971
Views
8
CrossRef citations to date
0
Altmetric
Review

Background, Limitations, and Future Perspectives in Food Grade Microemulsions and Nanoemulsions

, & ORCID Icon

References

  • Panagiotakos, D. B.; Rallidis, L. S.; Katsiotis, E.; Pitsavos, C.; Stefanadis, C.; Kremastinos, D. T. Background Dietary Habits are Strongly Associated with the Development of Myocardial Infarction at Young Ages: A Case-Control Study. Eur. E. J. Clin. Nutr. Metab. 2008, 3(6), 328–334. DOI: 10.1016/j.eclnm.2008.06.013.
  • Young, R. O. Colloids and Colloidal Systems in Human Health and Nutrition. Int. J. Complement. Altern. Med. 2016, 3(6), Article e00095. DOI: 10.15406/ijcam.2016.03.00095.
  • López-Esparza, R.; Balderas Altamirano, M. A.; Pérez, E.; Gama Goicochea, A. Importance of Molecular Interactions in Colloidal Dispersions. Adv. Condens. Matter Phys. 2015, 2015, 1–8. Article e683716. DOI: 10.1155/2015/683716.
  • McClements, D. J. Nanoemulsions versus Microemulsions: Terminology, Differences, and Similarities. Soft. Matter. 2012, 8(6), 1719–1729. DOI: 10.1039/C2SM06903B.
  • Saifullah, M.; Ahsan, A.; Shishir, M. R. I. Production, Stability and Application of Micro- and Nanoemulsion in Food Production and the Food Processing Industry. In Emulsions. Nanotechnology in the Agri-Food Industry, 1st ed.; Grumezescu, A.M., Ed.; Academic Press: Cambridge, MA, 2016; pp. 405–442. DOI: 10.1016/B978-0-12-804306-6.00012-X.
  • Chavda, V. P. Nanobased Nano Drug Delivery. In Applications of Targeted Nano Drugs and Delivery Systems, 1st ed.; Mohapatra, S.; Ranjan, S.; Dasgupta, N.; Kumar, R. and Thomas, S., Eds.; Elsevier: Amsterdam, NL, 2019; pp. 69–92. DOI: 10.1016/C2017-0-00274-4.
  • Hou, K.; Wang, Z. Application of Nanotechnology to Enhance Adsorption and Bioavailability of Procyanidins: A Review. Food Rev. Int. 2021, 1–15. DOI: 10.1080/87559129.2021.1888970.
  • Pavoni, L.; Perinelli, D. R.; Bonacucina, G.; Cespi, M.; Palmieri, G. F. An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. Nanomater. (Basel). 2020, 10(1), 135. Article e135. DOI: 10.3390/nano10010135.
  • Marzuki, N. H. C.; Wahab, R. A.; Hamid, M. A. An Overview of Nanoemulsion: Concepts of Development and Cosmeceutical Applications. Biotechnol. Biotechnol. Equip. 2019, 33(1), 779–797. DOI: 10.1080/13102818.2019.1620124.
  • Abbasi, S.; Scanlon, M. G. Nanostructural Characterization of Food Grade Microemulsions: Ultrasonic Resonator Technology. In Emulsions: Nanotechnology in the Agri-Food Industry, 1st ed.; Grumezescu, A.M., Ed.; Elsevier: Amsterdam, NL, 2016. Vol. 3; pp. 443–478. DOI: 10.1016/B978-0-12-804306-6.00013-1.
  • Leal-Calderon, F.; Schmitt, V.; Bibette, J. Emulsion Science-Basic Principles, 2nd. ed; Springer: New York, 2007. DOI: 10.1007/978-0-387-39683-5.
  • Santana, R. C.; Perrechil, F. A.; Cunha, R. L. High- and Low-Energy Emulsifications for Food Applications: A Focus on Process Parameters. Food Eng. Rev. 2013, 5(2), 107–122. DOI: 10.1007/s12393-013-9065-4.
  • Aswathanarayan, J. B.; Vittal, R. R. Nanoemulsions and Their Potential Applications in Food Industry. Front. Sustain. Food Syst. 2019, 3, Article e95. DOI: 10.3389/fsufs.2019.00095.
  • McClements, D. J.; Rao, J. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit. Rev. Food Sci. Nutr. 2011, 51(4), 285–330. DOI: 10.1080/10408398.2011.559558.
  • Mohamed, A. I. A.; Sultan, A. S.; Hussein, I. A.; Al-Muntasheri, G. A. Influence of Surfactant Structure on the Stability of Water-In-Oil Emulsions Under High-Temperature High-Salinity Conditions. J. Chem. 2017, 1, Article e5471376. DOI:10.1155/2017/5471376.
  • Abbasi, S.; Amiri-Rigi, A. Microemulsions as Nano-Carriers for Nutraceuticals: Current Trends and the Future Outlook. EC Nutr. 2017, 12(1), 46–50.
  • Amiri-Rigi, A.; Abbasi, S. Lycopene Microemulsion Storability: Monitoring Color and Rheology Properties. Int. Nano Lett. 2020, 10(2), 119–129. DOI: 10.1007/s40089-020-00301-1.
  • Dixit, G. R.; Mathur, V. B. Microemulsions: Platform for Improvement of Solubility and Dissolution of Poorly Soluble Drugs. Asian J. Pharm. Clin. Res. 2015, 8(5), 7–17. DOI: 10.22270/jddt.v9i4-A.3789.
  • Kale, S. N.; Deore, S. L. Emulsion Micro Emulsion and Nano Emulsion: A Review. Syst. Rev. Pharm. 2017, 8(1), 39–47. DOI: 10.5530/srp.2017.1.8.
