Thermal Behavior of Brazil Nut Oil Obtained by Different Extraction Processes. Food Res. Int. 2012, 47(2), 253–258. DOI: 10.1016/j.foodres.2011.06.038.
  • Sena-Moreno, E.; Pardo, J. E.; Pardo-Giménez, A.; Gómez, R.; Alvarez-Ortí, M. Differences in Oils from Nuts Extracted by Means of Two Pressure Systems. Int. J. Food Prop. 2016, 19(12), 2750–2760. DOI: 10.1080/10942912.2016.1144068.
  • Zhuang, X.; Zhang, Z.; Wang, Y.; Li, Y. The Effect of Alternative Solvents to N-Hexane on the Green Extraction of Litsea Cubeba Kernel Oils as New Oil Sources. Ind. Crops Prod. 2018, 126, 340–346. DOI: 10.1016/j.indcrop.2018.10.004.
  • Potrich, E.; Miyoshi, S. C.; Machado, P. F. S.; Furlan, F. F.; Ribeiro, M. P. A.; Tardioli, P. W.; Giordano, R. L. C.; Cruz, A. J. G.; Giordano, R. C. Replacing Hexane by Ethanol for Soybean Oil Extraction: Modeling, Simulation, and Techno-Economic-Environmental Analysis. J. Cleaner Prod. 2020, 244, 118660. DOI: 10.1016/j.jclepro.2019.118660.
  • Kaparthi, R.; Chari, K. S. Solubilities of Vegetable Oils in Aqueous Ethanol and Ethanol-Hexane Mixtures. J. Am. Oil Chem. Soc. 1959, 36(2), 77–80. DOI: 10.1007/BF02540248.
  • Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A. S.; Abert-Vian, M. Review of Green Food Processing Techniques. Preservation, Transformation, and Extraction. Innovative Food Sci. Emerg. Technol. 2017, 41, 357–377. DOI: 10.1016/j.ifset.2017.04.016.
  • Moreda-Piñeiro, J.; Moreda-Piñeiro, A. Combined Assisted Extraction Techniques as Green Sample Pre-Treatments in Food Analysis. TrAc, Trends Anal. Chem. 2019, 118, 1–18. DOI: 10.1016/j.trac.2019.05.026.
  • Ferro, D. M.; Mazzutti, S.; Vitali, L.; Oliveira Müller, C. M.; Ferreira, S. R. S. Integrated Extraction Approach to Increase the Recovery of Antioxidant Compounds from Sida Rhombifolia Leaves. J. Supercrit. Fluids. 2019, 149, 10–19. DOI: 10.1016/j.supflu.2019.03.013.
  • Polmann, G.; Badia, V.; Frena, M.; Teixeira, G. L.; Rigo, E.; Block, J. M.; Feltes, C. Enzyme-Assisted Aqueous Extraction Combined with Experimental Designs Allow the Obtaining of a High-Quality and Yield Pecan Nut Oil. LWT - Food Sci. Technol. 2019, 113, 108283. DOI: 10.1016/j.lwt.2019.108283.
  • Mangold, H. K. Extraction with Supercritical Fluids: A Progress Report from Germany. J. Am. Oil Chem. Soc. 1982, 59(9), 673A–674A. DOI: 10.1007/BF02636033.
  • Zhang, Q. A.; Fan, X. H.; Zhang, Z. Q.; Zhang, B. S.; Zhang, Z. Q.; Jia, X. Y. Optimization of SC-Co2 Extraction of Oil from Almond Pretreated with Autoclaving. LWT - Food Sci. Technol. 2009, 42(9), 1530–1537. DOI: 10.1016/j.lwt.2009.05.007.
  • Oliveira, R.; Rodrigues, M. F.; Bernardo-Gil, M. G. Characterization and Supercritical Carbon Dioxide Extraction of Walnut Oil. J. Am. Oil Chem. Soc. 2002, 79(3), 225–230. DOI: 10.1007/s11746-002-0465-y.
  • Salvador, A. A.; Podestá, R.; Block, J. M.; Ferreira, S. R. S. Increasing the Value of Pecan Nut [Carya Illinoinensis (Wangenh) C. Koch] Cake by Means of Oil Extraction and Antioxidant Activity Evaluation. J. Supercrit. Fluids. 2016, 116, 215–222. DOI: 10.1016/j.supflu.2016.05.046.
  • Leo, L.; Rescio, L.; Ciurlia, L.; Zacheo, G. Supercritical Carbon Dioxide Extraction of Oil and α-Tocopherol from Almond Seeds. J. Sci. Food Agric. 2005, 85(13), 2167–2174. DOI: 10.1002/jsfa.2244.
  • Nimet, G.; da Silva, E. A.; Palú, F.; Dariva, C.; Freitas, L. D. S.; Neto, A. M.; Filho, L. C. Extraction of Sunflower (Heliantus Annuus L.) Oil with Supercritical Co2 and Subcritical Propane: Experimental and Modeling. Chem. Eng. J. 2011, 168(1), 262–268. DOI: 10.1016/j.cej.2010.12.088.
  • Dias, J. L.; Mazzutti, S.; de Souza, J. A. L.; Ferreira, S. R. S.; Soares, L. A. L.; Stragevitch, L.; Danielski, L. Extraction of Umbu (Spondias tuberosa) Seed Oil Using Co2, Ultrasound and Conventional Methods: Evaluations of Composition Profiles and Antioxidant Activities. J. Supercrit. Fluids. 2019, 145, 10–18. DOI: 10.1016/j.supflu.2018.11.011.
