382
Views
0
CrossRef citations to date
0
Altmetric
Review

Regulation of physiological pH and consumption of potential food ingredients for maintaining homeostasis and metabolic function: An overview

, , , &

References

  • Marunaka, Y. The Proposal of Molecular Mechanisms of Weak Organic Acids Intake-Induced Improvement of Insulin Resistance in Diabetes Mellitus via Elevation of Interstitial Fluid pH. Int. J. Mol. Sci. 2018, 19, E3244. DOI: 10.3390/ijms19103244.
  • Gillies, R. J.; Pilot, C.; Marunaka, Y.; Fais, S. Targeting Acidity in Cancer and Diabetes. Biochim. Biophys. Acta Rev. Cancer. 2019, 1871, 273–280. DOI: 10.1016/j.bbcan.2019.01.003.
  • Waugh, A.; Grant, A. Anatomy and Physiology in Health and Illness, 10th ed.; Churchill Livingstone Elsevier: Philadelphia, Pa, USA, 2007.
  • Frassetto, L.; Morris, R. C.; Sellmeyer, R. C.; Todd, K.; Sebastian, A. Diet, Evolution and Aging—the Pathophysiologic Effects of the Post-Agricultural Inversion of the Potassium-To-Sodium and Base-To-Chloride Ratios in the Human Diet. Eur. J. Nutr. 2007, 40(5), 200–213. DOI: 10.1007/s394-001-8347-4.
  • Sebastian, A.; Frassetto, L. A.; Sellmeyer, D. E.; Merriam, R. L.; Morris, R. C. Estimation of the Net Acid Load of the Diet of Ancestral Preagricultural Homo Sapiens and Their Hominid Ancestors. Am. J. Clin. Nutr. 2002, 76(6), 1308–1316. DOI: 10.1093/ajcn/76.6.1308.
  • Rizzoli, R.; Biver, E.; Bonjour, J. P.; Coxam, V.; Goltzman, D.; Kanis, J. A., Lappe, J., Rejnmark, L., Sahni, S., Weaver, C. Benefits and Safety of Dietary Protein for Bone Health-An Expert Consensus Paper Endorsed by the European Society for Clinical and Economical Aspects of Osteoporosis, Osteoarthritis, and Musculoskeletal Diseases and by the International Osteoporosis Foundation. Osteoporos. Int. 2018, 29, 1933–1948. DOI: 10.1007/s00198-018-4534-5.
  • Shwalfenberg, G. K. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health? J. Environ. Public Health. 2012, 45, 727630.
  • Williams, R. S.; Heilbronn, L. K.; Chen, D. L.; Coster, A. C. F.; Greenfield, J. R.; Samocha-Bonet, D. Dietary Acid Load, Metabolic Acidosis and Insulin Resistance – Lessons from Cross-Sectional and Overfeeding Studies in Humans. Clin. Nutr. 2016, 35, 1084–1090. DOI: 10.1016/j.clnu.2015.08.002.
  • Osuna-Padilla, I. A.; Leal-Escobar, G.; Garza-García, C. A.; Rodríguez-Castellanos, F. E. Dietary Acid Load: Mechanisms and Evidence of Its Health Repercussions. Nefrología. 2019, 39, 343–354. DOI: 10.1016/j.nefro.2018.10.005.
  • Calì, C.; Tauffenberger, A.; Magistretti, P. The Strategic Location of Glycogen and Lactate: From Body Energy Reserve to Brain Plasticity. Front. Cell. Neurosci. 2019, 13, 82. DOI: 10.3389/fncel.2019.00082.
  • Brooks, G. A. The Science and Translation of Lactate Shuttle Theory. Cell Metab. 2018, 27, 757–785. DOI: 10.1016/j.cmet.2018.03.008.
  • Pillai, S. R.; Damaghi, M.; Marunaka, Y.; Spugnini, E. P.; Fais, S.; Gillies, R. J. Causes, Consequences, and Therapy of Tumors Acidosis. Cancer Metastasis Rev. 2019, 38, 205–222. DOI: 10.1007/s10555-019-09792-7.
  • Aoi, W.; Xiaobo, Z.; Jian, B. X.; Yoshinori, M. Body Fluid pH Balance in Metabolic Health and Possible Benefits of Dietary Alkaline Foods. EFood. 2020, 1(1), 12–23. eISSN 2666-3066. DOI: 10.2991/efood.k.190924.001;.