  • Amiri-Rigi, A.; Abbasi, S. Determination of Lycopene Microemulsion Nanostructure Using Electrical Conductivity and Rheological Measurements. J. Food Sci. Technol. 2017a, 14(68), 45–60.
  • Nazar, M. F.; Khan, A. M.; Shah, S. S. Microemulsion System with Improved Loading of Piroxicam: A Study of Microstructure. AAPS PharmScitech. 2009, 10(4), 1286–1294. DOI: 10.1208/s12249-009-9328-9.
  • Flores-Villaseñor, E. S.; Rial-Hermida, M. I.; Ramirez, J. C.; Pazos, A.; Concheiro, A.; Alvarez-Lorenzo, C.; Peralta, R. Microemulsions for Colorectal Cancer Treatments. General Considerations and Formulation of Methotrexate. Mini. Rev. Med. Chem. 2016, 16(6), 498–508. DOI: 10.2174/1389557515666150909142920.
  • Jadhav, A.; Daundkar, A.; Morale, D.; Bhujbal, N.; Kshirsagar, S. Review On: Microemulsion a Novel Approach for Drug Delivery. Int J. Pharm Sci. Rev. Res. 2018, 52(2), 60–65. DOI: 10.2174/187221108786241679.
  • Lawrence, M. J.; Rees, G. D. Microemulsion-Based Media as Novel Drug Delivery Systems. Adv. Drug Deliv. Rev. 2000, 45(1), 89–121. DOI: 10.1016/s0169-409x(00)00103-4.
  • Tartaro, G.; Cuadrado, H. M.; Schirone, D.; Palazzo, G.; Angelico, R. Microemulsion Microstructure(s): A Tutorial Review. Nanomaterials. 2020, 10(9), Article e1657. DOI: 10.3390/nano10091657.
  • Singh, A. K.; Yadav, T. P.; Pandey, B.; Gupta, V.; Singh, S. P. Engineering Nanomaterials for Smart Drug Release. In Applications of Targeted Nano Drugs and Delivery Systems, 1st ed.; Mohapatra, S.; Ranjan, S.; Dasgupta, N.; Kumar, R. and Thomas, S., Eds.; Elsevier: Amsterdam, NL, 2019; pp. 411–449. DOI: 10.1016/B978-0-12-814029-1.00015-6.
  • Koroleva, M.; Nagovitsina, T.; Yurtov, E. Nanoemulsions Stabilized by Non-Ionic Surfactants: Stability and Degradation Mechanisms. Phys. Chem. Chem. Phys. 2018, 20(15), 10369–10377. DOI: 10.1039/c7cp07626f.
  • Bhattacharjee, K. Importance of Surface Energy in Nanoemulsion. In Nanoemulsions - Properties, Fabrications and Applications; Koh, K.S. and Wong, V.L., Eds.; IntechOpen: London, UK, 2019; pp. 1–20. DOI: http://dx.doi.org/10.5772/intechopen.78812.
  • Huang, Y. R. Interfacial Activity of Star Polymers at Fluid Interfaces. Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, 2018.
  • Amiri‐rigi, A.; Abbasi, S. Stability Assessment of Lycopene Microemulsion Prepared Using Tomato Industrial Waste Against Various Processing Conditions. J. Sci. Food Agric. 2017b, 97, 4922–4928. DOI: 10.1002/jsfa.8368.
  • Cheong, A. M.; Tan, C. P.; Nyam, K. L. Stability of Bioactive Compounds and Antioxidant Activities of Kenaf Seed Oil-In-Water Nanoemulsions Under Different Storage Temperatures. J. Food Sci. 2018, 83(10), 2457–2465. DOI: 10.1111/1750-3841.14332.
  • Galvão, K. C. S.; Vicente, A. A.; Sobral, P. J. A. Development, Characterization, and Stability of O/W Pepper Nanoemulsions Produced by High-Pressure Homogenization. Food Bioproc. Tech. 2018, 11(2), 355–367. DOI: 10.1007/s11947-017-2016-y.
  • Karthik, P.; Anandharamakrishnan, C. Enhancing Omega-3 Fatty Acids Nanoemulsion Stability and In-Vitro Digestibility Through Emulsifiers. J. Food Eng. 2016, 187, 92–105. DOI: 10.1016/j.jfoodeng.2016.05.003.
  • Lv, S.; Gu, J.; Zhang, R.; Zhang, Y.; Tan, H.; McClements, D. J. Vitamin E Encapsulation in Plant-Based Nanoemulsions Fabricated Using Dual-Channel Microfluidization: Formation, Stability, and Bioaccessibility. J. Agric. Food. Chem. 2018, 66(40), 10532–10542. DOI: 10.1021/acs.jafc.8b03077.
  • Shi, J.; Xue, S. J.; Wang, B.; Wang, W.; Ye, X.; Quek, S. Y. Optimization of Formulation and Influence of Environmental Stresses on Stability of Lycopene-Microemulsion. Lwt. 2015, 60(2), 999–1008. DOI: 10.1016/j.lwt.2014.10.066.
  • Zhang, L.; Zhang, F.; Fan, Z.; Liu, B.; Liu, C.; Meng, X. DHA and EPA Nanoemulsions Prepared by the Low-Energy Emulsification Method: Process Factors Influencing Droplet Size and Physicochemical Stability. Food. Res. Int. 2019, 121, 359–366. DOI: 10.1016/j.foodres.2019.03.059.
  • Zhao, C.; Wei, L.; Yin, B.; Liu, F.; Li, J.; Liu, X.; Wang, J.; Wang, Y. Encapsulation of Lycopene Within Oil-In-Water Nanoemulsions Using Lactoferrin: Impact of Carrier Oils on Physicochemical Stability and Bioaccessibility. Int. J. Biol. Macromol. 2020, 153, 912–920. DOI: 10.1016/j.ijbiomac.2020.03.063.