  • De Zordi, N.; Cortesi, A.; Kikic, I.; Moneghini, M.; Baldan, V.; Sut, S.; Solinas, D.; Dall’-Acqua, S. The Supercritical Carbon Dioxide Extraction of Ω-3, Ω-6 Lipids and Β-Sitosterol from Italian Walnuts: A Central Composite Design Approach. J. Supercrit. Fluids. 2017, 127, 223–228. DOI: 10.1016/j.supflu.2017.02.020.
  • Rosenthal, A.; Pyle, D. L.; Niranjan, K. Aqueous and Enzymatic Processes for Edible Oil Extraction. Enzyme Microb. Technol. 1996, 19(6), 402–420. DOI: 10.1016/S0141-0229(96)80004-F.
  • Jiang, L.; Hua, D.; Wang, Z.; Xu, S. Aqueous Enzymatic Extraction of Peanut Oil and Protein Hydrolysates. Food Bioprod. Process. 2010, 88(2–3), 233–238. DOI: 10.1016/j.fbp.2009.08.002.
  • Kong, Q.; Chen, F.; Wang, X.; Li, J.; Guan, B.; Lou, X. Optimization of Conditions for Enzymatic Production of ACE Inhibitory Peptides from Collagen. Food Bioprocess. Technol. 2011, 4(7), 1205–1211. DOI: 10.1007/s11947-009-0198-7.
  • Mat Yusoff, M.; Gordon, M. H.; Ezeh, O.; Niranjan, K. Aqueous Enzymatic Extraction of Moringa Oleifera Oil. Food Chem. 2016, 211, 400–408. DOI: 10.1016/j.foodchem.2016.05.050.
  • Buenrostro, M.; López-Munguia, A. C. Enzymatic Extraction of Avocado Oil. Biotechnol. Lett. 1986, 8(7), 505–506. DOI: 10.1007/BF01025210.
  • Moreau, R. A.; Dickey, L. C.; Johnston, D. B.; Hicks, K. B., et al. A Process for the Aqueous Enzymatic Extraction of Corn Oil from Dry Milled Corn Germ and Enzymatic Wet Milled Corn Germ (E-Germ). J. Am. Oil Chem. Soc. 2009, 86(5), 469–474.
  • Sun-Waterhouse, D.; Zhao, M.; Waterhouse, G. I. N. Protein Modification During Ingredient Preparation and Food Processing: Approaches to Improve Food Processability and Nutrition. Food Bioprocess. Technol. 2014, 7(7), 1853–1893. DOI: 10.1007/s11947-014-1326-6.
  • Cotabarren, J.; Rosso, A. M.; Tellechea, M.; GarcíGarcíA-Pardo, J.; Rivera, J. L.; Obregón, W. D.; Parisi, M. G. Adding Value to the Chia (Salvia Hispanica L.) Expeller: Production of Bioactive Peptides with Antioxidant Properties by Enzymatic Hydrolysis with Papain. Food Chem. 2019, 274, 848–856. DOI: 10.1016/j.foodchem.2018.09.061.
  • Rovaris, Â. A.; Dias, C. O.; da Cunha, I. P.; Scaff, R. M. C.; de Francisco, A.; Petkowicz, C. L. O.; Amante, E. R. Chemical Composition of Solid Waste and Effect of Enzymatic Oil Extraction on the Microstructure of Soybean (Glycine max). Ind. Crops Prod. 2012, 36(1), 405–414. DOI: 10.1016/j.indcrop.2011.10.001.
  • Rovaris, Â. A.; Balsamo, G. M.; de Oliveira Costa, A. C.; Maisonnave Arisi, A. C.; Micke, G. A.; Piovezan, M.; Petkowicz, C. L. O.; Amante, E. R. Chemical Characterization of Liquid Residues from Aqueous Enzymatic Extraction of Soybean Oil. LWT Food Sci. Technol.y. 2013, 51(1), 51–58. https://doi.org/10.1016/j.lwt.2012.10.001.
  • Sharma, A.; Gupta, M. N. Ultrasonic Pre-Irradiation Effect Upon Aqueous Enzymatic Oil Extraction from Almond and Apricot Seeds. Ultrason. Sonochem. 2006, 13(6), 529–534. DOI: 10.1016/j.ultsonch.2005.09.008.
  • Hu, B.; Zhou, K.; Liu, Y.; Liu, A.; Zhang, Q.; Han, G.; Liu, S.; Yang, Y.; Zhu, Y.; Zhu, D. Optimization of Microwave-Assisted Extraction of Oil from Tiger Nut (Cyperus Esculentus L.) and Its Quality Evaluation. Ind. Crops Prod. 2018, 115, 290–297. DOI: 10.1016/j.indcrop.2018.02.034.
  • Azmir, J.; Zaidul, I. S. M.; Rahman, M. M.; Sharif, K. M.; Mohamed, A.; Sahena, F.; Jahurul, M. H. A.; Ghafoor, K.; Norulaini, N. A. N.; Omar, A. K. M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117(4), 426–436. DOI: 10.1016/j.jfoodeng.2013.01.014.
  • Mirzadeh, M.; Arianejad, M. R.; Khedmat, L. Antioxidant, Antiradical, and Antimicrobial Activities of Polysaccharides Obtained by Microwave-Assisted Extraction Method: A Review. Carbohydr. Polym. 2020, 229, 115421. DOI: 10.1016/j.carbpol.2019.115421.
  • Pengdee, C.; Sritularak, B.; Putalun, W. Optimization of Microwave-Assisted Extraction of Phenolic Compounds in Dendrobium Formosum Roxb. Ex Lindl. and Glucose Uptake Activity. S. Afr. J. Bot. 2020, 132, 423–431. DOI: 10.1016/j.sajb.2020.06.009.
