714
Views
1
CrossRef citations to date
0
Altmetric
Review

Fat substitutes and low-calorie fats: A compile of their chemical, nutritional, metabolic and functional properties

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Akoh, C. C. Food Lipids: Chemistry, Nutrition, and Biotechnology, 4th ed; CRC press: Boca Raton, FL, USA, 2017.
  • Swinburn, B.; Egger, G. Preventive Strategies Against Weight Gain and Obesity. Obes. Rev. 3(4), 289–301. Nov 01, 2002. John Wiley & Sons, Ltd. doi:10.1046/j.1467-789X.2002.00082.x.
  • Jonnalagadda, S. S.; Jones, J. M.; Black, J. D. Position of the American Dietetic Association: Fat Replacers. J. Am. Diet. Assoc. 2005, 105, 266–275.
  • Obesity and Overweight. World Health Organization: WHO. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight 2011. (accessed Nov 1, 2020).
  • Hales, C. M.; Carroll, M. D.; Fryar, C. D.; Ogden, C. L. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017-2018 Key Findings Data from the National Health and Nutrition Examination Survey. HCHS Data Br. Oct 23, 2020, 360. https://www.cdc.gov/nchs/products/index.htm
  • Mirmiran, P.; Sherafat Kazemzadeh, R.; Jalali Farahani, S.; Azizi, F. Childhood Obesity in the Middle East: A Review. EMHJ-Eastern Mediterr. Heal. J. 2010, 16(9), 1009–1017. DOI: 10.26719/2010.16.9.1009.
  • Asokapandian, S.; Swamy, G. J.; Hajjul, H. Deep Fat Frying of Foods: A Critical Review on Process and Product Parameters. Crit. Rev. Food Sci. Nutr. 2019, 1–14. DOI: 10.1080/10408398.2019.1688761.
  • Shaltout, E. Fat Replacers and Their Applications in Food Products: A Review. Alex. J. Fd. Sci. & Technol. 2007, 4(1), 29–44.
  • Sandrou, D. K.; Arvanitoyannis, I. S. Low-Fat/calorie Foods: Current State and Perspectives. Crit. Rev. Food Sci. Nutr. 2000, 40(5), 427–447. DOI: 10.1080/10408690091189211.
  • Wylie-Rosett, J. Fat Substitutes and Health: An Advisory from the Nutrition Committee of the American Heart Association. Circulation. 105(23), 2800–2804. Jun 11, 2002. Lippincott Williams & Wilkins. doi:10.1161/01.CIR.0000019402.35632.EB.
  • Krauss, R. M., Eckel, R. H., Howard, B., Appel, L. J., Daniels, S. R., Deckelbaum, R. J., Erdman, J. W., Kris-Etherton, P., Goldberg, I. J., Kotchen, T. A., et al. AHA Dietary Guidelines Revision 2000: A Statement for Healthcare Professionals from the Nutrition Committee of the American Heart Association. Circulation 2000 , 102(18), 2284–2299. doi: 10.1161/01.CIR.102.18.2284.
  • Cengiz, E.; Gokoglu, N. Changes in Energy and Cholesterol Contents of Frankfurter-Type Sausages with Fat Reduction and Fat Replacer Addition. Food Chem. 2005, 91(3), 443–447. DOI: 10.1016/j.foodchem.2004.06.025.
  • Cáceres, E.; García, M. L.; Toro, J.; Selgas, M. D. The Effect of Fructooligosaccharides on the Sensory Characteristics of Cooked Sausages. Meat Sci. 2004, 68(1), 87–96. DOI: 10.1016/j.meatsci.2004.02.008.
  • Duflot, P. Glucose Polymers as Sugar/fat Substitutes. Trends Food Sci. Technol. 1996, 6(7), 206.
  • Chronakis, I. S. Structural-Functional and Water-Holding Studies of Biopolymers in Low Fat Content Spreads. LWT - Food Sci. Technol. 1997, 30(1), 36–44. DOI: 10.1006/fstl.1996.0126.
  • Kavas, G.; Oysun, G.; Kinik, O.; Uysal, H. Effect of Some Fat Replacers on Chemical, Physical and Sensory Attributes of Low-Fat White Pickled Cheese. Food Chem. 2004, 88(3), 381–388. DOI: 10.1016/j.foodchem.2004.01.054.
  • Koca, N.; Metin, M. Textural, Melting and Sensory Properties of Low-Fat Fresh Kashar Cheeses Produced by Using Fat Replacers. Int. Dairy J. 2004, 14(4), 365–373. DOI: 10.1016/j.idairyj.2003.08.006.
  • O’-Brien, C. M.; Mueller, A.; Scannell, A. G. M.; Arendt, E. K. Evaluation of the Effects of Fat Replacers on the Quality of Wheat Bread. J. Food Eng. 2003, 56(2–3), 265–267. DOI: 10.1016/S0260-8774(02)00266-2.