  • Amiri-Rigi, A.; Abbasi, S. Microemulsion-Based Lycopene Extraction: Effect of Surfactants, Co-Surfactants and Pretreatments. Food ChemFood Chem. 2016, 197(Pt A), 1002–1007. DOI: 10.1016/j.foodchem.2015.11.077.
  • Jintapattanakit, A. Preparation of Nanoemulsions by Phase Inversion Temperature (PIT) Method. Pharm. Sci. Asia. 2018, 45(1), 1–12. DOI: 10.29090/psa.2018.01.001.
  • Flanagan, J.; Singh, H. Microemulsions: A Potential Delivery System for Bioactives in Food. Crit. Rev. Food Sci. Nutr. 2006, 46(3), 221–237. DOI: 10.1080/10408690590956710.
  • Marques, E. F.; Silva, B. F. B. Surfactants, Phase Behavior. In Encyclopedia of Colloid and Interface ScienceI, 2013th ed.; Tadros, T., Ed.; Springer: Berlin Heidelberg, Germany, 2013; pp. 1290–1333. DOI: 10.1007/978-3-642-20665-8_170.
  • Solans, C.; Morales, D.; Homs, M. Spontaneous Emulsification. Curr. Opin. Colloid. Interface Sci. 2016, 22, 88–93. DOI: 10.1016/j.cocis.2016.03.002.
  • Solans, C.; Solé, I. Nano-Emulsions: Formation by Low-Energy Methods. Curr. Opin. Colloid. Interface Sci. 2012, 17(5), 246–254. DOI: 10.1016/j.cocis.2012.07.003.
  • Solè, I.; Solans, C.; Maestro, A.; González, C.; Gutiérrez, J. M. Study of Nano-Emulsion Formation by Dilution of Microemulsions. J. Colloid. Interface. Sci. 2012, 376(1), 133–139. DOI: 10.1016/j.jcis.2012.02.063.
  • Becher, P.; Arai, H. Nonionic Surface-Active Compounds. XI. Micellar Size, Shape, and Hydration from Light-Scattering and Hydrodynamic Measurements. J. Colloid Interface Sci. 1968, 27(4), 634–641. DOI: 10.1016/0021-9797(68)90095-7.
  • Fanun, M. Microemulsions Formation on Water/nonionic Surfactant/peppermint Oil Mixtures. J Dispers. Sci. Technol. 2009, 30(3), 399–405. DOI: 10.1080/01932690802548619.
  • Muzaffar, F.; Singh, U. K.; Chauhan, L. Review on Microemulsion as Futuristic Drug Delivery. Int. J. Pharm. Pharm. Sci. 2013, 5(3), 39–53.
  • Ruckenstein, E. Evaluation of the Interfacial Tension Between a Microemulsion and the Excess Dispersed Phase. Soc. Pet. Eng. J. 1981, 21(5), 593–602. DOI: 10.2118/9281-PA.
  • Shinoda, K. Thermodynamic Aspects of Nonionic Surfactant-Water Systems. J. Colloid. Interface. Sci. 1970, 34(2), 278–282. DOI: 10.1016/0021-9797(70)90179-7.
  • Topuz, O. K.; Ozyural, E. B.; Zhao, Q.; Huang, Q.; Chikindas, M.; Golukcu, M. Physical and Antimicrobial Properties of Anise Oil Loaded Nanoemulsions on the Survival of Foodborne Pathogens. Food Chem. 2016, 203, 117–123. DOI: 10.1016/j.foodchem.2016.02.051.
  • Roger, K. Nanoemulsification in the Vicinity of Phase Inversion: Disruption of Bicontinuous Structures in Oil/surfactant/water Systems. Curr. Opin. Colloid Interface Sci. 2016, 25, 120–128. DOI: 10.1016/j.cocis.2016.09.015.
  • Fernandez, P.; Valerie André, V.; Rieger, J.; Kühnle, A. Nano-Emulsion Formation by Emulsion Phase Inversion. Colloids Surf. A Physicochem. Eng. 2004, 251(1–3), 53–58. DOI: 10.1016/j.colsurfa.2004.09.029.
  • Perazzo, A.; Preziosi, V.; Guido, S. Phase Inversion Emulsification: Current Understanding and Applications. Adv. Colloid Interface Sci. 2015, 222, 581–599. DOI: 10.1016/j.cis.2015.01.001.
  • Kumar, M.; Bishnoi, R. S.; Shukla, A. K.; Jain, C. P. Techniques for Formulation of Nanoemulsion Drug Delivery System: A Review. Prev. Nutr. Food Sci. 2019, 24(3), 225–234. DOI: 10.3746/pnf.2019.24.3.225.
  • Alliod, O.; Almouazen, E.; Nemer, G.; Fessi, H.; Charcosset, C. Comparison of Three Processes for Parenteral Nanoemulsion Production: Ultrasounds, Microfluidizer, and Premix Membrane Emulsification. J. Pharm. Sci. 2019, 108(8), 2708–2717. DOI: 10.1016/j.xphs.2019.03.026.
  • Niknam, S. M.; Escudero, I.; Benito, J. M. Formulation and Preparation of Water-In-Oil-In-Water Emulsions Loaded with a Phenolic-Rich Inner Aqueous Phase by Application of High Energy Emulsification Methods. Foods. 2020, 9(10), Article e1411. DOI: 10.3390/foods9101411.
  • Ocampo-Salinas, I. O.; Tellez-Medina, D. I.; Jimenez-Martinez, C.; Davila-Ortiz, G. Application of High Pressure Homogenization to Improve Stability and Decrease Droplet Size in Emulsion-Flavor Systems. Int. J. Environ. Agric. biotech. 2016, 1(4), 646–662. DOI: http://dx.doi.org/10.22161/ijeab/1.4.6.