  • Dailey, A.; Vuong, Q. V. Optimum Conditions for Microwave Assisted Extraction for Recovery of Phenolic Compounds and Antioxidant Capacity from Macadamia (Macadamia Tetraphylla) Skin Waste Using Water. Processes. 2016, 4(1). DOI: 10.3390/pr4010002.
  • Ballard, T. S.; Mallikarjunan, P.; Zhou, K.; O’-Keefe, S. Microwave-Assisted Extraction of Phenolic Antioxidant Compounds from Peanut Skins. Food Chem. 2010, 120(4), 1185–1192. DOI: 10.1016/j.foodchem.2009.11.063.
  • Odabaş, H. İ.; Koca, I. Application of Response Surface Methodology for Optimizing the Recovery of Phenolic Compounds from Hazelnut Skin Using Different Extraction Methods. Ind. Crops Prod. 2016, 91, 114–124. DOI: 10.1016/j.indcrop.2016.05.033.
  • Sanchez-Reinoso, Z.; Mora-Adames, W. I.; Fuenmayor, C. A.; Darghan-Contreras, A. E.; Gardana, C.; Gutiérrez, L. F. Microwave-Assisted Extraction of Phenolic Compounds from Sacha Inchi Shell: Optimization, Physicochemical Properties and Evaluation of Their Antioxidant Activity. Chem. Eng. Process. Process Intensif. 2020, 153, 107922. DOI: 10.1016/j.cep.2020.107922.
  • Hu, F.; Ci, A. T.; Wang, H.; Zhang, Y. Y.; Zhang, J. G.; Thakur, K.; Wei, Z. J. Identification and Hydrolysis Kinetic of a Novel Antioxidant Peptide from Pecan Meal Using Alcalase. Food Chem. 2018, 261, 301–310. DOI: 10.1016/j.foodchem.2018.04.025.
  • Heleno, S. A.; Diz, P.; Prieto, M. A.; Barros, L.; Rodrigues, A.; Barreiro, M. F.; Ferreira, I. C. F. R. Optimization of Ultrasound-Assisted Extraction to Obtain Mycosterols from Agaricus Bisporus L. by Response Surface Methodology and Comparison with Conventional Soxhlet Extraction. Food Chem. 2016, 197, 1054–1063. DOI: 10.1016/j.foodchem.2015.11.108.
  • Mittal, R.; Tavanandi, H. A.; Mantri, V. A.; Raghavarao, K. S. M. S. Ultrasound Assisted Methods for Enhanced Extraction of Phycobiliproteins from Marine Macro-Algae, Gelidium Pusillum (Rhodophyta). Ultrason. Sonochem. 2017, 38, 92–103. DOI: 10.1016/j.ultsonch.2017.02.030.
  • Perrier, A.; Delsart, C.; Boussetta, N.; Grimi, N.; Citeau, M.; Vorobiev, E. Effect of Ultrasound and Green Solvents Addition on the Oil Extraction Efficiency from Rapeseed Flakes. Ultrason. Sonochem. 2017, 39, 58–65. DOI: 10.1016/j.ultsonch.2017.04.003.
  • Hilbig, J.; Policarpi, P. D. B.; Grinevicius, V. M. A. D. S.; Mota, N. S. R. S.; Toaldo, I. M.; Luiz, M. T. B. … Pedrosa, R. C.; Block, J. M. Aqueous Extract from Pecan Nut [Carya Illinoinensis (Wangenh) C. Koch] Shell Show Activity Against Breast Cancer Cell Line MCF-7 and Ehrlich Ascites Tumor in Balb-C Mice. J. Ethnopharmacol. 2018, 211(July 2017), 256–266. https://doi.org/10.1016/j.jep.2017.08.012.
  • Tiwari, B. K. Ultrasound: A Clean, Green Extraction Technology. TrAc, Trends Anal. Chem. 2015, 71, 100–109. DOI: 10.1016/j.trac.2015.04.013.
  • Chemat, F.; Khan, Z.-E.-H.; Khan, M. K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason. Sonochem. 2011, 18(4), 813–835. DOI: 10.1016/j.ultsonch.2010.11.023.
  • John, J. A.; Shahidi, F. Phenolic Compounds and Antioxidant Activity of Brazil Nut (Bertholletia Excelsa). J. Funct. Foods. 2010, 2(3), 196–209. DOI: 10.1016/j.jff.2010.04.008.
  • Rudke, A. R.; Mazzutti, S.; Andrade, K. S.; Vitali, L.; Ferreira, S. R. S. Optimization of Green PLE Method Applied for the Recovery of Antioxidant Compounds from Buriti (Mauritia Flexuosa L.) Shell. Food Chem. 2019, 298, 125061. DOI: 10.1016/j.foodchem.2019.125061.
  • Herrero, M.; Castro-Puyana, M.; Mendiola, J. A.; Ibañez, E. Compressed Fluids for the Extraction of Bioactive Compounds. TrAc, Trends Anal. Chem. 2013, 43(2), 67–83. DOI: 10.1016/j.trac.2012.12.008.
  • Carabias-Martínez, R.; Rodríguez-Gonzalo, E.; Revilla-Ruiz, P.; Hernández-Méndez, J. Pressurized Liquid Extraction in the Analysis of Food and Biological Samples. J. Chromatogr. A. 2005, 1089(1–2), 1–17. DOI: 10.1016/j.chroma.2005.06.072.
  • Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta. 2011, 703(1), 8–18. DOI: 10.1016/j.aca.2011.07.018.