  • Akalın, A. S.; Karagözlü, C.; Ünal, G. Rheological Properties of Reduced-Fat and Low-Fat Ice Cream Containing Whey Protein Isolate and Inulin. Eur. Food Res. Technol. 2008, 227(3), 889–895. DOI: 10.1007/s00217-007-0800-z.
  • Zalazar, C. A.; Zalazar, C. S.; Bernal, S.; Bertola, N.; Bevilacqua, A.; Zaritzky, N. Effect of Moisture Level and Fat Replacer on Physicochemical, Rheological and Sensory Properties of Low Fat Soft Cheeses. Int. Dairy. J. 2002, 12(1), 45–50. DOI: 10.1016/S0958-6946(01)00130-3.
  • Hsu, S. Y.; Sun, L. Y. Comparisons on 10 Non-Meat Protein Fat Substitutes for Low-Fat Kung-Wans. J. Food Eng. 2006, 74(1), 47–53. DOI: 10.1016/j.jfoodeng.2005.02.022.
  • Ognean, C. F.; Darie, N.; Ognean, M. Fat Replacers-Review, 2006.
  • Verified market research. Global Fat Replacers Market Size by Source, by Type, by Form, by Application, by Geographic Scope and ForecastNo Title. 2021. https://www.verifiedmarketresearch.com/product/global-fat-replacers-market-size-and-forecast-to-2025/
  • Owusu-Apenten, R. Introduction to Food Chemistry; CRC Press: Boca Raton, FA, USA, 2004.
  • Shaltout, O. E.; Youssef, M. M.; Shaltout, E. Fat Replacers and Their Applications in Food Products: A Review, Alex. J. Food Sci. Technol. 2007, 4(1), 29–44.
  • Rogers, R. W. Manufacturing of Reduced-Fat, Low-Fat, and Fat-Free Emulsion Sausage. In Meat Sci. Appl, 1st ed.; Robert, R.W.,Eds.; FA,USA: CRC Press, 2001, 443e462.
  • Pyo, S.-H.; Chen, J.; Ye, R.; Hayes, D. G. Sugar Esters. Biobased Surfactants. 2019, 325–363. DOI: 10.1016/b978-0-12-812705-6.00010-1.
  • Eldridge, A. L.; Cooper, D. A.; Peters, J. C. A Role for Olestra in Body Weight Management. Obes. Rev. 2002, 3(1), 17–25. DOI: 10.1046/j.1467-789X.2002.00050.x.
  • Yazar, G.; Rosell, C. M. Fat Replacers in Baked Products: Their Impact on Rheological Properties and Final Product Quality. Crit. Rev. Food Sci. Nutr. 2022. DOI: 10.1080/10408398.2022.2048353.
  • Chow, C. K. Biological Effects of Oxidized Fatty Acids. In Fat. Acids Foods Heal. Implic, 2nd ed.; 2000; 687–709.
  • Feng, T., Ye, R., Zhuang, H., Rong, Z., Fang, Z., Wang, Y., Gu, Z., Jin, Z., et al. Physicochemical Properties and Sensory Evaluation of Mesona Blumes Gum/rice Starch Mixed Gels as Fat-Substitutes in Chinese Cantonese-Style Sausage. Food. Res. Int. 2013 , 50(1), 85–93. doi: 10.1016/j.foodres.2012.10.005.
  • Pérez, B.; Anankanbil, S.; Guo, Z. Synthesis of Sugar Fatty Acid Esters and Their Industrial Utilizations. Sugar Fat. Acid Esters Their. Ind. Util. 2017, 329–354. DOI: 10.1016/b978-0-12-809521-8.00010-6.
  • Watanabe, H., Onizawa, K., Taguchi, H., Kobori, M., Chiba, H., Naito, S., Matsuo, N., Yasukawa, T., Hattori, M., Shimasaki, H.; et al. Nutritional Characterization of Diacylglycerols in Rats. J. Japan Oil Chem. Soc. 1997, 46(3), 301–307.
  • Kamphuis, M. M. J. W.; Mela, D. J.; Westerterp-Plantenga, M. S. Diacylglycerols Affect Substrate Oxidation and Appetite in Humans. Am. J. Clin. Nutr. 2003, 77(5), 1133–1139. DOI: 10.1093/ajcn/77.5.1133.
  • Maki, K. C., Davidson, M. H., Tsushima, R., Matsuo, N., Tokimitsu, I., Umporowicz, D. M., Dicklin, M. R., Foster, G. S., Ingram, K. A., Anderson, B. D., et al. Consumption of Diacylglycerol Oil as Part of a Reduced-Energy Diet Enhances Loss of Body Weight and Fat in Comparison with Consumption of a Triacylglycerol Control Oil. Am. J. Clin. Nutr. 2002 , 76(6), 1230–1236. doi: 10.1093/ajcn/76.6.1230.
  • Kothekar, S. C.; Ware, A. M.; Waghmare, J. T.; Momin, S. A. Comparative Analysis of the Properties of Tween-20, Tween-60, Tween-80, Arlacel-60, and Arlacel-80. J Dispers. Sci. Technol. 2007, 28(3), 477–484. DOI: 10.1080/01932690601108045.
