919
Views
2
CrossRef citations to date
0
Altmetric
Review

Recent Trends in Folic Acid (Vitamin B9) Encapsulation, Controlled Release, and Mathematical Modelling

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Bjelakovic, G.; Stojanovic, I.; Jevtovic-Stoimenov, T.; Bjelakovic, L.; Kamenov, B.; Pavlovic, D.; Kocic, G.; Sokolovic, D.; Basic, J.; Bjelakovic, G. B. Is Folic Acid Supplementation to Food Benefit or Risk for Human Health? Pteridines. 2013, 24(3–4), 165–181. DOI: 10.1515/pterid-2013-0024.
  • Reynolds, E. H. The Neurology of Folic Acid Deficiency. 2014; pp 927–943. DOI:10.1016/B978-0-7020-4087-0.00061-9
  • Newstead, S. Structural Basis for Recognition and Transport of Folic Acid in Mammalian Cells. Curr. Opin. Struct. Biol. 2022, 74, 102353. DOI: 10.1016/j.sbi.2022.102353.
  • Bakry, A. M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M. Y.; Mousa, A.; Liang, L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Compr. Rev. Food Sci. Food Saf. 2016, 15(1), 143–182. DOI: 10.1111/1541-4337.12179.
  • Bamidele, O. P.; Emmambux, M. N. Encapsulation of Bioactive Compounds by “Extrusion” Technologies: A Review. Crit. Rev. Food Sci. Nutr. 2021, 61(18), 3100–3118. DOI: 10.1080/10408398.2020.1793724.
  • Garavand, F.; Rahaee, S.; Vahedikia, N.; Jafari, S. M. Different Techniques for Extraction and Micro/nanoencapsulation of Saffron Bioactive Ingredients. Trends Food Sci. Technol. 2019, 89, 26–44. DOI: 10.1016/j.tifs.2019.05.005.
  • Osojnik Črnivec, I. G.; Istenič, K.; Skrt, M.; Poklar Ulrih, N. Thermal Protection and PH-Gated Release of Folic Acid in Microparticles and Nanoparticles for Food Fortification. Food Funct. 2020, 11(2), 1467–1477. DOI: 10.1039/C9FO02419K.
  • Ducker, G. S.; Rabinowitz, J. D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25(1), 27–42. DOI: 10.1016/j.cmet.2016.08.009.
  • Gazzali, A. M.; Lobry, M.; Colombeau, L.; Acherar, S.; Azaïs, H.; Mordon, S.; Arnoux, P.; Baros, F.; Vanderesse, R.; Frochot, C. Stability of Folic Acid Under Several Parameters. Eur. J. Pharm. Sci. 2016, 93, 419–430. DOI: 10.1016/j.ejps.2016.08.045.
  • Zhao, L. N.; Kaldis, P. Pairing Structural Reconstruction with Catalytic Competence to Evaluate the Mechanisms of Key Enzymes in the Folate‐mediated One‐carbon Pathway. Febs J. 2022. DOI: 10.1111/febs.16439.
  • Yin, S.; Yang, Y.; Li, Y.; Sun, C. Analysis of Natural and Synthetic Folates in Pharmaceuticals and Foods: A Review. Anal. Methods. 2018, 10(1), 9–21. DOI: 10.1039/C7AY02501G.
  • de Giori, G. S.; LeBlanc, J. G. Folate Production by Lactic Acid Bacteria. In Polyphenols: Prevention and Treatment of Human Disease; Elsevier, 2018; pp 15–29. DOI:10.1016/B978-0-12-813008-7.00002-3
  • De Brouwer, V.; Zhang, G.-F.; Storozhenko, S.; Van Der Straeten, D.; Lambert, W. E. PH Stability of Individual Folates During Critical Sample Preparation Steps in Prevision of the Analysis of Plant Folates. Phytochem. Anal. 2007, 18(6), 496–508. DOI: 10.1002/pca.1006.
  • Liew, S.-C. Folic Acid and Diseases - Supplement It or Not? Rev. Assoc. Med. Bras. 2016, 62(1), 90–100. DOI: 10.1590/1806-9282.62.01.90.
  • Araújo, M. M.; Marchioni, E.; Bergaentzle, M.; Zhao, M.; Kuntz, F.; Hahn, E.; Villavicencio, A. L. C. H. Irradiation Stability of Folic Acid in Powder and Aqueous Solution. J. Agric. Food. Chem. 2011, 59(4), 1244–1248. DOI: 10.1021/jf103977q.
  • Patel, K. R.; Sobczyńska-Malefora, A. The Adverse Effects of an Excessive Folic Acid Intake. Eur. J. Clin. Nutr. 2017, 71(2), 159–163. DOI: 10.1038/ejcn.2016.194.