  • Luo, F.; Zou, Z.; Liu, X.; Ling, M.; Wang, Q.; Wang, Q., Lu, L., Shi, L., Liu, Y., Liu, Q. Enhanced Glycolysis, Regulated by HIF-1α via MCT-4, Promotes Inflammation in Arsenite-Induced Carcinogenesis. Carcinogenesis. 2017, 38(6), 615–626. DOI: 10.1093/carcin/bgx034.
  • Sprowl-Tanio, S.; Habowski, A. N.; Pate, K. T.; McQuade, M. M.; Wang, K.; Edwards, R. A., Grun, F., Lyou, Y., Waterman, M. L. Lactate/pyruvate Transporter MCT-1 is a Direct Wnt Target That Confers Sensitivity to 3-Bromopyruvate in Colon Cancer. Cancer Metab. 2016, 4, 20. DOI: 10.1186/s40170-016-0159-3.
  • Santos, J. L.; Cataldo, L. R.; Cortés-Rivera, C.; Bravo, C.; Díaz-Casanova, L.; Martínez, J. A., Milagro, F. I., Galgani, J. Plasma Lactate and Leukocyte Mitochondrial DNA Copy Number as Biomarkers of Insulin Sensitivity in Non-Diabetic Women. J. Physiol. Biochem. 2018, 75, 285–297. DOI: 10.1007/s13105-019-00672-w.
  • Hosogi, S.; Ohsawa, M.; Kato, I.; Kuwahara, A.; Inui, T.; Inui, A., Marunaka, Y.; et al. Improvement of Diabetes Mellitus Symptoms by Intake of Ninjin’Yoeito. Front Nutr. 2018, 5, 112. DOI: 10.3389/fnut.2018.00112.
  • Ruffin, V.A.; Salameh, A.I.; Boron, W.F.; Parker, M.D. Intracellular pH Regulation by Acid-Base Transporters in Mammalian Neurons. Front. Physiol. 2014, 5, 43. DOI: 10.3389/fphys.2014.00043.
  • Casey, J. R.; Grinstein, S.; Orlowski, J. Sensors and Regulators of Intra- Cellular pH. Nat Rev Nat. Rev. Mol. Cell Biol. 2010, 11, 50–61. DOI: 10.1038/nrm2820.
  • Eledrisi, M. S.; Alshanti, M. S.; Shah, M. F.; Brolosy, B.; Jaha, N. Overview of the Diagnosis and Management of Diabetic Ketoacidosis. Am. J. Med. Sci. 2006, 331, 243–251. DOI: 10.1097/00000441-200605000-00002.
  • Halestrap, A. P. The Monocarboxylate Transporter Family Structure and Functional Characterization. IUBMB Life. 2012, 64, 1–9. DOI: 10.1002/iub.573.
  • Chatel, B.; Bendahan, D.; Hourdé, C.; Pellerin, L.; Lengacher, S.; Magistretti, P., Le Fur, Y., Vilmen, C., Bernard, M., Messonnier, L. A. Role of MCT1 and CAII in Skeletal Muscle pH Homeostasis, Energetics, and Function: In vivo Insights from MCT1 Haploinsufficient Mice. Faseb J. 2017, 31, 2562–2575. DOI: 10.1096/fj.201601259R.
  • Scialla, J. J.; Appel, L. J.; Astor, B. C., Miller, E. R., Beddhu, S., Woodward, M., Parekh, R. S., Anderson, C. A. M. Estimated Net Endogenous Acid Production and Serum Bicarbonate in African Americans with Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 1526–1532. DOI: 10.2215/CJN.00150111.
  • Cupisti, A. D.; Alessandro, C.; Gesualdo, L.; Cosola, C.; Gallieni, M.; Egidi, M. F. Non-Traditional Aspects of Renal Diets: Focus on Fiber Alkali and Vitamin K1 Intake. Nutrients. 2017, 9. http://dx.doi.org/10.3390/nu9050444.
  • Passey, C. Reducing Acid Load: How a More Alkaline Diet Benefits Patients with Chronic Kidney Disease. J. Ren. Nutr. 2017, 27, 151–160. DOI: 10.1053/j.jrn.2016.11.006.