  • Ahmadi, P.; Tabibiazar, M.; Roufegarinejad, L.; Babazadeh, A. Development of Behenic Acid-Ethyl Cellulose Oleogel Stabilized Pickering Emulsions as Low Calorie Fat Replacer. Int. J. Biol. Macromol. 2020, 150, 974–981. DOI: 10.1016/j.ijbiomac.2019.10.205.
  • Voragen, A. G. J. Technological Aspects of Functional Food-Related Carbohydrates. Trends Food Sci. Technol. 1998, 9(8–9), 328–335. DOI: 10.1016/S0924-2244(98)00059-4.
  • Yankah, V. V.; Akoh, C. C. Lipase-Catalyzed Acidolysis of Tristearin with Oleic or Caprylic Acids to Produce Structured Lipids. JAOCS, J. Am. Oil Chem. Soc. 2000, 77(5), 495–500. DOI: 10.1007/s11746-000-0079-4.
  • Jadhav, H. B.; Annapure, U. Designer Lipids -Synthesis and Application – A Review. Trends Food Sci. Technol. 116, 884–902. Oct 01, 2021. Elsevier. doi:10.1016/j.tifs.2021.08.020.
  • Henderson, S. T.; Vogel, J. L.; Barr, L. J.; Garvin, F.; Jones, J. J.; Costantini, L. C. Study of the Ketogenic Agent AC-1202 in Mild to Moderate Alzheimer’s Disease: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. Nutr. Metab. 2009, 6(1), 1–25. DOI: 10.1186/1743-7075-6-31.
  • Zam, W. Structured Lipids: Methods of Production, Commercial Products and Nutraceutical Characteristics, 2015.
  • Bechtel, D. H. Article Series: Safety of Esterified Propoxylated Glycerol (EPG), a Nonabsorbable Fat Replacer. Regul. Toxicol. Pharmacol. 2014, 70(S2), S91–S94. DOI: 10.1016/j.yrtph.2014.11.010.
  • Subroto, E.; Indiarto, R.; Djali, M.; Rosyida, H. D. Production and Application of Crosslinking- Modified Starch as Fat Replacer: A Review. Int. J. Eng. Trends Technol. 2021, 68(12), 26–30. DOI: 10.14445/22315381/IJETT-V68I12P205.
  • Dunford, N. T. Chemistry of Rice Bran Oil. In Rice Bran and Rice Bran Oil: Chemistry, Processing and Utilization, Cheong, L. Z., Xu, X., Eds.; Elsevier: B.V. Amsterdam, 2019; pp 1–18.
  • Gerde, J. A.; Hammond, E. G.; Johnson, L. A.; Su, C.; Wang, T., and White, P. J. Soybean Oil. In Bailey’s Industrial Oil and Fat Products, Shahidi, F. Eds.; Wiley: Hoboken, NJ, USA, 2020; pp 1–68.
  • Eskin, M. N. A.; Aladedunye, F.; Unger, E. H.; Shah, S.; Chen, G.; Jones, P. J. Canola Oil. In Bailey’s Industrial Oil and Fat Products; Wiley, 2020; pp 1–63.
  • Lin, L., et al. Evidence Health Benefits Canola Oil. 2013, doi:10.1111/nure.12033.
  • Dunford, N. Canola Oil Properties. 2018. https://extension.okstate.edu/fact-sheets/canola-oil-properties.html
  • Speranza, A.; Corradini, M. G.; Hartman, T. G.; Ribnicky, D.; Oren, A.; Rogers, M. A. Influence of Emulsifier Structure on Lipid Bioaccessibility in Oil-Water Nanoemulsions. J. Agric. Food. Chem. 2013, 61(26), 6505–6515. DOI: 10.1021/jf401548r.
  • Osborn, H. T.; Akoh, C. C. Structured Lipids-Novel Fats with Medical, Nutraceutical, and Food Applications. Compr. Rev. Food Sci. Food Saf. 2002, 1(3), 110–120. DOI: 10.1111/j.1541-4337.2002.tb00010.x.
  • Selani, M. M., et al. Pineapple By-Product and Canola Oil as Partial Fat Replacers in Low-Fat Beef Burger: Effects on Oxidative Stability, Cholesterol Content and Fatty Acid Profile. Meat Sci. 2016, 115, 9–15. DOI: 10.1016/j.meatsci.2016.01.002.
  • Cheng, Y.; Chao, L. I.; Zhang, M.; Shi, B. Diacylglycerol-Enriched Oil from Hydrolysis of Soybean Oil with Rhizopus Oryzae Lipase Against High-Fat Diet-Induced Obesity in Mice. Grain Oil Sci. Technol. 2018, 1(1), 53–58. DOI: 10.3724/sp.j.1447.gost.2018.18026.