  • Delgado-Zamarreño, M. M.; Bustamante-Rangel, M.; Sánchez-Pérez, A.; Carabias-Martínez, R. Pressurized Liquid Extraction Prior to Liquid Chromatography with Electrochemical Detection for the Analysis of Vitamin E Isomers in Seeds and Nuts. J. Chromatogr. A. 2004, 1056(1–2), 249–252. https://doi.org/10.1016/j.chroma.2004.09.033.
  • Jia, C.; Kim, Y. S.; Huang, W.; Huang, G. Sensory and Instrumental Assessment of Chinese Moon Cake: Influences of Almond Flour, Maltitol Syrup, Fat, and Gums. Food Res. Int. 2008, 41(9), 930–936. DOI: 10.1016/j.foodres.2007.10.006.
  • Pineli, L. D. L. D. O.; de Carvalho, M. V.; de Aguiar, L. A.; de Oliveira, G. T.; Celestino, S. M. C.; Botelho, R. B. A.; Chiarello, M. D. Use of Baru (Brazilian Almond) Waste from Physical Extraction of Oil Toproduce Flour and Cookies. LWT - Food Sci. Technol. 2015, 60(1), 50–55. DOI: 10.1016/j.lwt.2014.09.035.
  • Barreira, J. C. M.; Nunes, M. A.; da Silva, B. V.; Pimentel, F. B.; Costa, A. S. G.; Alvarez-Ortí, M.; Prado, J. E.; Oliveira, M. B. P. P. Almond Cold-Pressed Oil by-Product as Ingredient for Cookies with Potential Health Benefits: Chemical and Sensory Evaluation. Food Sci. Hum. Wellness. 2019, 8(3), 292–298. DOI: 10.1016/j.fshw.2019.07.002.
  • Channaiah, L. H.; Michael, M.; Acuff, J. C.; Lopez, K.; Phebus, R. K.; Thippareddi, H.; Milliken, G. Validation of a Nut Muffin Baking Process and Thermal Resistance Characterization of a 7-Serovar Salmonella Inoculum in Batter When Introduced via Flour or Walnuts. Int. J. Food Microbiol. 2019, 294, 27–30. DOI: 10.1016/j.ijfoodmicro.2019.01.013.
  • Rabadán, A.; Álvarez-Ortí, M.; Gómez, R.; Pardo-Giménez, A.; Pardo, J. E. Suitability of Spanish Almond Cultivars for the Industrial Production of Almond Oil and Defatted Flour. Sci. Hortic. 2017, 225, 539–546. DOI: 10.1016/j.scienta.2017.07.051.
  • Marchetti, L.; Califano, A. N.; Andrés, S. C. Partial Replacement of Wheat Flour by Pecan Nut Expeller Meal on Bakery Products. Effect on Muffins Quality. Lwt. 2018, 95, 85–91. DOI: 10.1016/j.lwt.2018.04.050.
  • Sanchiz, A.; Pedrosa, M. M.; Guillamón, E.; Arribas, C.; Cabellos, B.; Linacero, R.; Cuadrado, C. Influence of Boiling and Autoclave Processing on the Phenolic Content, Antioxidant Activity and Functional Properties of Pistachio, Cashew and Chestnut Flours. LWT - Food Sci. Technol. 2019, 105(January), 250–256. DOI: 10.1016/j.lwt.2019.02.035.
  • Teixeira, G. L.; Ávila, S.; Hornung, P. S.; Barbi, R. C. T.; Ribani, R. H. Sapucaia Nut (Lecythis Pisonis Cambess.) Flour as a New Industrial Ingredient: Physicochemical, Thermal, and Functional Properties. Food Res. Int. 2018, 109, 572–582. DOI: 10.1016/j.foodres.2018.04.071.
  • Arslan, M.; Rakha, A.; Xiaobo, Z.; Mahmood, M. A. Complimenting Gluten Free Bakery Products with Dietary Fiber: Opportunities and Constraints. Trends Food Sci. Technol. 2019, 83, 194–202. DOI: 10.1016/j.tifs.2018.11.011.
  • Yildiz, E.; Gocmen, D. Use of Almond Flour and Stevia in Rice-Based Gluten-Free Cookie Production. J. Food Sci. Technol. 2020. DOI: 10.1007/s13197-020-04608-x.
  • Kumar, V.; Sharma, A.; Kohli, S. K.; Yadav, P.; Bali, S.; Bakshi, P.; Parihar, R. D.; Yuan, H.; Yan, D.; He, Y., et al. Amino Acids Distribution in Economical Important Plants: A Review. Biotechnol. Res. Innovationn. 2019, 3(2), 197–207. https://doi.org/10.1016/j.biori.2019.06.004.
  • Das, A.; Raychaudhuri, U.; Chakraborty, R. Cereal Based Functional Food of Indian Subcontinent: A Review. J. Food Sci. Technol. 2012, 49(6), 665–672. DOI: 10.1007/s13197-011-0474-1.
  • Bricarello, L. P.; Kasinski, N.; Bertolami, M. C.; Faludi, A.; Pinto, L. A.; Relvas, W. G. M.; Izar, M. C. O.; Ihara, S. S. M.; Tufik, S.; Fonseca, F. A. H. Comparison Between the Effects of Soy Milk and Non-Fat Cow Milk on Lipid Profile and Lipid Peroxidation in Patients with Primary Hypercholesterolemia. Nutrition. 2004, 20(2), 200–204. DOI: 10.1016/j.nut.2003.10.005.
  • Pathomrungsiyounggul, P.; Lewis, M. J.; Grandison, A. S. Effects of Calcium-Chelating Agents and Pasteurisation on Certain Properties of Calcium-Fortified Soy Milk. Food Chem. 2010, 118(3), 808–814. DOI: 10.1016/j.foodchem.2009.05.067.