  • Donsì, F.; Sessa, M.; Ferrari, G. Effect of Emulsifier Type and Disruption Chamber Geometry on the Fabrication of Food Nanoemulsions by High Pressure Homogenization. Ind. Eng. Chem. Res. 2012b, 51(22), 7606–7618. DOI: 10.1021/ie2017898.
  • Donsì, F.; Annunziata, M.; Vincensi, M.; Ferrari, G. Design of Nanoemulsion-Based Delivery Systems of Natural Antimicrobials: Effect of the Emulsifier. J. Biotechnol. 2012a, 159(4), 342–350. DOI: 10.1016/j.jbiotec.2011.07.001.
  • Hadžiabdić, J.; Džana, O.; Elezovic, A.; Vranic, E.; Rahic, O. Preparation of Nanoemulsions by High-Energy and Low-Energy Emulsification Methods. IFMBE Proc. 2017, 62, 317–322. DOI: 10.1007/978-981-10-4166-2_48.
  • Villalobos-Castillejos, F.; Granillo-Guerrero, V. G.; Leyva-Daniel, D. E.; Alamilla-Beltrán, L.; Gutiérrez-López, G. F.; Monroy-Villagrana, A.; Jafari, S. M. Fabrication of Nanoemulsions by Microfluidization. In Nanoemulsions: Formulation, Applications, and Characterization, 1st ed.; Jafari, S.M. and McClements, D.J., Eds.; Academic Press: London, UK, 2018; pp. 207–232. DOI: 10.1016/B978-0-12-811838-2.00008-4.
  • Abbas, S.; Hayat, K.; Karangwa, E.; Bashari, M.; Zhang, X. An Overview of Ultrasound-Assisted Food-Grade Nanoemulsions. Food Eng. Rev. 2013, 5(3), 139–157. DOI: 10.1007/s12393-013-9066-3.
  • Jafari, S. M.; He, Y.; Bhandari, B. Nano-Emulsion Production by Sonication and Microfluidization—a Comparison. Int. J. Food. Prop. 2006, 9(3), 475–485. DOI: 10.1080/10942910600596464.
  • Silletti, E.; Vingerhoeds, M. H.; Norde, W.; van Aken, G. A. The Role of Electrostatistics in Saliva-Induced Emulsion Flocculation. Food Hydrocoll. 2007, 21(4), 596–606. DOI: 10.1016/j.foodhyd.2006.07.004.
  • Wang, Y. Preparation of Nano- and Microemulsions Using Phase Inversion and Emulsion Titration Methods. Master’s Thesis, Massey University, Auckland, NZ, 2014. https://mro.massey.ac.nz/handle/10179/5594.
  • Honary, S.; Zahir, F. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - a Review (Part 1). Trop. J. Pharm. Res. 2013, 12(2), 255–264. DOI: 10.4314/tjpr.v12i2.19.
  • Lu, G. W.; Gao, P. Emulsions and Microemulsions for Topical and Transdermal Drug Delivery. In Handbook of Non-Invasive Drug Delivery Systems - Non-Invasive and Minimally-Invasive Drug Delivery Systems for Pharmaceutical and Personal Care Products, 1st ed.; Kulkarni, V.S., Ed.; Elsevier: Amsterdam, NL, 2010; pp. 59–94. DOI: 10.1016/B978-0-8155-2025-2.10003-4.
  • Costa, C.; Medronho, B.; Filipe, A.; Mira, I.; Lindman, B.; Edlund, H.; Norgren, M. Emulsion Formation and Stabilization by Biomolecules: The Leading Role of Cellulose. Polymers. 2019, 11(10), Article e1570. DOI: 10.3390/polym11101570.
  • Fan, H.; Striolo, A. Mechanistic Study of Droplets Coalescence in Pickering Emulsions. Soft Matter. 2012, 8(37), Article e9533. DOI: 10.1039/C2SM26416A.
  • McClements, D. J. Food Emulsions: Principles, Practices, and Techniques, 3rd ed; CRC Press: Boca Raton, FL, 2015. DOI: 10.1201/9781420039436.
  • Banasaz, S.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Encapsulation of Lipid-Soluble Bioactives by Nanoemulsions. Molecules. 2020, 25(17), Article e3966. DOI: 10.3390/molecules25173966.
  • Goindi, S.; Kaur, A.; Kaur, R.; Kalra, A.; Chauhan, P. Nanoemulsions: An Emerging Technology in the Food Industry. Emulsions. 2016, 3, 651–688. DOI: 10.1016/B978-0-12-804306-6.00019-2.
  • Noor Mohammed, A.; Padma Ishwarya, S.; Nisha, P. Nanoemulsion versus Microemulsion Systems for the Encapsulation of Beetroot Extract: Comparison of Physicochemical Characteristics and Betalain Stability. Food Bioproc. Tech. 2021, 14(1), 133–150. DOI: 10.1007/s11947-020-02562-2.
  • Fatehi, P.; Baba, A. S.; Eh Suk, V. R.; Misran, M. Preparation and Characterization of Palm Oil in Water Microemulsion for Application in the Food Industry. Br. Food J. 2020, 122(10), 3077–3088. DOI: 10.1108/BFJ-01-2020-0018.
  • Uchiyama, H.; Chae, J.; Kadota, K.; Tozuka, Y. Formation of Food Grade Microemulsion with Rice Glycosphingolipids to Enhance the Oral Absorption of Coenzyme Q10. Foods. 2019, 8(10), Article e502. DOI: 10.3390/foods8100502.