  • Obeid, R.; Holzgreve, W.; Pietrzik, K. Is 5-Methyltetrahydrofolate an Alternative to Folic Acid for the Prevention of Neural Tube Defects? J. Perinat. Med. 2013, 41(5), 5. DOI: 10.1515/jpm-2012-0256.
  • Vorobei, A. V.; Vorobei, P. A. Photosensitized Degradation of Folic Acid. J. Appl. Spectrosc. 2011, 78(4), 614–616. DOI: 10.1007/s10812-011-9507-9.
  • Goh, Y. I.; Koren, G. Folic Acid in Pregnancy and Fetal Outcomes. J. Obstet. Gynaecol. (Lahore). 2008, 28(1), 3–13. DOI: 10.1080/01443610701814195.
  • Bulloch, R. E.; Lovell, A. L.; Jordan, V. M. B.; McCowan, L. M. E.; Thompson, J. M. D.; Wall, C. R. Maternal Folic Acid Supplementation for the Prevention of Preeclampsia: A Systematic Review and Meta-Analysis. Paediatr. Perinat. Epidemiol. 2018, 32(4), 346–357. DOI: 10.1111/ppe.12476.
  • Juzeniene, A.; Thu Tam, T. T.; Iani, V.; Moan, J. The Action Spectrum for Folic Acid Photodegradation in Aqueous Solutions. J. Photochem. Photobiol. B Biol. 2013, 126, 11–16. DOI: 10.1016/j.jphotobiol.2013.05.011.
  • Borradale, D. C.; Kimlin, M. G. Folate Degradation Due to Ultraviolet Radiation: Possible Implications for Human Health and Nutrition. Nutr. Rev. 2012, 70(7), 414–422. DOI: 10.1111/j.1753-4887.2012.00485.x.
  • Aceituno-Medina, M.; Mendoza, S.; Lagaron, J. M.; López-Rubio, A. Photoprotection of Folic Acid Upon Encapsulation in Food-Grade Amaranth (Amaranthus Hypochondriacus L.) Protein Isolate – Pullulan Electrospun Fibers. LWT Food Sci. Technol. 2015, 62(2), 970–975. DOI: 10.1016/j.lwt.2015.02.025.
  • Do Evangelho, J. A.; Crizel, R. L.; Chaves, F. C.; Prietto, L.; Pinto, V. Z.; de Miranda, M. Z.; Dias, A. R. G.; Zavareze, E. D. R. Thermal and Irradiation Resistance of Folic Acid Encapsulated in Zein Ultrafine Fibers or Nanocapsules Produced by Electrospinning and Electrospraying. Food. Res. Int. 2019, 124, 137–146. DOI: 10.1016/j.foodres.2018.08.019.
  • Wusigale; Hu, L.; Cheng, H.; Gao, Y.; Liang, L. Mechanism for Inhibition of Folic Acid Photodecomposition by Various Antioxidants. J. Agric. Food. Chem. 2020, 68(1), 340–350. DOI: 10.1021/acs.jafc.9b06263.
  • Off, M. K.; Steindal, A. E.; Porojnicu, A. C.; Juzeniene, A.; Vorobey, A.; Johnsson, A.; Moan, J. Ultraviolet Photodegradation of Folic Acid. J. Photochem. Photobiol. B Biol. 2005, 80(1), 47–55. DOI: 10.1016/j.jphotobiol.2005.03.001.
  • Thomas, A. H.; Suárez, G.; Cabrerizo, F. M.; Martino, R.; Capparelli, A. L. Study of the Photolysis of Folic Acid and 6-Formylpterin in Acid Aqueous Solutions. J. Photochem. Photobiol. A. 2000, 135(2–3), 147–154. DOI: 10.1016/S1010-6030(00)00304-X.
  • Fu, X.; Wusigale; Cheng, H.; Fang, Z.; Liang, L. Mechanism for Improved Protection of Whey Protein Isolate Against the Photodecomposition of Folic Acid. Food Hydrocoll. 2018, 79, 439–449. DOI: 10.1016/j.foodhyd.2018.01.020.
  • Delchier, N.; Ringling, C.; Cuvelier, M.-E.; Courtois, F.; Rychlik, M.; Renard, C. M. G. C. Thermal Degradation of Folates Under Varying Oxygen Conditions. Food Chem. 2014, 165, 85–91. DOI: 10.1016/j.foodchem.2014.05.076.
  • Thomas, A. H.; Lorente, C.; Capparelli, A. L.; Pokhrel, M. R.; Braun, A. M.; Oliveros, E. Fluorescence of Pterin, 6-Formylpterin, 6-Carboxypterin and Folic Acid in Aqueous Solution: PH Effects. Photochem. Photobiol. Sci. 2002, 1(6), 421–426. DOI: 10.1039/b202114e.
