447
Views
0
CrossRef citations to date
0
Altmetric
Review

A Comprehensive Review on the Development of Foodomics-Based Approaches to Evaluate the Quality Degradation of Different Food Products

, ORCID Icon &

References

  • Jia, W.; Wu, X. X.; Zhang, R.; Shi, L. UHPLC-Q-Orbitrap-Based Lipidomics Reveals Molecular Mechanism of Lipid Changes During Preservatives Treatment of Hengshan Goat Meat Sausages. Food Chem. 2021, 369, 130948. DOI: 10.1016/j.foodchem.2021.130948.
  • Sahraee, S.; Milani, J. M.; Regenstein, J. M.; Kafil, H. S. Protection of Foods Against Oxidative Deterioration Using Edible Films and Coatings: A Review. Food Biosci. 2019, 32, 100451. DOI: 10.1016/j.fbio.2019.100451.
  • Wibowo, S.; Buvé, C.; Hendrickx, M.; Van Loey, A.; Grauwet, T. Integrated Science-Based Approach to Study Quality Changes of Shelf-Stable Food Products During Storage: A Proof of Concept on Orange and Mango Juices. Trends Food Sci. Technol. 2018, 73, 76–86. DOI: 10.1016/j.tifs.2018.01.006.
  • Ma, M.; Sun, Q. J.; Li, M.; Zhu, K. X. Deterioration Mechanisms of High-Moisture Wheat-Based Food-A Review from Physicochemical, Structural, and Molecular Perspectives. Food Chem. 2020, 318, 126495. DOI: 10.1016/j.foodchem.2020.126495.
  • Noon, J.; Mills, T. B.; Norton, I. T. The Use of Natural Antioxidants to Combat Lipid Oxidation in O/W Emulsions. J. Food Eng. 2020, 281, 110006. DOI: 10.1016/j.jfoodeng.2020.110006.
  • Gavahian, M.; Chu , Y. H.; Mousavi Khaneghah, A.; Barba, F. J.; Misra, N. N. A critical analysis of the cold plasma induced lipid oxidation in foods. Trends in Food Sci. & Technol. 2018, 77, 32–41.
  • Meissner, P. M.; Keppler, J. K.; Stockmann, H.; Schwarz, K. Cooxidation of Proteins and Lipids in Whey Protein Oleogels with Different Water Amounts. Food Chem. 2020, 328, 127123. DOI: 10.1016/j.foodchem.2020.127123.
  • Beltran, F. J. B.; Barrrera, L. M.; Gonzalez-Gonzalez, C. R.; Velasquez, A. A.; Melgar-Lalanne, G. Effect of Simulated Acidic and Salty Fermentation Conditions on Kinetic Growth Parameters and Probiotic Potential of Lactobacillus Acidipiscis and Lactobacillus Pentosus. J. Food Sci. Technol. 2020, 56(5), 2146–2155. DOI: 10.1111/ijfs.14871.
  • Bradford, K. J.; Dahal, P.; Van Asbrouck, J.; Kunusoth, K.; Bello, P.; Thompson, J.; Wu, F. The Dry Chain: Reducing Postharvest Losses and Improving Food Safety in Humid Climates. Trends Food Sci. Technol. 2018, 71, 84–93. DOI: 10.1016/j.tifs.2017.11.002.
  • Jia, W.; Li, Y.; Du, A.; Fan, Z.; Zhang, R.; Shi, L.; Luo, C.; Feng, K.; Chang, J.; Chu, X. Foodomics Analysis of Natural Aging and Gamma Irradiation Maturation in Chinese Distilled Baijiu by UPLC-Orbitrap-MS/MS. Food Chem. 2020, 315, 126308. DOI: 10.1016/j.foodchem.2020.126308.
  • Yang, F.; Xie, C. Y.; Li, J.; Ma, R. Y.; Dang, Z. X.; Wang, C. W.; Wang, T. L. Foodomics Technology: Promising Analytical Methods of Functional Activities of Plant Polyphenols. Eur. Food Res. Technol. 2021, 247(9), 2129–2142. DOI: 10.1007/s00217-021-03781-3.