  • Llinares, R.; Santos, J.; Trujillo-Cayado, L. A.; Ramírez, P.; Muñoz, J. Enhancing Rosemary Oil-In-Water Microfluidized Nanoemulsion Properties Through Formulation Optimization by Response Surface Methodology. Lwt. 2018, 97(1), 370–375. DOI: 10.1016/j.lwt.2018.07.033.
  • Silva, H. D.; Poejo, J.; Pinheiro, A. C.; Donsì, F.; Serra, A. T.; Duarte, C. M. M.; Ferrari, G.; Cerqueira, M. A.; Vicente, A. A. Evaluating the Behaviour of Curcumin Nanoemulsions and Multilayer Nanoemulsions During Dynamic In Vitro Digestion. J. Funct. Foods. 2018, 48, 605–613. DOI: 10.1016/j.jff.2018.08.002.
  • Barzegar, H.; Mehrnia, M. A.; Nasehi, B.; Alipour, M. Fabrication of Peppermint Essential Oil Nanoemulsions by Spontaneous Method: Effect of Preparing Conditions on Droplet Size. Flavour Fragr. J. 2018, 33(5), 351–356. DOI: 10.1002/ffj.3455.
  • Alarcon, C. A.; Inostroza-Riquelme, M.; Torres-Gallegos, C.; Araya, C.; Miranda, M.; Sánchez-Caamaño, J. C.; Moreno-Villoslada, I.; Oyarzun-Ampuero, F. A. Protection of Astaxanthin from Photodegradation by Its Inclusion in Hierarchically Assembled Nano and Microstructures with Potential as Food. Food Hydrocoll. 2018, 83, 36–44. DOI: 10.1016/j.foodhyd.2018.04.033.
  • Aboudzadeh, M. A.; Mehravar, E.; Fernandez, M.; Lezama, L.; Tomovska, R. Low-Energy Encapsulation of α-Tocopherol Using Fully Food Grade Oil-In-Water Microemulsions. ACS Omega. 2018, 3(9), 10999–11008. DOI: 10.1021/acsomega.8b01272.
  • Golfomitsou, I.; Mitsou, E.; Xenakis, A.; Papadimitriou, V. Development of Food Grade O/W Nanoemulsions as Carriers of Vitamin D for the Fortification of Emulsion Based Food Matrices: A Structural and Activity Study. J. Mol. Liq. 2018, 268, 734–742. DOI: 10.1016/j.molliq.2018.07.109.
  • Tian, H.; Li, D.; Xu, T.; Hu, J.; Rong, Y.; Zhao, B. Citral Stabilization and Characterization of Nanoemulsions Stabilized by a Mixture of Gelatin and Tween 20 in an Acidic System. J. Sci. Food Agric. 2017, 97(9), 2991–2998. DOI: 10.1002/jsfa.8139.
  • Su, D.; Zhong, Q. Lemon Oil Nanoemulsions Fabricated with Sodium Caseinate and Tween 20 Using Phase Inversion Temperature Method. J. Food Eng. 2016, 171, 214–221. DOI: 10.1016/j.jfoodeng.2015.10.040.
  • Deng, L.; Que, F.; Wei, H.; Xu, G.; Dong, X.; Zhang, H. Solubilization of Tea Seed Oil in a Food-Grade Water-Dilutable Microemulsion. PLoS One 2015, 10(5), Article e0127291. DOI: 10.1371/journal.pone.0127291.
  • Qian, C.; Decker, E. A.; Xiao, H.; McClements, D. J. Physical and Chemical Stability of β-Carotene-Enriched Nanoemulsions: Influence of pH, Ionic Strength, Temperature, and Emulsifier Type. Food Chem. 2012, 132(3), 1221–1229. DOI: 10.1016/j.foodchem.2011.11.091.
  • Yang, X.; Tian, H.; Ho, C. T.; Huang, Q. Inhibition of Citral Degradation by Oil-In-Water Nanoemulsions Combined with Antioxidants. J. Agric. Food. Chem. 2011, 59(11), 6113–6119. DOI: 10.1021/jf2012375.
  • Sim, W. L. S.; Han, M. Y.; Huang, D. Quantification of Antioxidant Capacity in a Microemulsion System: Synergistic Effects of Chlorogenic Acid with α-Tocopherol. J. Agric. Food. Chem. 2009, 57(9), 3409–3414. DOI: 10.1021/jf8040484.
  • Amar, I.; Aserin, A.; Garti, N. Solubilization Patterns of Lutein and Lutein Esters in Food Grade Nonionic Microemulsions. J. Agric. Food. Chem. 2003, 51(16), 4775–4781. DOI: 10.1021/jf026222t.
  • Spernath, A.; Yaghmur, A.; Aserin, A.; Hoffman, R. E.; Garti, N. Food-Grade Microemulsions Based on Nonionic Emulsifiers: Media to Enhance Lycopene Solubilization. J. Agric. Food. Chem. 2002, 50(23), 6917–6922. DOI: 10.1021/jf025762n.
  • Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods-A Review. Int. J. Food Microbiol. 2004, 94(3), 223–253. DOI: 10.1016/j.ijfoodmicro.2004.03.022.
  • Negi, P. S. Plant Extracts for the Control of Bacterial Growth: Efficacy, Stability and Safety Issues for Food Application. Int. J. Food Microbiol. 2012, 156(1), 7–17. DOI: 10.1016/j.ijfoodmicro.2012.03.006.
  • Kuorwel, K. K.; Cran, M. J.; Sonneveld, K.; Miltz, J.; Bigger, S. W. Essential Oils and Their Principal Constituents as Antimicrobial Agents for Synthetic Packaging Films. J. Food Sci. 2011, 76(9), 164–177. DOI: 10.1111/j.1750-3841.2011.02384.x.