  • Zambiazi, R. U. I. C.; Przybylski, R.; Zambiazi, M. W.; Mendonça, C. B. Fatty Acid Composition of Vegetable Oils and Fats. Bol. Do Cent. Pesqui. Process. Aliment. 2007, 25(1), 111–120.
  • Youssef, M. K.; Barbut, S. Fat Reduction in Comminuted Meat Products-Effects of Beef Fat, Regular and Pre-Emulsified Canola Oil. Meat Sci. 2011, 87(4), 356–360. DOI: 10.1016/j.meatsci.2010.11.011.
  • Pelser, W. M.; Linssen, J. P. H.; Legger, A.; Houben, J. H. Lipid Oxidation in N - 3 Fatty Acid Enriched Dutch Style Fermented Sausages. Meat Sci. 2007, 75(1), 1–11. DOI: 10.1016/j.meatsci.2006.06.007.
  • Prabhavathi Devi, B. L. A.; Gangadhar, K. N.; Prasad, R. B. N.; Sugasini, D.; Rao, Y. P. C.; Lokesh, B. R. Nutritionally Enriched 1,3-Diacylglycerol-Rich Oil: Low Calorie Fat with Hypolipidemic Effects in Rats. Food Chem. 2018, 248, 210–216. DOI: 10.1016/j.foodchem.2017.12.066.
  • Hidekatsu, Y.; Yoshiharu, T.; Kumie, I.; Nobuyuki, F.; Hiroshi, Y., and Norio, T. Diacylglycerol Oil for the Metabolic Syndrome. Nutr. J. 2007, 6, 43.
  • Morita, O.; Soni, M. G. Safety Assessment of Diacylglycerol Oil as an Edible Oil: A Review of the Published Literature. Food Chem. Toxicol. 47(1), 9–21. Jan 1, 2009. Pergamon. doi:10.1016/j.fct.2008.09.044.
  • Osaki, N., Meguro, S., Onizawa, K., Mizuno, T., Shimotoyodome, A., Hase, T., Tokimitsu, I., et al. Effects of a Single and Short-Term Ingestion of Diacylglycerol on Fat Oxidation in Rats. Lipids 2008 , 43(5), 409–417. doi: 10.1007/s11745-008-3155-8.
  • Flickinger, B. D.; Matsuo, N. Nutritional Characteristics of DAG Oil. Lipids. 2003, 38(2), 129–132. DOI: 10.1007/s11745-003-1042-8.
  • St-Onge, M. P.; Bourque, C.; Jones, P. J. H.; Ross, R.; Parsons, W. E. Medium- versus Long-Chain Triglycerides for 27 Days Increases Fat Oxidation and Energy Expenditure Without Resulting in Changes in Body Composition in Overweight Women. Int. J. Obes. 2003, 27(1), 95–102. DOI: 10.1038/sj.ijo.0802169.
  • Aoyama, T.; Nosaka, N.; Kasai, M. Research on the Nutritional Characteristics of Medium-Chain Fatty Acids. J. Med. Investig. 2007, 54(3–4), 385–388. DOI: 10.2152/jmi.54.385.
  • St-Onge, M. P.; Bosarge, A. Weight-Loss Diet That Includes Consumption of Medium-Chain Triacylglycerol Oil Leads to a Greater Rate of Weight and Fat Mass Loss Than Does Olive Oil. Am. J. Clin. Nutr. 2008, 87(3), 621–626. DOI: 10.1093/ajcn/87.3.621.
  • Longo, N.; Amat Di San Filippo, C.; Pasquali, M. Disorders of Carnitine Transport and the Carnitine Cycle. Am. J. Med. Genet. - Semin. Med. Genet. 2006, 142 C(2), 77–85. DOI: 10.1002/ajmg.c.30087.
  • Augustin Bsc, K., Khabbush, A., Williams, S., Eaton, S., Orford, M., Cross, J. H., Heales, S. J. R., Walker, M. C., Williams, R. S. B., et al. Medium Chain Triglyceride Ketogenic Diet in Neurological and Metabolic Disorders. Neurology. 2018, 17(1), 84–93. doi:10.1016/S1474-4422(17)30408-8.
  • Widlak, N. Physical Properties of Fats, Oils, and Emulsifiers; AOCS Press: Champaign, IL, USA, 1999.
  • Moore, L. J. S.; Midgley, A. W.; Thurlow, S.; Thomas, G.; Mc Naughton, L. R. Effect of the Glycaemic Index of a Pre-Exercise Meal on Metabolism and Cycling Time Trial Performance. J. Sci. Med. Sport. 2010, 13(1), 182–188. DOI: 10.1016/j.jsams.2008.11.006.
  • Jeukendrup, A. E.; Thielen, J. J. H. C.; Wagenmakers, A. J. M.; Brouns, F.; Saris, W. H. M. Effect of Medium-Chain Triacylglycerol and Carbohydrate Ingestion During Exercise on Substrate Utilization and Subsequent Cycling Performance. Am. J. Clin. Nutr. 1998, 67(3), 397–404. DOI: 10.1093/ajcn/67.3.397.