  • Sharif, N.; Golmakani, M.-T.; Niakousari, M.; Hosseini, S.; Ghorani, B.; Lopez-Rubio, A. Active Food Packaging Coatings Based on Hybrid Electrospun Gliadin Nanofibers Containing Ferulic Acid/hydroxypropyl-Beta-Cyclodextrin Inclusion Complexes. Nanomaterials. 2018, 8(11), 919. DOI: 10.3390/nano8110919.
  • Shishir, M. R. I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in Micro and Nano-Encapsulation of Bioactive Compounds Using Biopolymer and Lipid-Based Transporters. Trends Food Sci. Technol. 2018, 78, 34–60. DOI: 10.1016/j.tifs.2018.05.018.
  • Bajaj, S. R.; Marathe, S. J.; Singhal, R. S. Co-Encapsulation of Vitamins B12 and D3 Using Spray Drying: Wall Material Optimization, Product Characterization, and Release Kinetics. Food Chem. 2021, 335, 127642. DOI: 10.1016/j.foodchem.2020.127642.
  • Camacho, D. H.; Uy, S. J. Y.; Cabrera, M. J. F.; Lobregas, M. O. S.; Fajardo, T. J. M. C. Encapsulation of Folic Acid in Copper-Alginate Hydrogels and It’s Slow in vitro Release in Physiological PH Condition. Food. Res. Int. 2019, 119, 15–22. DOI: 10.1016/j.foodres.2019.01.053.
  • Penalva, R.; Esparza, I.; Agüeros, M.; Gonzalez-Navarro, C. J.; Gonzalez-Ferrero, C.; Irache, J. M. Casein Nanoparticles as Carriers for the Oral Delivery of Folic Acid. Food Hydrocoll. 2015, 44, 399–406. DOI: 10.1016/j.foodhyd.2014.10.004.
  • Ahmad, M.; Qureshi, S.; Maqsood, S.; Gani, A.; Masoodi, F. A. Micro-Encapsulation of Folic Acid Using Horse Chestnut Starch and β-Cyclodextrin: Microcapsule Characterization, Release Behavior & Antioxidant Potential During GI Tract Conditions. Food Hydrocoll. 2017, 66, 154–160. DOI: 10.1016/j.foodhyd.2016.11.012.
  • Sharif, N.; Khoshnoudi-Nia, S.; Jafari, S. M. Nano/Microencapsulation of Anthocyanins; A Systematic Review and Meta-Analysis. Food. Res. Int. 2020, 132, 109077. DOI: 10.1016/j.foodres.2020.109077.
  • Chapeau, A.-L.; Tavares, G. M.; Hamon, P.; Croguennec, T.; Poncelet, D.; Bouhallab, S. Spontaneous Co-Asse mbly of Lactoferrin and β-Lactoglobulin as a Promising Biocarrier for Vitamin B9. Food Hydrocoll. 2016, 57, 280–290. DOI: 10.1016/j.foodhyd.2016.02.003.
  • Chapeau, A.-L.; Bertrand, N.; Briard-Bion, V.; Hamon, P.; Poncelet, D.; Bouhallab, S. Coacervates of Whey Proteins to Protect and Improve the Oral Delivery of a Bioactive Molecule. J. Funct. Foods. 2017, 38, 197–204. DOI: 10.1016/j.jff.2017.09.009.
  • Chapeau, A.-L.; Hamon, P.; Rousseau, F.; Croguennec, T.; Poncelet, D.; Bouhallab, S. Scale-Up Production of Vitamin Loaded Heteroprotein Coacervates and Their Protective Property. J. Food Eng. 2017, 206, 67–76. DOI: 10.1016/j.jfoodeng.2017.03.005.
  • Peñalva, R.; Esparza, I.; González-Navarro, C. J.; Quincoces, G.; Peñuelas, I.; Irache, J. M. Zein Nanoparticles for Oral Folic Acid Delivery. J. Drug Deliv. Sci. Technol. 2015, 30, 450–457. DOI: 10.1016/j.jddst.2015.06.012.
  • Alborzi, S.; Lim, L.-T.; Kakuda, Y. Release of Folic Acid from Sodium Alginate-Pectin-Poly(ethylene Oxide) Electrospun Fibers Under in vitro Conditions. LWT Food Sci. Technol. 2014, 59(1), 383–388. DOI: 10.1016/j.lwt.2014.06.008.
  • Bakhshi, P. K.; Nangrejo, M. R.; Stride, E.; Edirisinghe, M. Application of Electrohydrodynamic Technology for Folic Acid Encapsulation. Food Bioprocess Technol. 2013, 6(7), 1837–1846. DOI: 10.1007/s11947-012-0843-4.