  • Rodrigues, N. A. L.; Arces de Souza, G. C.; Almeida Romão, E., and Garcia Chiarello, P. Alkaline Diet and Metabolic Acidosis: Practical Approaches to the Nutritional Management of Chronic Kidney Disease. J. Ren. Nutr. 2017, 32. DOI: 10.1053/j.jrn.2017.10.006.
  • Aoi, W.; Hosogi, S.; Niisato, N.; Yokoyama, N.; Hayata, H.; Miyazaki, H., Kusuzaki, K., Fukuda, T., Fukui, M., Nakamura, N. Improvement of Insulin Resistance, Blood Pressure and Interstitial pH in Early Developmental Stage of Insulin Resistance in OLETF Rats by Intake of Propolis Extracts. Biochem. Biophys. Res. Commun. 2013, 432, 650–653. DOI: 10.1016/j.bbrc.2013.02.029.
  • Angeloco, L. R. N.; Arces de Souza, G. C.; Romao, E. A.; Chiarello, P. G. Alkaline Diet and Metabolic Acidosis: Practical Approaches to the Nutritional Management of Chronic Kidney Disease. J. Renal Nutr. 2017, 23, 2.
  • Pajor, A. M. Sodium-Coupled Dicarboxylate and Citrate Trans Porters from the SLC13 Family. Pflügers Arch. 2014, 466, 119–130. DOI: 10.1007/s00424-013-1369-y.
  • Yu, T.; Dohl, J.; Chen, Y.; Gasier, H. G.; Deuster, P. A. Astaxanthin but Not Quercetin Preserves Mitochondrial Integrity and Function, Ameliorates Oxidative Stress, and Reduces Heat-Induced Skeletal Muscle Injury. J. Cell. Physiol. 2019, 234, 13292–13302. DOI: 10.1002/jcp.28006.
  • Henagan, T. M.; Lenard, N. R.; Gettys, T. W.; Stewart, L. K.; Galgani, J. Dietary Quercetin Supplementation in Mice Increases Skeletal Muscle PGC1α Expression, Improves Mitochondrial Function and Attenuates Insulin Resistance in a Time-Specific Manner. PLoS One. 2014, 9, e89365. DOI: 10.1371/journal.pone.0089365.
  • Perie, L.; Parente, A.; Baraige, F.; Magnol, L.; Blanquet, V. Alterations in Adiposity and Glucose Homeostasis in Adult Gasp-1 Overexpressing Mice. Cell. Physiol. Biochem. 2017, 44, 1896–1911. DOI: 10.1159/000485878.
  • Varanoske, A. N.; Hoffman, J. R.; Church, D. D.; Coker, N. A.; Baker, K. M.; Dodd, S. J., Oliveira, L. P., Dawson, V. L., Wang, R., Fukuda, D. H. β -Alanine Supplementation Elevates Intramuscular Carnosine Content and Attenuates Fatigue in Men and Women Similarly but Does Not Change Muscle L -Histidine Content. Nutr. Res. 2017, 48, 16–25. DOI: 10.1016/j.nutres.2017.10.002.
  • Figueroa, A.; Wong, A.; Jaime, S. J.; Gonzales, J. U. Influence of L-Citrulline and Watermelon Supplementation on Vascular Function and Exer- Cise Performance. Curr. Opin. Clin. Nutr. Metab. Care. 2017, 20, 92–98. DOI: 10.1097/MCO.0000000000000340.
  • Toda, K.; Takeda, S.; Hitoe, S.; Nakamura, S.; Matsuda, H.; Shimoda, H. Enhancement of Energy Production by Black Ginger Extract Containing Polymethoxy Flavonoids in Myocytes Through Improving Glucose, Lactic Acid and Lipid Metabolism. J. Nat. Med. 2016, 70, 163–172. DOI: 10.1007/s11418-015-0948-y.
  • Lindström, J.; Ilanne-Parikka, P.; Peltonen, M.; Aunola, S.; Eriksson, J. G.; Hemiö, K.; Hämäläinen, H.; Härkönen, P.; Keinänen-Kiukaanniemi, S.; Laakso, M. Sustained Reduction in the Incidence of Type 2 Diabetes by Lifestyle Intervention: Follow-Up of the Finnish Diabetes Prevention Study. Lancet. 2016, 368, 1673–1679. DOI: 10.1016/S0140-6736(06)69701-8.