  • Jeukendrup, A. E.; Saris, W. H. M.; Wagenmakers, A. J. M. Fat Metabolism During Exercise: A Review. Int. J. Sport. Med. 1998, 19(4), 231–244. DOI: 10.1055/s-2007-971911.
  • Clegg, M. E. Medium-Chain Triglycerides are Advantageous in Promoting Weight Loss Although Not Beneficial to Exercise Performance. Int. J. Food Sci. Nutr. 2010, 61(7), 653–679. DOI: 10.3109/09637481003702114.
  • Kasai, M., Nosaka, N., Maki, H., Negishi, S., Aoyama, T., Nakamura, M., Suzuki, Y., Tsuji, H., Uto, H., Okazaki, M.; et al. Effect of Dietary Medium- and Long-Chain Triacylglycerols (MLCT) on Accumulation of Body Fat in Healthy Humans. Asia Pac. J. Clin. Nutr. 2003, 12(2), 151–160.
  • Van Wymelbeke, V.; Louis-Sylvestre, J.; Fantino, M. Substrate Oxidation and Control of Food Intake in Men After a Fat-Substitute Meal Compared with Meals Supplemented with an Isoenergetic Load of Carbohydrate, Long-Chain Triacylglycerols, or Medium-Chain Triacylglycerols. Am. J. Clin. Nutr. 2001, 74(5), 620–630. DOI: 10.1093/ajcn/74.5.620.
  • Artz, W. E.; Lai, L. L., and Hansen, S. L. The Chemistry and Nutrition of Nonnutritive Fats. In Deep Frying: Chemistry, Nutrition, and Practical Applications: Second Edition, Erickson, M., Eds.; Elsevier Inc: Amsterdam, 2007; pp 229–249.
  • Mroz, Z., et al. Chapter 4 Carboxylic Acids as Bioregulators and Gut Growth Promoters in Nonruminants. Biol. Grow. Anim. , 2006, 4(C), 81–133. DOI: 10.1016/S1877-1823(09)70091-8.
  • Bergsson, G.; Arnfinnsson, J.; Karlsson, S. M.; Steingrímsson, Ó.; Thormar, H. In vitro Inactivation of Chlamydia Trachomatis by Fatty Acids and Monoglycerides. Antimicrob. Agents Chemother. 1998, 42(9), 2290–2294. DOI: 10.1128/aac.42.9.2290.
  • Bergsson, G.; Steingrímsson, Ó.; Thormar, H. Bactericidal Effects of Fatty Acids and Monoglycerides on Helicobacter Pylori. Int. J. Antimicrob. Agents. 2002, 20(4), 258–262. DOI: 10.1016/S0924-8579(02)00205-4.
  • Hsiao, C. P.; Siebert, K. J. Modeling the Inhibitory Effects of Organic Acids on Bacteria. Int. J. Food Microbiol. 1999, 47(3), 189–201. DOI: 10.1016/S0168-1605(99)00012-4.
  • Sun, C. Q.; O’-Connor, C. J.; Roberton, A. M. The Antimicrobial Properties of Milkfat After Partial Hydrolysis by Calf Pregastric Lipase. Chem. Biol. Interact. 2002, 140(2), 185–198. DOI: 10.1016/S0009-2797(02)00016-9.
  • Zentek, J.; Buchheit-Renko, S.; Ferrara, F.; Vahjen, W.; Van Kessel, A. G.; Pieper, R. Nutritional and Physiological Role of Medium-Chain Triglycerides and Medium-Chain Fatty Acids in Piglets. Anim. Health Res. Rev. 2011, 12(1), 83–93. DOI: 10.1017/S1466252311000089.
  • Dierick, N. A.; Decuypere, J. A.; Molly, K.; Van Beek, E.; Vanderbeke, E. The Combined Use of Triacylglycerols (TAGs) Containing Medium Chain Fatty Acids (MCFAs) and Exogenous Lipolytic Enzymes as an Alternative to Nutritional Antibiotics in Piglet Nutrition. II. in vivo Release of Mcfas in Gastric Cannulated and Slaughtered Piglets by Endogenous and Exogenous Lipases; Effects on the Luminal Gut Flora and Growth Performances. Livest. Prod. Sci. 2002 , 76(1–2), 1–16. doi:10.1016/S0301-6226(01)00331-1.
  • Mumme, K.; Stonehouse, W. Effects of Medium-Chain Triglycerides on Weight Loss and Body Composition: A Meta-Analysis of Randomized Controlled Trials. J. Acad. Nutr. Diet. 2015, 115(2), 249–263. DOI: 10.1016/j.jand.2014.10.022.
  • Khanal, B. K. S., and Bansal, N. Dairy Fat Replacement in Low-Fat Cheese (LFC): A Review of Successful Technological Interventions. In Dairy Fat Products and Functionality, Khanal, B.K.S., Bansal, N., Eds.; Springer: Cham, 2020; pp 549–581.