  • Pérez-Masiá, R.; López-Nicolás, R.; Periago, M. J.; Ros, G.; Lagaron, J. M.; López-Rubio, A. Encapsulation of Folic Acid in Food Hydrocolloids Through Nanospray Drying and Electrospraying for Nutraceutical Applications. Food Chem. 2015, 168, 124–133. DOI: 10.1016/j.foodchem.2014.07.051.
  • Kiaei Pour, P.; Alemzadeh, I.; Vaziri, A. S.; Beiroti, A. Potential Effects of Alginate–pectin Biocomposite on the Release of Folic Acid and Their Physicochemical Characteristics. J. Food Sci. Technol. 2020, 57(9), 3363–3370. DOI: 10.1007/s13197-020-04369-7.
  • Pandit, A. H.; Mazumdar, N.; Imtiyaz, K.; Rizvi, M. M. A.; Ahmad, S. Periodate-Modified Gum Arabic Cross-Linked PVA Hydrogels: A Promising Approach Toward Photoprotection and Sustained Delivery of Folic Acid. ACS Omega. 2019, 4(14), 16026–16036. DOI: 10.1021/acsomega.9b02137.
  • Assadpour, E.; Maghsoudlou, Y.; Jafari, S.-M.; Ghorbani, M.; Aalami, M. Evaluation of Folic Acid Nano-Encapsulation by Double Emulsions. Food Bioprocess Technol. 2016, 9(12), 2024–2032. DOI: 10.1007/s11947-016-1786-y.
  • Assadpour, E.; Maghsoudlou, Y.; Jafari, S.-M.; Ghorbani, M.; Aalami, M. Optimization of Folic Acid Nano-Emulsification and Encapsulation by Maltodextrin-Whey Protein Double Emulsions. Int. J. Biol. Macromol. 2016, 86, 197–207. DOI: 10.1016/j.ijbiomac.2016.01.064.
  • Assadpour, E.; Jafari, S.-M. Spray Drying of Folic Acid Within Nano-Emulsions: Optimization by Taguchi Approach. Dry. Technol. 2017, 35(9), 1152–1160. DOI: 10.1080/07373937.2016.1242016.
  • Ding, X.; Yao, P. Soy Protein/soy Polysaccharide Complex Nanogels: Folic Acid Loading, Protection, and Controlled Delivery. Langmuir. 2013, 29(27), 8636–8644. DOI: 10.1021/la401664y.
  • de Britto, D.; de Moura, M. R.; Aouada, F. A.; Pinola, F. G.; Lundstedt, L. M.; Assis, O. B. G.; Mattoso, L. H. C. Entrapment Characteristics of Hydrosoluble Vitamins Loaded into Chitosan and N,N,N-Trimethyl Chitosan Nanoparticles. Macromol. Res. 2014, 22(12), 1261–1267. DOI: 10.1007/s13233-014-2176-9.
  • Prasertmanakit, S.; Praphairaksit, N.; Chiangthong, W.; Muangsin, N. Ethyl Cellulose Microcapsules for Protecting and Controlled Release of Folic Acid. AAPS Pharm. Sci. Tech. 2009, 10(4), 1104. DOI: 10.1208/s12249-009-9305-3.
  • Liu, Y.; Tomiuk, S.; Rozoy, E.; Simard, S.; Bazinet, L.; Green, T.; Kitts, D. D. Thermal Oxidation Studies on Reduced Folate, L-5-Methyltetrahydrofolic Acid (L-5-MTHF) and Strategies for Stabilization Using Food Matrices. J. Food Sci. 2012, 77(2), C236–C243. DOI: 10.1111/j.1750-3841.2011.02561.x.
  • Shrestha, A. K.; Arcot, J.; Yuliani, S. Susceptibility of 5-Methyltetrahydrofolic Acid to Heat and Microencapsulation to Enhance Its Stability During Extrusion Processing. Food Chem. 2012, 130(2), 291–298. DOI: 10.1016/j.foodchem.2011.07.040.
  • Tomiuk, S.; Liu, Y.; Green, T. J.; King, M. J.; Finglas, P. M.; Kitts, D. D. Studies on the Retention of Microencapsulated L-5-Methyltetrahydrofolic Acid in Baked Bread Using Skim Milk Powder. Food Chem. 2012, 133(2), 249–255. DOI: 10.1016/j.foodchem.2011.12.073.
  • Fonseca, L. M.; Crizel, R. L.; Silva, F. T.; Fontes, M. R.; Zavareze, E.; Dias, A. R. Starch Nanofibers as Vehicles for Folic Acid Supplementation: Thermal Treatment, UVA Irradiation and In Vitro Simulation of Digestion. J. Sci. Food Agric. 2021, 101(5), 1935–1943. DOI: 10.1002/jsfa.10809.