  • Serna, C. M. B.; Dacanal, G. C.; Fernandes, A. M.; Pinho, S. Antifungal Activity of Nanoemulsions Encapsulating Oregano (Origanum Vulgare) Essential Oil: In Vitro Study and Application in Minas Padrão Cheese. Braz. J. Microbiol. 2018, 49(4), 929–935. DOI: 10.1016/j.bjm.2018.05.004.
  • Donsì, F.; Ferrari, G. Essential Oil Nanoemulsions as Antimicrobial Agents in Food. J. Biotechnol. 2016, 233, 106–120. DOI: 10.1016/j.jbiotec.2016.07.005.
  • Fathi, M.; Vinceković, M.; Jurić, S.; Viskić, M.; Jambrak, A. R.; Donsì, F. Food-Grade Colloidal Systems for the Delivery of Essential Oils. Food Rev. Int. 2021, 37(1), 1–45. DOI: 10.1080/87559129.2019.1687514.
  • Hwang, Y. Y.; Ramalingam, K.; Bienek, D. R.; Lee, V.; You, T.; Alvarez, R. Antimicrobial Activity of Nanoemulsion in Combination with Cetylpyridinium Chloride in Multidrug-Resistant Acinetobacter Baumannii. Antimicrob. Agents Chemother. 2013, 57(8), 3568–3575. DOI: 10.1128/AAC.02109-12.
  • Abdou, E. S.; Galhoum, G. F.; Mohamed, E. N. Curcumin Loaded Nanoemulsions/pectin Coatings for Refrigerated Chicken Fillets. Food Hydrocoll. 2018, 83, 445–453. DOI: 10.1016/j.foodhyd.2018.05.026.
  • Akbas, E.; Soyler, B.; Oztop, M. H. Formation of Capsaicin Loaded Nanoemulsions with High Pressure Homogenization and Ultrasonication. Lwt. 2018, 96, 266–273. DOI: 10.1016/j.lwt.2018.05.043.
  • Shadman, S.; Hosseini, S. E.; Langroudi, H. E.; Shabani, S. Evaluation of the Effect of a Sunflower Oil-Based Nanoemulsion with Zataria Multiflora Boiss. Essential Oil on the Physicochemical Properties of Rainbow Trout (Oncorhynchus Mykiss) Fillets During Cold Storage. Lwt. 2017, 79(C), 511–517. DOI: 10.1016/j.lwt.2016.01.073.
  • Yildirim, S. T.; Oztop, M. H.; Soyer, Y. Cinnamon Oil Nanoemulsions by Spontaneous Emulsification: Formulation, Characterization and Antimicrobial Activity. Lwt. 2017, 84, 122–128. DOI: 10.1016/j.lwt.2017.05.041.
  • Ozogul, Y.; Yuvka, I.; Ucar, Y.; Durmus, M.; Kösker, A. R.; Öz, M.; Ozogul, F. Evaluation of Effects of Nanoemulsion Based on Herb Essential Oils (Rosemary, Laurel, Thyme and Sage) on Sensory, Chemical and Microbiological Quality of Rainbow Trout (Oncorhynchus Mykiss) Fillets During Ice Storage. Lwt. 2017, 75(C), 677–684. DOI: 10.1016/j.lwt.2016.10.009.
  • Hyldgaard, M.; Mygind, T.; Meyer, R. L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3(12), Article e12. DOI: 10.3389/fmicb.2012.00012.
  • Somolinos, M.; García, D.; Condón, S.; Mackey, B.; Pagán, R. Inactivation of Escherichia Coli by Citral. J. Appl. Microbiol. 2010, 108(6), 1928–1939. DOI: 10.1111/j.1365-2672.2009.04597.x.
  • Espitia, P. J. P.; Fuenmayor, C. A.; Otoni, C. G. Nanoemulsions: Synthesis, Characterization, and Application in Bio‐based Active Food Packaging. Compr. Rev. Food Sci. Food Saf. 2019, 18(1), 264–285. DOI: 10.1111/1541-4337.12405.
  • Robledo, N.; Vera, P.; López, L.; Yazdani-Pedram, M.; Tapia, C.; Abugoch, L. Thymol Nanoemulsions Incorporated in Quinoa Protein/chitosan Edible Films; Antifungal Effect in Cherry Tomatoes. Food Chem. 2018, 246, 211–219. DOI: 10.1016/j.foodchem.2017.11.032.
  • Dammak, I.; de Carvalho, R. A.; Trindade, C. S. F.; Lourenço, R. V.; Sobral, P. J. A. Properties of Active Gelatin Films Incorporated with Rutin-Loaded Nanoemulsions. Int. J. Biol. Macromol. 2017, 98, 39–49. DOI: 10.1016/j.ijbiomac.2017.01.094.
  • Gahruie, H. H.; Ziaee, E.; Eskandari, M. H.; Hosseini, S. M. H. Characterization of Basil Seed Gum-Based Edible Films Incorporated with Zataria Multi?ora Essential Oil Nanoemulsion. Carbohydr. Polym. 2017, 166, 93–103. DOI: 10.1016/j.carbpol.2017.02.103.
  • Alexandre, E. M. C.; Lourenço, R. V.; Bittante, A. M. Q. B.; Moraes, I. C. F.; Sobral, P. J. A. Gelatine Based Films Reinforced with Montmorillonite and Activated with Nanoemulsion of Ginger Essential Oil for Food Packaging Applications. Food Packag. Shelf Life. 2016, 10, 87–96. DOI: 10.1016/j.fpsl.2016.10.004.
  • Otoni, C. G.; Pontes, S. F.; Medeiros, E. A.; Soares, N. F. F. Edible Films from Methylcellulose and Nanoemulsions of Clove Bud (Syzygium Aromaticum) and Oregano (Origanum Vulgare) Essential Oils as Shelf Life Extenders for Sliced Bread. J. Agric. Food. Chem. 2014, 62(22), 5214–5219. DOI: 10.1021/jf501055f.