  • Sørensen, L. B., Cueto, H. T., Andersen, M. T., Bitz, C., Holst, J. J., Rehfeld, J. F., Astrup, A., et al. The Effect of Salatrim, a Low-Calorie Modified Triacylglycerol, on Appetite and Energy Intake. Am. J. Clin. Nutr. 2008 , 87(5), 1163–1169. doi: 10.1093/ajcn/87.5.1163.
  • Sørensen, L. B. Appetite and Energy Intake in Humans: Effect of Substitution of Food Ingredients and Foods, 2014.
  • Wardlaw, G. M., Snook, J. T., Park, S., Patel, P. K., Pendley, F. C., Lee, M. S., Jandacek, R. J., et al. Relative Effects on Serum Lipids and Apolipoproteins of a Caprenin-Rich Diet Compared with Diets Rich in Palm Oil/palm-Kernel Oil or Butter. Am. J. Clin. Nutr. 1995 , 61(3), 535–542. doi: 10.1093/ajcn/61.3.535.
  • Cater, N. B.; Denke, M. A. Behenic Acid is a Cholesterol-Raising Saturated Fatty Acid in Humans. Am. J. Clin. Nutr. 2001, 73(1), 41–44. DOI: 10.1093/ajcn/73.1.41.
  • Roller, S., and Jones, S. Handbook of Fat Replacers; Boca Raton, FA, USA: CRC Press, 1996.
  • Akoh, C. C. Fat-Based Fat Substitutes; 461–471; Acids Foods Heal. Implic, 3rd ed.; Chow, C.K., Eds.; CRC Press: Boca Raton, FA, USA, 2007.
  • Davidson, M. H.; Bechtel, D. H. Assessment of the Effect of Esterified Propoxylated Glycerol (EPG) on the Status of Fat-Soluble Vitamins and Select Water-Soluble Nutrients Following Dietary Administration to Humans for 8weeks. Regul. Toxicol. Pharmacol. 2014, 70(S2), S143–S157. DOI: 10.1016/j.yrtph.2014.11.009.
  • Wedig, J.; Bechtel, D. H. 90-Day Dietary Toxicity Study with Esterified Propoxylated Glycerol (EPG) in Micropigs. Regul. Toxicol. Pharmacol. 2014, 70(S2), S105–S113. DOI: 10.1016/j.yrtph.2014.11.012.
  • Christian, B. J.; Bechtel, D. H. 90-Day Dietary Toxicity Study with Esterified Propoxylated Glycerol (EPG) in Rats. Regul. Toxicol. Pharmacol. 2014, 70(S2), S95–S104. DOI: 10.1016/j.yrtph.2014.11.017.
  • Bechtel, D. H. Genotoxicity Testing of Esterified Propoxylated Glycerol (EPG). Regul. Toxicol. Pharmacol. 2014, 70(S2), S131–S142. DOI: 10.1016/j.yrtph.2014.11.013.
  • Benigni, R. The Benigni/bossa Rulebase for Mutagenicity and Carcinogenicity–a Module of Toxtree. JRC Sci. Tech. Rep. 2008, 1, 63.
  • Tyl, R. W.; Bechtel, D. H. Developmental Toxicity Evaluation of Esterified Propoxylated Glycerol (EPG) Administered in the Diet to New Zealand White Rabbits. Regul. Toxicol. Pharmacol. 2014, 70(S2), S123–S130. DOI: 10.1016/j.yrtph.2014.11.014.
  • Swithers, S. E.; Ogden, S. B.; Davidson, T. L. Fat Substitutes Promote Weight Gain in Rats Consuming High-Fat Diets. Behav. Neurosci. 2011, 125(4), 512–518. DOI: 10.1037/a0024404.
  • Kodama, S.; Matsumoto, S.; Wang, D.; Namihira, T.; Akiyama, H. Treatment of Persistent Organic Pollutants in Wastewater by Nano-Seconds Pulsed Discharge Plasma. Proceedings - 2015 IIAI 4th International Congress on Advanced Applied Informatics, IIAI-AAI 2015, Jan, 2016. pp 695–698. doi: 10.1109/IIAI-AAI.2015.215.
  • World Health Organization. PERSISTENT ORGANIC POLLUTANTS (POPs) Children ’ S Health and the Environment. 2008.
  • Daniel, H., Gholami, A. M., Berry, D., Desmarchelier, C., Hahne, H., Loh, G., Mondot, S., Lepage, P., Rothballer, M., Walker, A., et al. High-Fat Diet Alters Gut Microbiota Physiology in Mice. ISME J. 2014 , 8(2), 295–308. doi: 10.1038/ismej.2013.155.
  • Ramirez-Farias, C.; Slezak, K.; Fuller, Z.; Duncan, A.; Holtrop, G.; Louis, P. Effect of Inulin on the Human Gut Microbiota: Stimulation of Bifidobacterium Adolescentis and Faecalibacterium Prausnitzii. Br. J. Nutr. 2020, 101, 541–550. DOI: 10.1017/S0007114508019880.