  • Plantinga, Y.; Ghiadoni, L.; Magagna, A.; Giannarelli, C.; Franzoni, F.; Taddei, S., Salvetti, A. Supplementation with Vitamins C and E Improves Arterial Stiffness and Endothelial Function in Essential Hypertensive Patients. Am. J. Hypertens. 2007, 20, 392–397. DOI: 10.1016/j.amjhyper.2006.09.021.
  • Woods, M. N.; Wanke, C. A.; Ling, P. R.; Hendricks, K. M.; Tang, A. M.; Knox, T. A., Andersson, C. E., Dong, K. R., Skinner, S. C., Bistrian, B. R. Effect of a Dietary Intervention and N–3 Fatty Acid Supplementation on Measures of Serum Lipid and Insulin Sensitivity in Persons with HIV. Am. J. Clin. Nutr. 2009, 90, 1566–1578. DOI: 10.3945/ajcn.2009.28137.
  • Zheng, Z. G.; Zhou, Y. P.; Zhang, X.; Thu, P. M.; Xie, Z. S.; Lu, C.; Pang, T.; Xue, B.; Xu, D. Q.; Chen, Y. Anhydroicaritin Improves Diet-Induced Obesity and Hyperlipidemia and Alleviates Insulin Resistance by Suppressing Srebps Activation. Biochem Pharmacol. 2017, 122, 42–61. DOI: 10.1016/j.bcp.2016.10.016.
  • Lengacher, S.; Nehiri-Sitayeb, T.; Steiner, N.; Carneiro, L.; Favrod, C.; Preitner, F., Thorens, B., Stehle, J.-C., Dix, L., Pralong, F. Resistance to Diet-Induced Obesity and Associated Metabolic Perturbations in Haploinsufficient Monocarboxylate Transporter 1 Mice. PLoS One. 2013, 8(12), e82505. DOI: 10.1371/journal.pone.0082505.
  • Hayata, H.; Miyazaki, H.; Niisato, N.; Yokoyama, N.; Marunaka, Y. Lowered Extracellular pH is Involved in the Pathogenesis of Skeletal Muscle Insulin Resistance. Biochem. Biophys. Res. Commun. 2014, 445, 170–174. DOI: 10.1016/j.bbrc.2014.01.162.
  • Py, G.; Lambert, K.; Perez-Martin, A.; Raynaud, E.; Préfaut, C.; Mercier, J. Impaired Sarcolemmal Vesicle Lactate Uptake and Skeletal Muscle MCT1 and MCT4 Expression in Obese Zucker Rats. Am. J. Physiol. Endocrinol. Metab. 2001, 281, E1308–E15. DOI: 10.1152/ajpendo.2001.281.6.E1308.
  • Touati, H.; Ouali-Hassenaoui, S.; Dekar-Madoui, A.; Challet, E.; Pevet, P.; Vuillez, P. Diet-Induced Insulin Resistance State Disturbs Brain Clock Processes and Alters Tuning of Clock Outputs in the Sand Rat, Psammomys Obesus. Brain Res. 2018, 1679, 116–124. DOI: 10.1016/j.brainres.2017.11.018.
  • Abdel-Hamid, A. A. M.; Firgany, A. E. L. Favorable Outcomes of Hydroxychloroquine in Insulin Resistance May Be Accomplished by Adjustment of the Endothelial Dysfunction as Well as the Skewed Balance of Adipokines. Acta Histochem. 2016, 118, 560–573. DOI: 10.1016/j.acthis.2016.06.002.
  • New, S. A. Intake of Fruit and Vegetables: Implications for Bone Health. Proc. Nutr. Soc. 2003, 62(4), 889–899. DOI: 10.1079/PNS2003310.
  • Buclin, T.; Cosma, M.; Appenzeller, M.; Jacquet, A.-F.; Décosterd, L. A.; Biollaz, J.; Burckhardt, P., et al. Diet Acids and Alkalis Influence Calcium Retention in Bone. Osteoporos. Int. 2001, 12(6), 493–499.
  • Breslau, N. A.; Brinkley, L.; Hill, K. D.; Pak, C. Y. Relationship of Animal Protein-Rich Diet to Kidney Stone Formation and Calcium Metabolism. J. Clin. Endocrinol. Metab. 1988, 66(1), 140–146. DOI: 10.1210/jcem-66-1-140.