  • Amiri-Rigi, A.; Abbasi, S.; Scanln, M. G. Enhanced Lycopene Extraction from Tomato Industrial Waste Using Microemulsion Technique: Optimization of Enzymatic and Ultrasound Pre-Treatments. Innov. Food Sci. Emerg. Technol. 2016, 35, 160–167. DOI: 10.1016/j.ifset.2016.05.004.
  • Jalali-Jivan, M.; Abbasi, S.; Scanlon, M. G. Microemulsion as Nanoreactor for Lutein Extraction: Optimization for Ultrasound Pretreatment. J. Food Biochem. 2019, 43(8), Article e12929. DOI: 10.1111/jfbc.12929.
  • Radi, M.; Abbasi, S. Optimization of Novel Oil Extraction Technique from Canola Seeds: Lecithin‐based Microemulsion. Eur. J. Lipid Sci. Technol. 2018, 120(4), Article e1700267. DOI: 10.1002/ejlt.201700267.
  • Gadhave, A. D.; Waghmare, J. T. A Short Review on Microemulsion and Its Application in Extraction of Vegetable Oil. Int. J. Res. Eng. Technol. 2014, 3(9), 147–158. DOI: 10.15623/ijret.2014.0309022.
  • Naviglio, D.; Pizzolongo, F.; Ferrara, L.; Aragòn, A.; Santin, A. Extraction of Pure Lycopene from Industrial Tomato By‐products in Water Using a New High‐pressure Process. J. Sci. Food Agric. 2008, 88(14), 2414–2420. DOI: 10.1002/jsfa.3334.
  • Amiri-Rigi, A.; Abbasi, S. Extraction of Lycopene Using a Lecithin-Based Olive Oil Microemulsion. Food Chem. 2018, 272, 568–573. DOI: 10.1016/j.foodchem.2018.08.080.
  • Hayes, D. G.; Ye, R.; Dunlap, R. N.; Cuneo, M. J.; Pingali, S. V.; O’-Neill, H. M.; Urban, V. S. Protein Extraction into the Bicontinuous Microemulsion Phase of a Water/sds/pentanol/dodecane Winsor-III System: Effect on Nanostructure and Protein Conformation. Colloids Surf. B Biointerfaces. 2017, 160(84), 144–153. DOI: 10.1016/j.colsurfb.2017.09.005.
  • Chan, J. Extracting Lipid and Carotenoids from Microalgae with Lecithin-Linker Microemulsions. Master’s Thesis, University of Toronto, Ontario, CA, 2012. http://hdl.handle.net/1807/42883.
  • Ugolini, L.; De Nicola, G.; Palmieri, S. Use of Reverse Micelles for the Simultaneous Extraction of Oil, Proteins, and Glucosinolates from Cruciferous Oilseeds. J. Agric. Food. Chem. 2008, 56(5), 1595–1601. DOI: 10.1021/jf072582a.
  • Qiu, S.; Wang, X.; Liu, X.; Wang, X.; Amuti, A.; Zan, M.; Guo, D.; Wang, Z. Tracking In Vitro Digestion and In Vivo Metabolism of Water-In-Oil-In-Water Microemulsion as a Delivery Carrier for α-Linolenic Acid. J. Mol. Liq. 2020, 320(Pt B), Article e114471. DOI: 10.1016/j.molliq.2020.114471.
  • Sungpud, C.; Panpipat, W.; Chaijan, M.; Yoon, A. S. Techno-Biofunctionality of Mangostin Extract-Loaded Virgin Coconut Oil Nanoemulsion and Nanoemulgel. PLoS One 2020, 15(1), Article e0227979. DOI: 10.1371/journal.pone.0227979.
  • Meng, Q.; Long, P.; Zhou, J.; Ho, C. T.; Zou, X.; Chen, B.; Zhang, L. Improved Absorption of β-Carotene by Encapsulation in an Oil-In-Water Nanoemulsion Containing Tea Polyphenols in the Aqueous Phase. Food. Res. Int. 2019, 116, 731–736. DOI: 10.1016/j.foodres.2018.09.004.
  • Zhang, R.; Zhang, Z.; Kumosani, T.; Khoja, S.; Abualnaja, K. O.; McClements, D. J. Encapsulation of β-Carotene in Nanoemulsion-Based Delivery Systems Formed by Spontaneous Emulsification: Influence of Lipid Composition on Stability and Bioaccessibility. Food Biophys. 2016, 11(2), 154–164. DOI: 10.1007/s11483-016-9426-7.
  • Donsì, F.; Sessa, M.; Mediouni, H.; Mgaidi, A.; Ferrari, G. Encapsulation of Bioactive Compounds in Nanoemulsion- Based Delivery Systems. Procedia Food Sci. 2011, 1, 1666–1671. DOI: 10.1016/j.profoo.2011.09.246.
  • Gaonkar, A. G.; Bagwe, R. P. Microemulsions in Foods: Challenges and Applications. Surfactant Sci. Ser. 2003, 109, 407–430.
  • Tiwary, L. K. Reverse Microemulsions as a Novel Reaction Media. Orient J. Chem. 2013, 29(1), 375–379. DOI: 10.13005/ojc/290160.
  • Jingcheng, H. Studies on Chemical Reactions in Microemulsion Media(i) Hydrolysis Kinetics Studies in Microemulsion System for CTAB/N-Butanol/25%noctane/water. J Dispers. Sci. Technol. 2000, 21(1), 19–30. DOI: 10.1080/01932690008913243.