  • Schlagheck, T. G.; Federle, T. W. Interactions Between Fat Substitutes and Gut Bacteria. Role Gut Bact. Hum. Toxicol. Pharmacol. 1995, 11, 142.
  • Bimal, C.; Guonong, Z. Olestra: A Solution to Food Fat? Food Rev. Int. 2006, 22(3), 245–258. DOI: 10.1080/87559120600694705.
  • Jandacek, R. J. Review of the Effects of Dilution of Dietary Energy with Olestra on Energy Intake. Physiol. Behav. 105(5), 1124–1131. Mar 20, 2012. Elsevier. doi:10.1016/j.physbeh.2011.12.018.
  • Moser, G. A.; McLachlan, M. S. A Non-Absorbable Dietary Fat Substitute Enhances Elimination of Persistent Lipophilic Contaminants in Humans. Chemosphere. 1999, 39(9), 1513–1521. DOI: 10.1016/S0045-6535(99)00219-2.
  • Suarez, J.; Rock, C.; Hoh, E.; LaCroix, A.; Quintana, E. A Dietary Intervention with Nuts or Olestra to Enhance the Excretion of Persistent Organic Pollutants in Healthy Adults. Environ. Epidemiol. , 2019, 3, 386. DOI: 10.1097/01.ee9.0000610300.56349.5a.
  • Lee, Y. M.; Kim, K. S.; Jacobs, D. R.; Lee, D. H. Persistent Organic Pollutants in Adipose Tissue Should Be Considered in Obesity Research. Obes. Rev. 2017, 18(2), 129–139. DOI: 10.1111/obr.12481.
  • Li, Y.; Zou, Y.; Que, F.; Zhang, H. Recent Advances in Fabrication of Edible Polymer Oleogels for Food Applications. Curr. Opin. Food Sci. 43, 114–119. Feb 01, 2022. Elsevier. doi:10.1016/j.cofs.2021.11.007.
  • Martins, A. J.; Vicente, A. A.; Cunha, R. L.; Cerqueira, M. A. Edible Oleogels: An Opportunity for Fat Replacement in Foods. Food Funct. 9(2), 758–773. Feb 21, 2018. Royal Society of Chemistry. doi:10.1039/c7fo01641g.
  • Manzoor, S.; Masoodi, F. A.; Naqash, F.; Rashid, R. Oleogels: Promising Alternatives to Solid Fats for Food Applications. Food Hydrocoll. Health. , 2022, 2, 100058. DOI: 10.1016/j.fhfh.2022.100058.
  • Fameau, A. L.; Saint-Jalmes, A. Recent Advances in Understanding and Use of Oleofoams. Front. Sustain. Food Syst. , 2020, 4, 110. DOI: 10.3389/fsufs.2020.00110.
  • Zhao, W.; Wei, Z.; Xue, C. Recent Advances on Food-Grade Oleogels: Fabrication, Application and Research Trends. Crit. Rev. Food Sci. Nutr. 2021, 1–18. DOI: 10.1080/10408398.2021.1922354.
  • Martins, A. J.; Vicente, A. A.; Pastrana, L. M.; Cerqueira, M. A. Oleogels for Development of Health-Promoting Food Products. Food Sci. Hum. Wellness. 9(1), 31–39. Mar 01, 2020. Elsevier. doi:10.1016/j.fshw.2019.12.001.
  • Puscas, A.; Muresan, V.; Socaciu, C.; Muste, S. Oleogels in Food: A Review of Current and Potential Applications. Foods. 9(1), 70. Jan 8, 2020). Multidisciplinary Digital Publishing Institute. doi:10.3390/foods9010070.
  • Zhang, M.; Yang, X. J. Effects of a High Fat Diet on Intestinal Microbiota and Gastrointestinal Diseases. World J. Gastroenterol. 22(40), 8905–8909. Oct 28, 2016. Baishideng Publishing Group Co., Limited. doi:10.3748/wjg.v22.i40.8905.
  • Chung, C.; Smith, G.; Degner, B.; McClements, D. J. Reduced Fat Food Emulsions: Physicochemical, Sensory, and Biological Aspects. Crit. Rev. Food Sci. Nutr. 2016, 56(4), 650–685. DOI: 10.1080/10408398.2013.792236.
  • Knottnerus, S. J. G., et al. Exploring the Metabolic Fate of Medium-Chain Triglycerides in Healthy Individuals Using a Stable Isotope Tracer. Clin. Nutr. 2020. doi:10.1016/j.clnu.2020.08.032.
  • Salentinig, S.; Yepuri, N. R.; Hawley, A.; Boyd, B. J.; Gilbert, E.; Darwish, T. A. Selective Deuteration for Molecular Insights into the Digestion of Medium Chain Triglycerides. Chem. Phys. Lipids. 2015, 190, 43–50. DOI: 10.1016/j.chemphyslip.2015.06.007.