  • Dawson-Hughes, B. S. S.; Harris, N. J. P.; Castaneda- Sceppa, H. M.; Rasmussen, G.; Dallal, A., Dallal, G. E. Treatment with Potassium Bicarbonate Lowers Calcium Excretion and Bone Resorption in Older Men and Women. J. Clin. Endocrinol. Metab. 2019, 94(1), 96–102. DOI: 10.1210/jc.2008-1662.
  • Shin, S.; Sung, J.; Joung, H. A Fruit, Milk and Whole Grain Dietary Pattern is Positively Associated with Bone Mineral Density in Korean Healthy Adults. Eur. J. Clin. Nutr. 2015, 69(4), 442–448. DOI: 10.1038/ejcn.2014.231.
  • Barzel, U. S.; Massey, L. K. Excess Dietary Protein Can Adversely Affect Bone. J. Nutr. 1998, 128(6), 1051–1053. DOI: 10.1093/jn/128.6.1051.
  • Bushinsky, D. A.; Frick, K. K. The Effects of Acid on Bone. Curr. Opin. Nephrol. Hypertens. 2000, 9(4), 369–379. DOI: 10.1097/00041552-200007000-00008.
  • Meghji, S.; Morrison, M. S.; Henderson, B.; Arnett, T. R. pH Dependence of Bone Resorption: Mouse Calvarial Osteoclasts are Activated by Acidosis. Am. J. Physiol. Endocrinol. Metab. 2001, 280(1), E112–E119. DOI: 10.1152/ajpendo.2001.280.1.E112.
  • Tucker, K. L.; Hannan, M. T.; Kiel, D. P. The Acid-Base Hypothesis: Diet and Bone in the Framingham Osteoporosis Study. Eur. J. Nutr. 2001, 40(5), 231–237. DOI: 10.1007/s394-001-8350-8.
  • Frassetto, L.; Morris, R. C., Jr.; Sellmeyer, D. E.; Todd, K.; Sebastian, A. Diet, Evolution and Aging the Pathophysiologic Effects of the Post-Agricultural Inversion of the Potassium-To-Sodium and Base-To-Chloride Ratios in the Human Diet. Eur. J. Nutr. 2001, 40(5), 200–213.
  • Minich, D. M.; Bland, J. S. Acid-Alkaline Balance: Role in Chronic Disease and Detoxification. Altern. Ther. Health Med. 2007, 13(4), 62–65.
  • Doria, M. F. Bottled Water versus Tap Water: Understanding Consumers’ Preferences. J. Water Health. 2006, 4(2), 271–276. DOI: 10.2166/wh.2006.0023.
  • Schroeder, H.A. Relation Between Mortality from Cardiovascular Disease and Treated Water Supplies: Variations in States and 163 Largest Municipalities of the United States. J. Am. Med. Assoc. , 1960, 172, 1902–1908. DOI: 10.1001/jama.1960.03020170028007.
  • Schroeder, H. A. Municipal Drinking Water and Cardiovascular Death Rates. Jama. 1966, 195(2), 81–85. DOI: 10.1001/jama.1966.03100020069016.
  • World Health Organization. Total Dissolved Solids in Drinking Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality. http://www.who.int/water_sanitation_health/dwq/chemicals/tds.pdf accessed March 6, 2016.
  • World Health Organization. Health Criteria and Other Supporting Information; World Health Organization: Geneva, Switzerland, 1996.
  • Petraccia, L.; Liberati, G.; Masciullo, S. G.; Grassi, M.; Fraioli, A. Water, Mineral Waters and Health. Clin. Nutr. 2006, 25(3), 377–385. DOI: 10.1016/j.clnu.2005.10.002.
  • Vormann, J. M.; Worlitschek, T. G.; Silver, B. Supplementation with Alkaline Minerals Reduces Symptoms in Patients with Chronic Low Back Pain. J. Trace Elem. Med. Biol. 2001, 15(2–3), 179–183. DOI: 10.1016/S0946-672X(01)80064-X.
  • Raghunand, N.; Gillies, R. J. pH and Chemotherapy. Novartis Found. Symp. 2001, 240, 199–211. DOI: 10.1002/0470868716.ch14.