  • Lu, W.; Kelly, A. L.; Miao, S. Emulsion-Based Encapsulation and Delivery Systems for Polyphenols. Trends Food Sci. Technol. 2016, 47, 1–9. DOI: 10.1016/j.tifs.2015.10.015.
  • McClements, D. J. Nanoemulsions versus Microemulsions: Terminology, Differences, and Similarities. Soft Matter. 2012, 8(6), 1719–1729. DOI: 10.1039/C2SM06903B.
  • Adi, A. C.; Christanto, C.; Rachmawati, H.; Adlia, A. Vitamin E-Based Folic Acid Nanoemulsion: Formulation and Physical Evaluation for Oral Administration. Pharm. Nanotechnol. 2019, 7(4), 304–313. DOI: 10.2174/2211738507666190717154040.
  • Dickinson, E. Double Emulsions Stabilized by Food Biopolymers. Food Biophys. 2011, 6(1), 1–11. DOI: 10.1007/s11483-010-9188-6.
  • Assadpour, E.; Jafari, S.-M.; Maghsoudlou, Y. Evaluation of Folic Acid Release from Spray Dried Powder Particles of Pectin-Whey Protein Nano-Capsules. Int. J. Biol. Macromol. 2017, 95, 238–247. DOI: 10.1016/j.ijbiomac.2016.11.023.
  • Matos, M.; Gutiérrez, G.; Iglesias, O.; Coca, J.; Pazos, C. Enhancing Encapsulation Efficiency of Food-Grade Double Emulsions Containing Resveratrol or Vitamin B12 by Membrane Emulsification. J. Food Eng. 2015, 166, 212–220. DOI: 10.1016/j.jfoodeng.2015.06.002.
  • Timilsena, Y. P.; Akanbi, T. O.; Khalid, N.; Adhikari, B.; Barrow, C. J. Complex Coacervation: Principles, Mechanisms and Applications in Microencapsulation. Int. J. Biol. Macromol. 2019, 121, 1276–1286. DOI: 10.1016/j.ijbiomac.2018.10.144.
  • Anema, S. G.; de Kruif, C. G. (. Complex Coacervates of Lactotransferrin and β-Lactoglobulin. J. Colloid. Interface. Sci. 2014, 430, 214–220. DOI: 10.1016/j.jcis.2014.05.036.
  • Eratte, D.; Dowling, K.; Barrow, C. J.; Adhikari, B. Recent Advances in the Microencapsulation of Omega-3 Oil and Probiotic Bacteria Through Complex Coacervation: A Review. Trends Food Sci. Technol. 2018, 71, 121–131. DOI: 10.1016/j.tifs.2017.10.014.
  • Niculescu, V.-C. Mesoporous Silica Nanoparticles for Bio-Applications. Front. Mater. 2020, 7. DOI: 10.3389/fmats.2020.00036.
  • Bakhshian Nik, A.; Zare, H.; Razavi, S.; Mohammadi, H.; Torab Ahmadi, P.; Yazdani, N.; Bayandori, M.; Rabiee, N.; Izadi Mobarakeh, J. Smart Drug Delivery: Capping Strategies for Mesoporous Silica Nanoparticles. Microporous Mesoporous Mater. 2020, 299, 110115. DOI: 10.1016/j.micromeso.2020.110115.
  • Mai, Z.; Chen, J.; Hu, Y.; Liu, F.; Fu, B.; Zhang, H.; Dong, X.; Huang, W.; Zhou, W. Novel Functional Mesoporous Silica Nanoparticles Loaded with Vitamin E Acetate as Smart Platforms for PH Responsive Delivery with High Bioactivity. J. Colloid. Interface. Sci. 2017, 508, 184–195. DOI: 10.1016/j.jcis.2017.07.027.
  • Ruiz-Rico, M.; Pérez-Esteve, É.; Lerma-García, M. J.; Marcos, M. D.; Martínez-Máñez, R.; Barat, J. M. Protection of Folic Acid Through Encapsulation in Mesoporous Silica Particles Included in Fruit Juices. Food Chem. 2017, 218, 471–478. DOI: 10.1016/j.foodchem.2016.09.097.
  • Pérez-Esteve, É.; Ruiz-Rico, M.; de la Torre, C.; Villaescusa, L. A.; Sancenón, F.; Marcos, M. D.; Amorós, P.; Martínez-Máñez, R.; Barat, J. M. Encapsulation of Folic Acid in Different Silica Porous Supports: A Comparative Study. Food Chem. 2016, 196, 66–75. DOI: 10.1016/j.foodchem.2015.09.017.
  • Barat, J.; Pérez-Esteve, É.; Bernardos, A.; Martínez-Mañez, R. Nutritional Effects of Folic Acid Controlled Release from Mesoporous Materials. Procedia Food Sci. 2011, 1, 1828–1832. DOI: 10.1016/j.profoo.2011.09.268.
  • Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T. Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chem. Mater. 2014, 26(1), 435–451. DOI: 10.1021/cm402592t.
  • Pérez-Esteve, É.; Ruiz-Rico, M.; Fuentes, A.; Marcos, M. D.; Sancenón, F.; Martínez-Máñez, R.; Barat, J. M. Enrichment of Stirred Yogurts with Folic Acid Encapsulated in PH-Responsive Mesoporous Silica Particles: Bioaccessibility Modulation and Physico-Chemical Characterization. LWT Food Sci. Technol. 2016, 72, 351–360. DOI: 10.1016/j.lwt.2016.04.061.
  • Pérez-Esteve, É.; Fuentes, A.; Coll, C.; Acosta, C.; Bernardos, A.; Amorós, P.; Marcos, M. D.; Sancenón, F.; Martínez-Máñez, R.; Barat, J. M. Modulation of Folic Acid Bioaccessibility by Encapsulation in PH-Responsive Gated Mesoporous Silica Particles. Microporous Mesoporous Mater. 2015, 202, 124–132. DOI: 10.1016/j.micromeso.2014.09.049.
  • Akbari-Alavijeh, S.; Shaddel, R.; Jafari, S. M. Encapsulation of Food Bioactives and Nutraceuticals by Various Chitosan-Based Nanocarriers. Food Hydrocoll. 2020, 105, 105774. DOI: 10.1016/j.foodhyd.2020.105774.
  • Arora, D.; Jaglan, S. Nanocarriers Based Delivery of Nutraceuticals for Cancer Prevention and Treatment: A Review of Recent Research Developments. Trends Food Sci. Technol. 2016, 54, 114–126. DOI: 10.1016/j.tifs.2016.06.003.
  • Malekhosseini, P.; Alami, M.; Khomeiri, M.; Esteghlal, S.; Nekoei, A.; Hosseini, S. M. H. Development of Casein‐Based Nanoencapsulation Systems for Delivery of Epigallocatechin Gallate and Folic Acid. Food Sci. Nutr. 2019, 7(2), 519–527. DOI: 10.1002/fsn3.827.
  • Arzeni, C.; Pilosof, A. M. R. Bioaccessibility of Folic Acid in Egg White Nanocarriers and Protein Digestion Profile in Solution and in Emulsion. LWT. 2019, 111, 470–477. DOI: 10.1016/j.lwt.2019.05.070.
  • Ganie, S. A.; Ali, A.; Mir, T. A.; Mazumdar, N. P. Characterization and Release Studies of Folic Acid from Inulin Conjugates. Int. J. Biol. Macromol. 2020, 153, 1147–1156. DOI: 10.1016/j.ijbiomac.2019.10.244.
  • Acevedo-Fani, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Photo-Protection and Controlled Release of Folic Acid Using Edible Alginate/Chitosan Nanolaminates. J. Food Eng. 2018, 229, 72–82. DOI: 10.1016/j.jfoodeng.2017.03.024.
  • Ruiz-Rico, M.; Daubenschüz, H.; Pérez-Esteve, É.; Marcos, M. D.; Amorós, P.; Martínez-Máñez, R.; Barat, J. M. Protective Effect of Mesoporous Silica Particles on Encapsulated Folates. Eur. J. Pharm. Biopharm. 2016, 105, 9–17. DOI: 10.1016/j.ejpb.2016.05.016.
  • Kadota, K.; Semba, K.; Shakudo, R.; Sato, H.; Deki, Y.; Shirakawa, Y.; Tozuka, Y. Inhibition of Photodegradation of Highly Dispersed Folic Acid Nanoparticles by the Antioxidant Effect of Transglycosylated Rutin. J. Agric. Food. Chem. 2016, 64(15), 3062–3069. DOI: 10.1021/acs.jafc.6b00334.
  • Arzeni, C.; Pérez, O. E.; LeBlanc, J. G.; Pilosof, A. M. R. Egg Albumin–Folic Acid Nanocomplexes: Performance as a Functional Ingredient and Biological Activity. J. Funct. Foods. 2015, 18, 379–386. DOI: 10.1016/j.jff.2015.07.018.
  • Ariyarathna, I. R.; Nedra Karunaratne, D. Use of Chickpea Protein for Encapsulation of Folate to Enhance Nutritional Potency and Stability. Food Bioprod. Process. 2015, 95, 76–82. DOI: 10.1016/j.fbp.2015.04.004.
  • Teng, Z.; Luo, Y.; Wang, T.; Zhang, B.; Wang, Q. Development and Application of Nanoparticles Synthesized with Folic Acid Conjugated Soy Protein. J. Agric. Food. Chem. 2013, 61(10), 2556–2564. DOI: 10.1021/jf4001567.