  • Zhang, X., Zhang, Y., Liu, Y., Wang, J., Xu, Q., Yu, X., Yang, X., Liu, Z., Xue, C.; et al. Medium-Chain Triglycerides Promote Macrophage Reverse Cholesterol Transport and Improve Atherosclerosis in ApoE-Deficient Mice Fed a High-Fat Diet. Nutr. Res. 2016, 36(9), 964–973.
  • Cao, Y.; Qi, S.; Zhang, Y.; Wang, X.; Yang, B.; Wang, Y. Synthesis of Structured Lipids by Lipase-Catalyzed Interesterification of Triacetin with Camellia Oil Methyl Esters and Preliminary Evaluation of Their Plasma Lipid-Lowering Effect in Mice. Molecules. 2013, 18(4), 3733–3744. DOI: 10.3390/molecules18043733.
  • Lai, O. M. Diacylglycerol Oils: Nutritional Aspects and Applications in Foods; Woodhead Publishing Limited: Sawston, United Kingdom, 2011.
  • Lee, W. J.; Zhang, Z.; Lai, O. M.; Tan, C. P.; Wang, Y. Diacylglycerol in Food Industry: Synthesis Methods, Functionalities, Health Benefits, Potential Risks and Drawbacks. Trends Food Sci. Technol. 2019, 97(September), 114–125. DOI: 10.1016/j.tifs.2019.12.032.
  • Feltes, M. M. C.; de Oliveira, D.; Block, J. M.; Ninow, J. L. The Production, Benefits, and Applications of Monoacylglycerols and Diacylglycerols of Nutritional Interest. Food Bioprocess. Technol. 6(1), 17–35. Apr 11, 2013. Springer. doi:10.1007/s11947-012-0836-3.
  • Nakajima, Y. Water-Retaining Ability of Diacylglycerol. JAOCS, J. Am. Oil Chem. Soc. 2004, 81(10), 907–912. DOI: 10.1007/s11746-004-1000-x.
  • Ohno, Y. Deep-Frying Oil Properties of Diacylglycerol-Rich Cooking Oil. J. Oleo. Sci. 2002, 51(4), 275–279. DOI: 10.5650/jos.51.275.
  • Baune, M. C., Schroeder, S., Witte, F., Heinz, V., Bindrich, U., Weiss, J., Terjung, N., et al. Analysis of Protein-Network Formation of Different Vegetable Proteins During Emulsification to Produce Solid Fat Substitutes. J. Food Meas. Charact. 2021 , 15(3), 2399–2416. doi: 10.1007/s11694-020-00767-9.
  • Fernández, C. L.; Romero, M. C.; Rolhaiser, F.; Fogar, R. A.; Doval, M. M. Fat Substitutes Based on Bovine Blood Plasma and Flaxseed Oil as Functional Ingredients. Int. J. Gastron. Food Sci. 2021, 25, 100365. DOI: 10.1016/j.ijgfs.2021.100365.
  • Habulin, M.; Šabeder, S.; Knez, Ž. Enzymatic Synthesis of Sugar Fatty Acid Esters in Organic Solvent and in Supercritical Carbon Dioxide and Their Antimicrobial Activity. J. Supercrit. Fluids. 2008, 45(3), 338–345. DOI: 10.1016/j.supflu.2008.01.002.
  • Wechter, W.; Schwartz, E.; Murray, E.; Gutierrez, I. Fat Substitutes. Google Patents, Aug 5, 2004.
  • Puchalska, P.; Crawford, P. A. Multi-Dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 25(2), 262–284. Feb 7, 2017. Cell Press. doi:10.1016/j.cmet.2016.12.022.
  • Huang, J.; Han, L.; Liu, Y.; Jin, Q.; Wang, X. Preparation Method of Low-Calorie Structural Lipid by Transesterification Using Immobilized Enzyme. Faming Zhuanli Shenqing. 2011, .
  • Damak, S.; Godinot, N.; Le Coutre, J.; Martin, N.; Barcos, M. E. Low Caloric Fat Replacers. Google Patents, Mar 21, 2013.
  • Xiang, L. Nanoscale Fat Substitute, 2020.
  • Suprakas, R. S.; Emmabux, M. N.; Wokadala, O. Amylose-Lipid Complexes. US Patent App. 15/779,900, Oct 1, 2020.
  • Balter, A.; Jianping, H.; Ilitzky-Gur, M.; Kastro, P.; Ben-Dror, G.; Herzog, Y. Method for Producing Human Milk Fat Substitute, 2019.
  • Bernard, G.; Carine, A. Animal Fat Substitute, 2009.
  • Teresa, S. T. M.; Ana, S. A.; Susana, F. D. S.; Laura, L. C. Making and Fat Substitute Emulsion, 2014.
  • Zhengji, L.; Xingchun, H.; Qiao, G. Pig Fat Substitute and Production Method Thereof, 2015.
  • D, G. G.; W, R. J.; Bishop, W. Low Calorie Fat Substitute, 2000.
  • Shanshan, D. Use Chrysalis Oil Preparing Synthetic Breast Milk Fat Substitute, 2018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.