  • Groos, E.; Walker, L.; Masters, J. R. Intravesical Chemo-Therapy. Studies on the Relationship Between pH and Cytotoxicity. Cancer. 1986, 58(6), 1199–1203. DOI: 10.1002/1097-0142(19860915)58:6<1199:AID-CNCR2820580604>3.0.CO;2-Z.
  • Smith, S. R.; Martin, P. A.; Edwards, R. H. T. Tumour pH And response to chemotherapy:An in vivo 31p magnetic resonance spectroscopy study in non Hodgkin’Slymphoma. Br. J. Radiol. 1991, 64(766), 923–928. DOI: 10.1259/0007-1285-64-766-923.
  • Raghunand, N.; He, X.; Van Sluis, R., Mahoney, B., Baggett, B., Taylor, C. W., Paine-Murrieta, G., Roe, D., Bhujwalla, Z. M., Gillies, R. J.; et al. Enhancement of Chemotherapy by Manipulation of Tumour pH. Br. J. Cancer. 1999, 80(7), 1005–1011.
  • Fukuda, T.; Fukui, M.; Tanaka, M.; Senmaru, T.; Iwase, H.; Yamazaki, M., Aoi, W., Inui, T., Nakamura, N., Marunaka, Y. Effect of Brazilian Green Propolis in Patients with Type 2 Diabetes: A Double-Blind Randomized Placebo-Controlled Study. Biomed. Rep. 2015, 3, 355–360. DOI: 10.3892/br.2015.436.
  • Tsimihodimos, V.; Gonzalez-Villalpando, C.; Meigs, J. B.; Ferrannini, E. Hypertension and Diabetes Mellitus: Coprediction and Time Trajectories. Hypertension. 2018, 71, 422–428. DOI: 10.1161/HYPERTENSIONAHA.117.10546.
  • Fenton, T. R.; Eliasziw, M.; Tough, S. C.; Lyon, A. W.; Brown, J. P.; Hanley, D. A. Low Urine pH and Acid Excretion Do Not Predict Bone Fractures or the Loss of Bone Mineral Density: A Prospective Cohort Study. BMC Musculoskelet. Disord. 2010, 11, article 88. DOI: 10.1186/1471-2474-11-88.
  • Kraut, J. A.; Madias, N.E. Metabolic Acidosis of CKD: An Update. Am. J. Kidney Dis. 2016, 67, 307–317. DOI: 10.1053/j.ajkd.2015.08.028.
  • Seifter, J. L.; Chang, H.Y. Disorders of Acid-Base Balance: New Perspectives. Kidney Dis. (Basel). 2017, 2, 170–186.
  • Misra, M. Pro: Higher Serum Bicarbonate in Dialysis Patients is Protective. Nephrol. Dial. Transplant. 2016, 31, 1220–1224. DOI: 10.1093/ndt/gfw259.
  • Eustace, J. A.; Astor, B.; Muntner, P. M.; Ikizler, T. A.; Coresh, J. Prevalence of Acidosis and Inflammation and Their Association with Low Serum Albumin in Chronic Kidney Disease. Kidney Int. 2004, 65, 1031–1040. DOI: 10.1111/j.1523-1755.2004.00481.x.
  • Raphael, K. L.; Zhang, Y.; Ying, J.; Greene, T. Prevalence of and Risk Factors for Reducedserumbicarbonateinchronickidneydisease. Nephrology(Carlton). 2014, 19, 648–654.
  • Kalantar-Zadeh, K.; Mehrotra, R.; Fouque, D.; Kopple, J. D. Metabolic Acidosis and Malnutrition-Inflammation Complex Syndrome in Chronic Renal Failure. Semin. Dial. 2004, 17, 445–465. DOI: 10.1111/j.0894-0959.2004.17606.x.
  • Kopple, J. D.; Kalantar-Zadeh, K.; Mehrotra, R. Risks of Chronic Meta-Bolic Acidosis in Patients with Chronic Kidney Disease. Kidney Int. Suppl. 2005, 67, S21–S27. DOI: 10.1111/j.1523-1755.2005.09503.x.
  • Shah, S. N.; Abramowitz, M.; Hostetter, T. H.; Melamed, M. L. Serum Bicarbonate Levels and the Progression of Kidney Disease: A Cohort Study. Am. J. Kidney Dis. 2009, 54, 270–277. DOI: 10.1053/j.ajkd.2009.02.014.