  • Yang, W.-W.; Pierstorff, E. Reservoir-Based Polymer Drug Delivery Systems. J. Lab. Autom. 2012, 17(1), 50–58. DOI: 10.1177/2211068211428189.
  • Shishir, M. R. I.; Chen, W. Trends of Spray Drying: A Critical Review on Drying of Fruit and Vegetable Juices. Trends Food Sci. Technol. 2017, 65, 49–67. DOI: 10.1016/j.tifs.2017.05.006.
  • Pamunuwa, G.; Anjalee, N.; Kukulewa, D.; Edirisinghe, C.; Shakoor, F.; Karunaratne, D. N. Tailoring of Release Properties of Folic Acid Encapsulated Nanoparticles via Changing Alginate and Pectin Composition in the Matrix. Carbohydr. Polym. Technol. Appl. 2020, 1, 100008. DOI: 10.1016/j.carpta.2020.100008.
  • Huang, K.; Yuan, Y.; Baojun, X. A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application. Food Rev. Int. 2021, 1–41. DOI: 10.1080/87559129.2021.1963978.
  • Rezvankhah, A.; Emam-Djomeh, Z.; Askari, G. Encapsulation and Delivery of Bioactive Compounds Using Spray and Freeze-Drying Techniques: A Review. Dry. Technol. 2020, 38(1–2), 235–258. DOI: 10.1080/07373937.2019.1653906.
  • Oikonomopoulou, V. P.; Krokida, M. K. Novel Aspects of Formation of Food Structure During Drying. Dry. Technol. 2013, 31(9), 990–1007. DOI: 10.1080/07373937.2013.771186.
  • Bejrapha, P.; Min, S.-G.; Surassmo, S.; Choi, M.-J. Physicothermal Properties of Freeze-Dried Fish Oil Nanocapsules Frozen Under Different Conditions. Dry. Technol. 2010, 28(4), 481–489. DOI: 10.1080/07373931003613684.
  • Parhizkar, E.; Rashedinia, M.; Karimi, M.; Alipour, S. Design and Development of Vitamin C-Encapsulated Proliposome with Improved in-Vitro and ex-Vivo Antioxidant Efficacy. J. Microencapsul. 2018, 35(3), 301–311. DOI: 10.1080/02652048.2018.1477845.
  • Mackenzie, G.; Boa, A. N.; Diego-Taboada, A.; Atkin, S. L.; Sathyapalan, T. S. The Least Known Yet Toughest Natural Biopolymer. Front. Mater. 2015, 2. DOI: 10.3389/fmats.2015.00066.
  • Mohammed, A.-S.-Y.; Dyab, A. K. F.; Taha, F.; Abd El-Mageed, A. I. A. Encapsulation of Folic Acid (Vitamin B9) into Sporopollenin Microcapsules: Physico-Chemical Characterisation, in vitro Controlled Release and Photoprotection Study. Mater. Sci. Eng. C. 2021, 128, 112271. DOI: 10.1016/j.msec.2021.112271.
  • Zema, P.; Pilosof, A. M. R. On the Binding of Folic Acid to Food Proteins Performing as Vitamin Micro/Nanocarriers. Food Hydrocoll. 2018, 79, 509–517. DOI: 10.1016/j.foodhyd.2018.01.021.
  • Liu, Y.; Green, T. J.; Wong, P.; Kitts, D. D. Microencapsulation of L-5-Methyltetrahydrofolic Acid with Ascorbate Improves Stability in Baked Bread Products. J. Agric. Food. Chem. 2013, 61(1), 247–254. DOI: 10.1021/jf304229b.
  • Boostani, S.; Jafari, S. M. A Comprehensive Review on the Controlled Release of Encapsulated Food Ingredients; Fundamental Concepts to Design and Applications. Trends Food Sci. Technol. 2021, 109, 303–321. DOI: 10.1016/j.tifs.2021.01.040.
  • Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D., et al. A Standardised Static in vitro Digestion Method Suitable for Food – An International Consensus. Food Funct. 2014, 5(6), 1113–1124.
  • Comunian, T.; Babazadeh, A.; Rehman, A.; Shaddel, R.; Akbari-Alavijeh, S.; Boostani, S.; Jafari, S. M. Protection and Controlled Release of Vitamin C by Different Micro/Nanocarriers. Crit. Rev. Food Sci. Nutr. 2020, 1–22. DOI: 10.1080/10408398.2020.1865258.
  • Peanparkdee, M.; Iwamoto, S. Encapsulation for Improving in vitro Gastrointestinal Digestion of Plant Polyphenols and Their Applications in Food Products. Food Rev. Int. 2020, 1–19. DOI:10.1080/87559129.2020.1733595.