  • Dong, S.; Zhang, R.; Ji, Y. C.; Hao, J. Y.; Ma, W. W.; Chen, X. D.; Yu, H. L. Soy Milk Powder Supplemented with Phytosterol Esters Reduced Serum Cholesterol Level in Hypercholesterolemia Independently of Lipoprotein E Genotype: A Random Clinical Placebo-Controlled Trial. Nutr. Res. 2016, 36(8), 879–884. DOI: 10.1016/j.nutres.2016.05.006.
  • Lacerda Sanches, V.; Alves Peixoto, R. R.; Cadore, S. Phosphorus and Zinc are Less Bioaccessible in Soy-Based Beverages in Comparison to Bovine Milk. J. Funct. Foods. 2020, 65, 103728. DOI: 10.1016/j.jff.2019.103728.
  • Dino. Maior e mais moderna fábrica de leites vegetais frescos e derivados do Brasil é inaugurada em Minas Gerais. 2020. https://www.mundodomarketing.com.br/noticias-corporativas/conteudo/229421/maior-e-mais-moderna-fabrica-de-leites-vegetais-frescos-e-derivados-do-brasil-e-inaugurada-em-minas-gerais (accessed May 19, 2020).
  • Sugizaki, C. S. A.; Naves, M. M. V. Potential Prebiotic Properties of Nuts and Edible Seeds and Their Relationship to Obesity. Nutrients. 2018, 10(11), 1645. https://doi.org/10.3390/nu10111645.
  • Mandalari, G.; Nueno-Palop, C.; Bisignano, G.; Wickham, M. S. J.; Narbad, A. Potential Prebiotic Properties of Almond (Amygdalus Communis L.) Seeds. Appl. Environ. Microbiol. 2008, 74(14), 4264–4270. DOI: 10.1128/AEM.00739-08.
  • Felberg, I.; Antoniassi, R.; Deliza, R.; de Freitas, S. C.; Modesta, R. C. D. Bebida de Soja E Castanha Do Brasil: Processamento, Composição, Avaliação Sensorial E de Cor. Ciência E Tecnologia de Alimentos. 2009, 29(3), 609–617. DOI: 10.1590/S0101-20612009000300024.
  • RebouçRebouçAs, M. C.; Rodrigues, M. D. C. P.; Afonso, M. R. A. Optimization of the Acceptance of Prebiotic Beverage Made from Cashew Nut Kernels and Passion Fruit Juice. J. Food Sci. 2014, 79(7), S1393–S1398. https://doi.org/10.1111/1750-3841.12507.
  • RebouçRebouçAs, M. C.; Rodrigues, M. D. C. P.; Laurentino, L. D. S.; Aguiar, E. C.; Penha, M. F. A. Efeito de Atributos Externos Na Aceitação de Bebida de Castanha de Caju. Arquivos Brasileiros de Alimentação. 2018, 1(1), 26–41.
  • RebouçRebouçAs, M.; Rodrigues, M.; de Freitas, S.; Ferreira, B. The Physicochemical Optimization and Acceptability of a Cashew Nut-Based Beverage Varying in Mango Juice and Sugar: A Pilot Study. Beverages. 2016, 2(3), 23. DOI: 10.3390/beverages2030023.
  • Chalupa-Krebzdak, S.; Long, C. J.; Bohrer, B. M. Nutrient Density and Nutritional Value of Milk and Plant-Based Milk Alternatives. Int. Dairy J. 2018, 87, 84–92. DOI: 10.1016/j.idairyj.2018.07.018.
  • RacolțRacolțA, E.; Tofană, M.; MureșMureșAn, C. C.; Socaci, S.; Galchiș, G. F.; MureșMureșAn, V. Volatile Compounds and Sensory Evaluation of Spreadable Creams Based on Roasted Sunflower Kernels and Cocoa or Carob Powder. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Sci. Technol. 2014, 71(2). DOI: 10.15835/buasvmcn-fst:10465.
  • Shakerardekani, A.; Karim, R.; Ghazali, H. M.; Chin, N. L. Oxidative Stability of Pistachio (Pistacia Vera L.) Paste and Spreads. J. Am. Oil Chem. Soc. 2015, 92(7), 1015–1021. DOI: 10.1007/s11746-015-2668-6.
  • Nikodijevic, C. J.; Probst, Y. C.; Neale, E. P. Development of a Database for Estimation of the Nut Content of Australian Single-Ingredient and Multi-Ingredient Foods. J. Food Compost. Anal. 2019, 82, 103236. DOI: 10.1016/j.jfca.2019.103236.
  • Manzocco, L.; Calligaris, S.; Camerin, M.; Pizzale, L.; Nicoli, M. C. Prediction of Firmness and Physical Stability of Low-Fat Chocolate Spreads. J. Food Eng. 2014, 126, 120–125. DOI: 10.1016/j.jfoodeng.2013.10.042.
  • Padmashree, A.; Sharma, G. K.; Srihari, K. A.; Bawa, A. S. Development of Shelf Stable Protein Rich Composite Cereal Bar. J. Food Sci. Technol. 2012, 49(3), 335–341. DOI: 10.1007/s13197-011-0283-6.
  • Gutkoski, L. C.; Bonamigo, J. M. D. A.; Pedó, I.; Teixeira, D. M. D. F. Development of Oat Based Cereal Bars with High Dietary Fiber Content. Ciência E Tecnologia de Alimentos. 2007, 27(2), 355–363. DOI: 10.1590/S0101-20612007000200025.