  • Holmberg, K. Organic Reactions in Microemulsions. Eur. J. Org. Chem. 2007, 5, 731–742. DOI: 10.1002/ejoc.200600741.
  • Boutonnet, M.; Sanchez-Dominguez, M. Microemulsion Droplets to Catalytically Active Nanoparticles: How the Application of Colloidal Tools in Catalysis Aims to Well Designed and Efficient Catalysts. Catal. Today. 2017, 285, 89–103. DOI: 10.1016/j.cattod.2016.12.047.
  • Ke-Long, H.; Liang-Guo, Y.; Su-Qin, L.; Chao-Jian, L. Preparation and Formation Mechanism of Al2o3 Nanoparticles by Reverse Microemulsion. Trans. Nonferrous Met. Soc. China. 2007, 17(3), 633–637. DOI: 10.1016/S1003-6326(07)60147-2.
  • Carlie, K.; Rees, G. D.; Robinson, B. H.; Steer, T. D.; Svensson, M. Lipase Catalysed Interfacial Reactions in Reverse Micellar Systems: Role of Water and Microenvironment in Determining Enzyme Activity or Dormancy. J. Chem. Soc. Faraday Trans. 1996, 92(23), 4701–4708. DOI: 10.1039/FT9969204701.
  • Marangoni, A. G.; Mccurdy, R. D.; Brown, E. D. Enzymatic Interesterification of Triolein with Tripalmitin in Canola Lecithin–hexane Reverse Micelles. J. Am. Oil Chem. Soc. 1993, 70(8), 737–744. DOI: 10.1007/BF02542593.
  • Svensson, M.; Rees, G. D.; Robinson, B. H.; Stephenson, G. R. Phospholipid-Stabilised Water-In-Oil Microemulsions: A Study of Ester Synthesis by Humicola Lanuginosa Lipase. Colloids Surf. B Biointerfaces. 1996, 8(1–2), 101–111. DOI: 10.1016/S0927-7765(96)01311-2.
  • Kyriazi, A.; Papadimitriou, V.; Sotiroudis, T. G.; Xenakis, A. Development and Characterization of a Digestion Model Based on Olive Oil Microemulsions. Eur. J. Lipid Sci. Technol. 2013, 115(6), 601–611. DOI: 10.1002/ejlt.201200340.
  • Fanun, M.; Leser, M.; Aserin, A.; Garti, N. Sucrose Ester Microemulsions as Microreactors for Model Maillard Reaction. Colloids Surf. A: Physicochem. Eng. Asp. 2001, 194(1–3), 175–187. DOI: 10.1016/S0927-7757(01)00786-5.
  • Holmberg, K.; Osterberg, E. Enzymatic Preparation of Monoglycerides in Microemulsion. J. Am. Oil Chem. Soc. 1988, 65(9), 1544–1548. DOI: 10.1007/BF02898325.
  • Garti, N. Microemulsions as Microreactors for Food Applications. Curr. Opin. Colloid. Interface Sci. 2003, 8(2), 197–211. DOI: 10.1016/S1359-0294(03)00022-0.
  • Cosmeceuticals Next Up for All-Conquering Nutralease. https://www.foodnavigator.com/Article/2007/07/31/Cosmeceuticals-next-up-for-all-conquering-NutraLease (accessed Mar 10, 2021).
  • Aquanova AG Solutions Made in Germany. http://www.aquanova.de/media/public/pdf/produkteunkosher/NovaSOL/beverage.pdf (accessed Mar 10, 2021).
  • Silva, H. D.; Cerqueira, M. A.; Vicente, A. A. Nanoemulsions for Food Applications: Development and Characterization. Food Bioprocess Technol. 2012, 5(3), 854–867. DOI: 10.1007/s11947-011-0683-7.
  • Nanoemulsion Market by Type and Application: Global Opportunity Analysis and Industry Forecast 2019-2026. https://www.globenewswire.com/news-release/2020/01/15/1970955/0/en/Nanoemulsion-Market-by-Type-and-Application-GlobalOpportunity-Analysis-and-Industry-Forecast-2019-2026.html (accessed March 11, 2021).
  • Nejatian, M.; Abbasi, S. Application of Bio-Based Emulsifiers in the Formulation of Food-Grade Nanoemulsions. In Green and Food-Grade Nanoemulsions: Concepts, Formulation, and Agro-Food Applications; Abd-Elsalam, K.A. and Murugan, K., Eds.; Elsevier: Amsterdam, NL, In press.
  • Rao, J.; McClements, D. J. Food-Grade Microemulsions, Nanoemulsions and Emulsions: Fabrication from Sucrose Monopalmitate & Lemon Oil. Food Hydrocoll. 2011, 25(6), 1413–1423. DOI: 10.1016/j.foodhyd.2011.02.004.
  • Hegde, R. R.; Verma, A.; Ghosh, A. Microemulsion: New Insights into the Ocular Drug Delivery. ISRN Pharm. 2013, 11, Article e826798. DOI:10.1155/2013/826798.
  • Nejatian, M.; Abbasi, S. Formation of Concentrated Triglyceride Nanoemulsions and Nanogels: Natural Emulsifiers and High Power Ultrasound. RSC Adv. 2019, 9(49), 28330–28344. DOI: 10.1039/C9RA04761A.
  • Nejatian, M.; Abbasi, S.; Kadkhodaee, R. Ultrasonic-Assisted Fabrication of Concentrated Triglyceride Nanoemulsions and Nanogels. Langmuir. 2018, 34(38), 11433–11441. DOI: 10.1021/acs.langmuir.8b01596.
  • Gradzielski, M. Effect of the Cosurfactant Structure on the Bending Elasticity in Nonionic Oil-In-Water Microemulsions. Langmuir. 1998, 14(21), 6037–6044. DOI: 10.1021/la980074c.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.