  • Navaneethan, S. D.; Schold, J. D.; Arrigain, S., Jolly, S. E., Wehbe, E., Raina, R., Simon, J. F., Srinivas, T. R., Jain, A., Schreiber, M. J.; et al. Serum Bicarbonate and Mortality in Stage 3 and Stage 4 Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 2395–2402. DOI: 10.2215/CJN.03730411.
  • Kraut, J. A.; Madias, N. E. Consequences and Therapy of the Metabolic Acidosis of Chronic Kidney Disease. Pediatr. Nephrol. 2011, 26, 19–28. DOI: 10.1007/s00467-010-1564-4.
  • Raphael, K. L.; Weig, G. L.; Baird, B. C.; Greene, T.; Beddhu, S. Higher Serum bicarbonate Levels Within the Normal Range are Associated with Better Survival and Renal Outcomes in African Americans. Kidney Int. 2011, 79, 356–362. DOI: 10.1038/ki.2010.388.
  • Goraya, N.; Simoni, J.; Jo, C.; Wesson, D. E. Dietary Acid Reduction with Fruits and Vegetables or Bicarbonate Attenuates Kidney Injury in Patients with a Moderately Reduced Glomerular Filtration Rate Due to Hypertensive Nephropathy. Kidney Int. 2012, 81, 86–93. DOI: 10.1038/ki.2011.313.
  • Goraya, N.; Simoni, J.; Jo, C. H.; Wesson, D. E. Treatment of Metabolic Acidosis in Patients with Stage 3 Chronic Kidney Disease with Fruits and Vegetables or Oral Bicarbonate Reduces Urine Angiotensinogen and Preserves Glomerular Filtration Rate. Kidney Int. 2014, 86, 1031–1038. DOI: 10.1038/ki.2014.83.
  • Goraya, N.; Simoni, J.; Jo, C. H.; Wesson, D. E. A Comparison of Treating Metabolic Acidosis in CKD Stage 4 Hypertensive Kidney Disease with Fruits and Vegetables or Sodium Bicarbonate. ClinJamsocnephrol. 2013, 8, 371–381.
  • Geisler, C. E.; Ghimire, S.; Bogan, R. L.; Renquist, B. J. Role of Ketone Signaling in the Hepatic Response to Fasting. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 316, G623–G31. DOI: 10.1152/ajpgi.00415.2017.
  • Banerjee, T.; Crews, D. C.; Wesson, D. E.; Tilea, A. M.; Saran, R.; Ríos-Burrows, N.; Williams, D. E.; Powe, N. R. High Dietary Acid Load Predicts ESRD Among Adults with CKD. J. Am. Soc. Nephrol. 2015, 26, 1693–1700. DOI: 10.1681/ASN.2014040332.
  • Banerjee, T.; Crews, D. C.; Wesson, D. E., Tilea, A., Saran, R., Rios Burrows, N., Williams, D. E., Powe, N. R. Dietary Acid Load and Chronic Kidney Disease Among Adults in the United States. BMC Nephrol. 2014, 15, 137. DOI: 10.1186/1471-2369-15-137.
  • Paulev, P. E.; Zubieta-Calleja, G. R. Essentials in the Diagnosis of Acid-Base Disorders and Their High Altitude Application. J. Physiol. Pharmacol. 2005, 56(suppl 4), 155–170.
  • Kraut, J. A.; Madias, N. E. Serum Anion Gap: Its Uses and Limitations in Clinical Medicine. Clin. J. Am. Soc. Nephrol. 2007, 2(1), 162–174. DOI: 10.2215/CJN.03020906.
  • McSherry, E.; Morris, R. C. Attainment and Maintenance of Normal Stature with Alkali Therapy in Infants and Children with Classic Renal Tubular Acidosis. J. Clin. Invest. 1978, 61(2), 509–527. DOI: 10.1172/JCI108962.
  • Frassetto, L.; Morris, R. C.; Sebastian, A. Potassium Bicarbonate Reduces Urinary Nitrogen Excretion in Postmenopausal Women. J. Clin. Endocrinol. Metab. 1997, 82(1), 254–259. DOI: 10.1210/jcem.82.1.3663.
  • Navaneethan, S. D.; Schold, J. D.; Arrigain, S. Serum Bicarbonate and Mortality in Stage 3 and Stage 4 Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 2395–2402.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.