  • Andreani, T.; Fangueiro, J.; Jose, S.; Santini, A.; Silva, A.; Souto, E. Hydrophilic Polymers for Modified-Release Nanoparticles: A Review of Mathematical Modelling for Pharmacokinetic Analysis. Curr. Pharm. Des. 2015, 21(22), 3090–3096. DOI: 10.2174/1381612821666150531163617.
  • Andersson Trojer, M.; Nordstierna, L.; Nordin, M.; Nydén, M.; Holmberg, K. Encapsulation of Actives for Sustained Release. Phys. Chem. Chem. Phys. 2013, 15(41), 17727. DOI: 10.1039/c3cp52686k.
  • Malekjani, N.; Jafari, S. M. Modeling the Release of Food Bioactive Ingredients from Carriers/Nanocarriers by the Empirical, Semiempirical, and Mechanistic Models. Compr. Rev. Food Sci. Food Saf. 2021, 20(1), 3–47. DOI: 10.1111/1541-4337.12660.
  • Estevinho, B. N.; Lazar, R.; Blaga, A.; Rocha, F. Preliminary Evaluation and Studies on the Preparation, Characterization and in vitro Release Studies of Different Biopolymer Microparticles for Controlled Release of Folic Acid. Powder Technol. 2020, 369, 279–288. DOI: 10.1016/j.powtec.2020.05.048.
  • Yaneva, Z.; Georgieva, N. Physicochemical and Morphological Characterization of Pharmaceutical Nanocarriers and Mathematical Modeling of Drug Encapsulation/release Mass Transfer Processes. In Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology; Elsevier, 2018; pp. 173–218. DOI:10.1016/B978-0-12-813629-4.00005-X
  • Corfield, R.; Martínez, K. D.; Allievi, M. C.; Santagapita, P.; Mazzobre, F.; Schebor, C.; Pérez, O. E. Whey Proteins-Folic Acid Complexes: Formation, Isolation and Bioavailability in a Lactobacillus Casei Model. Food Struct. 2020, 26, 100162. DOI: 10.1016/j.foostr.2020.100162.
  • Saghir, S. A.; Ansari, R. A., Pharmacokinetics. In Reference Module in Biomedical Sciences; Elsevier, 2018. DOI: 10.1016/B978-0-12-801238-3.62154-2.
  • Zielińska, A.; Carreiró, F.; Oliveira, A. M.; Neves, A.; Pires, B.; Venkatesh, D. N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A. M., et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules. 2020, 25(16), 3731.
  • Souto, E. B.; Silva, G. F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part II—Production Scales and Clinically Compliant Production Methods. Nanomaterials. 2020, 10(3), 455. DOI: 10.3390/nano10030455.
  • Hosseini, S. F.; Ramezanzade, L.; McClements, D. J. Recent Advances in Nanoencapsulation of Hydrophobic Marine Bioactives: Bioavailability, Safety, and Sensory Attributes of Nano-Fortified Functional Foods. Trends Food Sci. Technol. 2021, 109, 322–339. DOI: 10.1016/j.tifs.2021.01.045.
  • Rezaei, A.; Fathi, M.; Jafari, S. M. Nanoencapsulation of Hydrophobic and Low-Soluble Food Bioactive Compounds Within Different Nanocarriers. Food Hydrocoll. 2019, 88, 146–162. DOI: 10.1016/j.foodhyd.2018.10.003.
  • Katouzian, I.; Jafari, S. M. Nano-Encapsulation as a Promising Approach for Targeted Delivery and Controlled Release of Vitamins. Trends Food Sci. Technol. 2016, 53, 34–48. DOI: 10.1016/j.tifs.2016.05.002.
  • Whitsett, J.; Rangel Filho, A.; Sethumadhavan, S.; Celinska, J.; Widlansky, M.; Vasquez-Vivar, J. Human Endothelial Dihydrofolate Reductase Low Activity Limits Vascular Tetrahydrobiopterin Recycling. Free Radic Biol Med. 2013, 63, 143–150. DOI: 10.1016/j.freeradbiomed.2013.04.035.
  • Philip, D.; Buch, A.; Moorthy, D.; Scott, T. M.; Parnell, L. D.; Lai, C.-Q.; Ordovás, J. M.; Selhub, J.; Rosenberg, I. H.; Tucker, K. L., et al. Dihydrofolate Reductase 19-Bp Deletion Polymorphism Modifies the Association of Folate Status with Memory in a Cross-Sectional Multi-Ethnic Study of Adults. Am. J. Clin. Nutr. 2015, 102(5), 1279–1288.
  • Sawaengsri, H.; Wang, J.; Reginaldo, C.; Steluti, J.; Wu, D.; Meydani, S. N.; Selhub, J.; Paul, L. High Folic Acid Intake Reduces Natural Killer Cell Cytotoxicity in Aged Mice. J. Nutr Biochem. 2016, 30, 102–107. DOI: 10.1016/j.jnutbio.2015.12.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.