  • Pallavi, B. V.; Chetana, R.; Ravi, R.; Reddy, S. Y. Moisture Sorption Curves of Fruit and Nut Cereal Bar Prepared with Sugar and Sugar Substitutes. J. Food Sci. Technol. 2015, 52(3), 1663–1669. DOI: 10.1007/s13197-013-1101-0.
  • Rehm, C. D.; Drewnowski, A. Replacing American Snacks with Tree Nuts Increases Consumption of Key Nutrients Among US Children and Adults: Results of an NHANES Modeling Study. Nutr. J. 2017, 16(1), 1–15. DOI: 10.1186/s12937-017-0238-5.
  • Venkatachalam, M.; Sathe, S. K. Chemical Composition of Selected Edible Nut Seeds. J. Agric. Food Chem. 2006, 54(13), 4705–4714. https://doi.org/10.1021/jf0606959.
  • Alasalvar, C.; Salvadó, J. S.; Ros, E. Bioactives and Health Benefits of Nuts and Dried Fruits. Food Chem. 2020, 314, 126192. DOI: 10.1016/j.foodchem.2020.126192.
  • Yang, J. Brazil Nuts and Associated Health Benefits: A Review. LWT - Food Sci. Technol. 2009, 42(10), 1573–1580. DOI: 10.1016/j.lwt.2009.05.019.
  • Cilla, A.; Alegría, A.; De Ancos, B.; Sánchez-Moreno, C.; Cano, M. P.; Plaza, L. … Clemente, G.; Lagarda, M. J.; Barberá, R. Bioaccessibility of Tocopherols, Carotenoids, and Ascorbic Acid from Milk- and Soy-Based Fruit Beverages: Influence of Food Matrix and Processing. J. Agric. Food Chem. 2012, 60(29), 7282–7290. https://doi.org/10.1021/jf301165r.
  • Damasceno, N. R. T.; Pérez-Heras, A.; Serra, M.; Cofán, M.; Sala-Vila, A.; Salas-Salvadó, J.; Ros, E. Crossover Study of Diets Enriched with Virgin Olive Oil, Walnuts or Almonds. Effects on Lipids and Other Cardiovascular Risk Markers. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 14–20. DOI: 10.1016/j.numecd.2010.12.006.
  • Cardoso, B. R.; Duarte, G. B. S.; Reis, B. Z.; Cozzolino, S. M. F. Brazil Nuts: Nutritional Composition, Health Benefits and Safety Aspects. Food Res. Int. 2017, 100, 9–18. DOI: 10.1016/j.foodres.2017.08.036.
  • Demoliner, F.; Policarpi, P. D. B.; Vasconcelos, L. F. L.; Vitali, L.; Micke, G. A.; Block, J. M. Sapucaia Nut (Lecythis Pisonis Cambess) and Its by-Products: A Promising and Underutilized Source of Bioactive Compounds. Part II: Phenolic Compounds Profile. Food Res. Int. 2018, 112(June), 434–442. DOI: 10.1016/j.foodres.2018.06.050.
  • Moreda-Piñeiro, J.; Herbello-Hermelo, P.; Domínguez-González, R.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Bioavailability Assessment of Essential and Toxic Metals in Edible Nuts and Seeds. Food Chem. 2016, 205, 146–154. DOI: 10.1016/j.foodchem.2016.03.006.
  • Nascimento, A. N.; Naozuka, J.; Oliveira, P. V. In vitro Evaluation of Cu and Fe Bioavailability in Cashew Nuts by off-Line Coupled SEC-UV and SIMAAS. Microchem. J. 2010, 96(1), 58–63. DOI: 10.1016/j.microc.2010.01.016.
  • Shahidi, F.; De Camargo, A. C. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int. J. Mol. Sci. 2016, 17(10), 1–29. DOI: 10.3390/ijms17101745.
  • Chung, S. Y.; Champagne, E. T. Reducing the Allergenic Capacity of Peanut Extracts and Liquid Peanut Butter by Phenolic Compounds. Food Chem. 2009, 115(4), 1345–1349. DOI: 10.1016/j.foodchem.2009.01.052.
  • Fu, L.; Lu, W. Q.; Zhou, X. M. Phenolic Compounds and in vitro Antibacterial and Antioxidant Activities of Three Tropic Fruits: Persimmon, Guava, and Sweetsop. Biomed Res. Int. 2016, 2016, 1–9. https://doi.org/10.1155/2016/4287461.
  • Balea, Ş. S.; Pârvu, A. E.; Pop, N.; Marín, F. Z.; Pârvu, M. Polyphenolic Compounds, Antioxidant, and Cardioprotective Effects of Pomace Extracts from Fetească Neagră Cultivar. Oxid. Med. Cell. Longev. 2018, 8194721. DOI: 10.1155/2018/8194721.
  • Sobeh, M.; Esmat, A.; Petruk, G.; Abdelfattah, M. A. O.; Dmirieh, M.; Monti, D. M.; Abdel-Naim, A. B.; Wink, M. Phenolic Compounds from Syzygium Jambos (Myrtaceae) Exhibit Distinct Antioxidant and Hepatoprotective Activities in vivo. J. Funct. Foods. 2018, 41(June 2017), 223–231. https://doi.org/10.1016/j.jff.2017.12.055.
  • Othman, Z. A.; Ghazali, W. S. W.; Noordin, L.; Yusof, N. A. M.; Mohamed, M. Phenolic Compounds and the Anti-Atherogenic Effect of Bee Bread in High-Fat Diet-Induced Obese Rats. Antioxidants. 2020, 9(1), 1–12. DOI: 10.3390/antiox9010033.
  • Dillard, C. J.; Bruce German, J. Phytochemicals: Nutraceuticals and Human Health. J. Sci. Food Agric. 2000, 80(12), 1744–1756. DOI: 10.1002/1097-0010(20000915)80:12<1744:AID-JSFA725>3.0.CO;2-W.
  • Shahidi, F.; Varatharajan, V.; Oh, W. Y.; Peng, H. Phenolic Compounds in Agri-Food by-Products, Their Bioavailability and Health Effects. J. Food Bioactives. 2019, 5, 57–119. DOI: 10.31665/jfb.2019.5178.
  • Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 Richest Dietary Sources of Polyphenols: An Application of the Phenol-Explorer Database. Eur. J. Clin. Nutr. 2010, 64(S3), S112–S120. https://doi.org/10.1038/ejcn.2010.221.
  • de Sousa Leite, A. T. I. M.; Luiz Gomes Junior, A.; Sousa, J. M. D. C., Alencar, M. V. O. B.; ; ; , et al. Pharmacological Properties of Cashew (Anacardium Occidentale). Afr. J. Biotechnol. 2016, 15(35), 1855–1863. DOI: 10.5897/ajb2015.15051.
  • Souza, M. Q.; Teotônio, I. M. S. N.; de Almeida, F. C.; Heyn, G. S.; Alves, P. S.; Romeiro, L. A. S.; Pratesi, C. B. Molecular Evaluation of Anti-Inflammatory Activity of Phenolic Lipid Extracted from Cashew Nut Shell Liquid (CNSL). BMC Complementary Altern. Med. 2018, 18(1), 1–11. DOI: 10.1186/s12906-018-2247-0.
  • Kornsteiner, M.; Wagner, K. H.; Elmadfa, I. Tocopherols and Total Phenolics in 10 Different Nut Types. Food Chem. 2006, 98(2), 381–387. DOI: 10.1016/j.foodchem.2005.07.033.
  • Milbury, P. E.; Chen, C. Y.; Dolnikowski, G. G.; Blumberg, J. B. Determination of Flavonoids and Phenolics and Their Distribution in Almonds. J. Agric. Food Chem. 2006, 54(14), 5027–5033. DOI: 10.1021/jf0603937.
  • Siriwardhana, S. S. K. W., and Shahidi, F. Antiradical Activity of Extracts of Almond and Its Byproducts_siriwardhana. Journal of the American Oil Chemists' Society. 2002, 79(9), 903/908.
  • Frison-Norrie, S.; Sporns, P. Identification and Quantification of Flavonol Glycosides in Almond Seedcoats Using MALDI-TOF MS. J. Agric. Food Chem. 2002, 50(10), 2782–2787. DOI: 10.1021/jf0115894.
  • Garrido, I.; Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B. Extracción de Antioxidantes a Partir de Subproductos Del Procesado de la Almendra. Grasas Y Aceites. 2007, 58(2), 130–135. DOI: 10.3989/gya.2007.v58.i2.76.
  • Fukuda, A. M.; Escobar, B.; Vásquez, M.; Castillo, E.; Araya, E.; ZacaríZacaríAs, I. Cereal and Nut Bars, Nutritional Quality and Storage Stability. Plant Foods Human Nutr. 2002, 47(4), 309–317. DOI: 10.1007/BF01088268.
  • Vu, D. C.; Vo, P. H.; Coggeshall, M. V.; Lin, C. H. Identification and Characterization of Phenolic Compounds in Black Walnut Kernels. J. Agric. Food Chem. 2018, 66(17), 4503–4511. DOI: 10.1021/acs.jafc.8b01181.
  • Yang, J.; Liu, R. H.; Halim, L. Antioxidant and Antiproliferative Activities of Common Edible Nut Seeds. LWT - Food Sci. Technol. 2009, 42(1), 1–8. DOI: 10.1016/j.lwt.2008.07.007.
  • Vahabzadeh, F.; Mehranian, M.; Mofarrah, E. Antioxidant Activity of Pistachio Hulls. J. Am. Oil Chem. Soc. 2004, 81(6), 621–622. https://doi.org/10.1007/s11746-006-0952-1.
  • Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and Bioefficacy of Polyphenols in Humans. I. Review of 97 Bioavailability Studies. Am. J. Clin. Nutr. 2005, 81(1 Suppl), 230–242. DOI: 10.1093/ajcn/81.1.230s.
  • Polmann, G.; Badia, V.; Danielski, R.; Regina, S.; Ferreira, S.; Block, J. M. Non-Conventional Nuts: An Overview of Reported Composition and Bioactivity and New Approaches for Its Consumption and Valorization of Co-Products. Future Foods. 2021, 4, 100099. https://doi.org/10.1016/j.fufo.2021.100099.
  • Fraga, C. G.; Galleano, M.; Verstraeten, S. V.; Oteiza, P. I. Basic Biochemical Mechanisms Behind the Health Benefits of Polyphenols. Mol. Aspects Med. 2010, 31(6), 435–445. DOI: 10.1016/j.mam.2010.09.006.
  • Mandalari, G.; Tomaino, A.; Rich, G. T.; Lo Curto, R.; Arcoraci, T.; Martorana, M.; Bisignano, C.; Saija, A.; Parker, M. L.; Waldron, K. W.; et al. Polyphenol and Nutrient Release from Skin of Almonds During Simulated Human Digestion. Food Chem. 2010, 122(4), 1083–1088. DOI: 10.1016/j.foodchem.2010.03.079.
  • Mandalari, G.; Bisignano, C.; Filocamo, A.; Chessa, S.; Sarò, M.; Torre, G.; Faulks, R. M.; Dugo, P. Bioaccessibility of Pistachio Polyphenols, Xanthophylls, and Tocopherols During Simulated Human Digestion. Nutrition. 2013, 29(1), 338–344. https://doi.org/10.1016/j.nut.2012.08.004.
  • Lau, F. C.; Shukitt-Hale, B.; Joseph, J. A. The Beneficial Effects of Fruit Polyphenols on Brain Aging. Neurobiol. Aging. 2005, 26(1), 128–132. https://doi.org/10.1016/j.neurobiolaging.2005.08.007.
  • Puupponen-Pimiä, R.; Nohynek, L.; Alakomi, H. L.; Oksman-Caldentey, K. M. Bioactive Berry Compounds - Novel Tools Against Human Pathogens. Appl. Microbiol. Biotechnol. 2005, 67(1), 8–18. DOI: 10.1007/s00253-004-1817-x.
  • Karaoǧlu, M. M.; Kotancilar, H. G.; Gerçekaslan, K. E. The Effect of Par-Baking and Frozen Storage Time on the Quality of Cup Cake. Int. J. Food Sci. Technol. 2008, 43(10), 1778–1785. DOI: 10.1111/j.1365-2621.2007.01698.x.
  • Herbello-Hermelo, P.; Lamas, J. P.; Lores, M.; Domínguez-González, R.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Polyphenol Bioavailability in Nuts and Seeds by an in vitro Dialyzability Approach. Food Chem. 2018, 254(January), 20–25. DOI: 10.1016/j.foodchem.2018.01.183.
  • Vardakou, M.; Mercuri, A.; Barker, S. A.; Craig, D. Q. M.; Faulks, R. M.; Wickham, M. S. J. Achieving Antral Grinding Forces in Biorelevant in vitro Models: Comparing the USP Dissolution Apparatus II and the Dynamic Gastric Model with Human in vivo Data. AAPS PharmScitech. 2011, 12(2), 620–626. DOI: 10.1208/s12249-011-9616-z.
  • Pitino, I.; Randazzo, C. L.; Mandalari, G.; Lo Curto, A.; Faulks, R. M.; Le Marc, Y.; Bisignano, C.; Caggia, C.; Wickham, M. S. J. Survival of Lactobacillus Rhamnosus Strains in the Upper Gastrointestinal Tract. Food Microbiol. 2010, 27(8), 1121–1127. https://doi.org/10.1016/j.fm.2010.07.019.
  • Rocchetti, G.; Chiodelli, G.; Giuberti, G.; Lucini, L. Bioaccessibility of Phenolic Compounds Following in vitro Large Intestine Fermentation of Nuts for Human Consumption. Food Chem. 2018, 245(October 2017), 633–640. DOI: 10.1016/j.foodchem.2017.10.146.
  • Egger, M. Bias in Meta-Analysis Detected by a Simple, Graphical Test. Graphical Test is Itself Biased. Bmj. 1998, 316, 629/634.
  • Bitok, E.; Sabaté, J. Nuts and Cardiovascular Disease. Prog. Cardiovasc. Dis. 2018, 61(1), 33–37. DOI: 10.1016/j.pcad.2018.05.003.
  • Lovejoy, J. C.; Most, M. M.; Lefevre, M.; Greenway, F. L.; Rood, J. C. Effect of Diets Enriched in Almonds on Insulin Action and Serum Lipids in Adults with Normal Glucose Tolerance or Type 2 Diabetes. Am. J. Clin. Nutr. 2002, 76(5), 1000–1006. DOI: 10.1093/ajcn/76.5.1000.
  • Kasliwal, R. R.; Bansal, M.; Mehrotra, R.; Yeptho, K. P.; Trehan, N. Effect of Pistachio Nut Consumption on Endothelial Function and Arterial Stiffness. Nutrition. 2015, 31(5), 678–685. DOI: 10.1016/j.nut.2014.10.019.
  • Li, Z.; Song, R.; Nguyen, C.; Zerlin, A.; Karp, H.; Naowamondhol, K.; Thames, G.; Gao, K.; Li, L.; Tseng, C., et al. Pistachio Nuts Reduce Triglycerides and Body Weight by Comparison to Refined Carbohydrate Snack in Obese Subjects on a 12-Week Weight Loss Program. J. Am. Coll. Nutr. 2010, 29(3), 198–203. https://doi.org/10.1080/07315724.2010.10719834.
  • Sabaté, J. Nut Consumption and Blood Lipid Levels. Arch.Internal Med. 2010, 170(9), 821. DOI: 10.1001/archinternmed.2010.79.
  • Del Gobbo, L. C.; Falk, M. C.; Feldman, R.; Lewis, K.; Mozaffarian, D. Effects of Tree Nuts on Blood Lipids, Apolipoproteins, and Blood Pressure: Systematic Review, Meta-Analysis, and Dose-Response of 61 Controlled Intervention Trials. Am. J. Clin. Nutr. 2015, 102(6), 1347–1356. DOI: 10.3945/ajcn.115.110965.
  • Berryman, C. E.; Preston, A. G.; Karmally, W.; Deckelbaum, R. J.; Kris-Etherton, P. M. Effects of Almond Consumption on the Reduction of LDL-Cholesterol: A Discussion of Potential Mechanisms and Future Research Directions. Nutr. Rev. 2011, 69(4), 171–185. DOI: 10.1111/j.1753-4887.2011.00383.x.
  • Anandh Babu, P.; Liu, D. Green Tea Catechins and Cardiovascular Health: An Update. Curr. Med. Chem. 2008, 15(18), 1840–1850. DOI: 10.2174/092986708785132979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.