  • Jia, W.; Zhang, R.; Liu, L.; Zhu, Z.; Mo, H.; Xu, M.; Shi, L.; Zhang, H. Proteomics Analysis to Investigate the Impact of Diversified Thermal Processing on Meat Tenderness in Hengshan Goat Meat. Meat Sci. 2022, 183, 108655. DOI: 10.1016/j.meatsci.2021.108655.
  • Shen, X.; Yang, Z.; McCool, E. N.; Lubeckyj, R. A.; Chen, D.; Sun, L. Capillary Zone Electrophoresis-Mass Spectrometry for Top-Down Proteomics. Trends Anal. Chem. 2019, 120, 115644. DOI: 10.1016/j.trac.2019.115644.
  • Tholey, A.; Becker, A. Top-Down Proteomics for the Analysis of Proteolytic Events-Methods, Applications and Perspectives. BBA-Mol. Cell Res. 2017, 1864(11 Pt B), 2191–2199. DOI: 10.1016/j.bbamcr.2017.07.002.
  • Jia, W.; Yang, Y.; Liu, S.; Shi, L. Molecular Mechanisms of the Irradiation-Induced Accumulation of Polyphenols in Star Anise (Illicium Verum Hook. f.). J. Food Compos. Anal. 2022, 105, 104233. DOI: 10.1016/j.jfca.2021.104233.
  • Jia, W.; Dong, X.; Shi, L.; Chu, X. Discrimination of Milk from Different Animal Species by a Foodomics Approach Based on High-Resolution Mass Spectrometry. J. Agric. Food Chem. 2020, 68(24), 6638–6645. DOI: 10.1021/acs.jafc.0c02222.
  • Guo, J.; Huan, T. Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography-Mass Spectrometry Based Untargeted Metabolomics. Anal. Chem. 2020, 92(12), 8072–8080. DOI: 10.1021/acs.analchem.9b05135.
  • Cao, G.; Song, Z.; Hong, Y.; Yang, Z.; Song, Y.; Chen, Z.; Chen, Z.; Cai, Z. Large-Scale Targeted Metabolomics Method for Metabolite Profiling of Human Samples. Anal. Chim. Acta. 2020, 1125, 144–151. DOI: 10.1016/j.aca.2020.05.053.
  • Xu, L.; Xu, Z.; Wang, X.; Wang, B.; Liao, X. The Application of Pseudotargeted Metabolomics Method for Fruit Juices Discrimination. Food Chem. 2020, 316, 126278. DOI: 10.1016/j.foodchem.2020.126278.
  • Zhang, R.; Zhu, Z.; Jia, W. Molecular Mechanism Associated with the Use of Magnetic Fermentation in Modulating the Dietary Lipid Composition and Nutritional Quality of Goat Milk. Food Chem. 2022, 366, 130554. DOI: 10.1016/j.foodchem.2021.130554.
  • Wu, Z.; Bagarolo, G. I.; Thoroe-Boveleth, S.; Jankowski, J. “Lipidomics”: Mass Spectrometric and Chemometric Analyses of Lipids. Adv. Drug Delivery Rev. 2020, 159, 294–307. DOI: 10.1016/j.addr.2020.06.009.
  • Haas, R.; Zelezniak, A.; Iacovacci, J.; Kamrad, S.; Townsend, S.; Ralser, M. Designing and Interpreting ‘Multi-Omic’ Experiments That May Change Our Understanding of Biology. Curr. Opin. Chem. Biol. 2017, 6, 37–45.
  • Zuo, X.; Cao, S.; Zhang, M.; Cheng, Z.; Cao, T.; Jin, P.; Zheng, Y. High Relative Humidity (HRH) Storage Alleviates Chilling Injury of Zucchini Fruit by Promoting the Accumulation of Proline and ABA. Postharvest. Biol. Technol. 2021, 171, 111344. DOI: 10.1016/j.postharvbio.2020.111344.
  • Wang, J.; Wen, X.; Zhang, Y.; Zou, P.; Cheng, L.; Gan, R.; Li, X.; Liu, D.; Geng, F. Quantitative Proteomic and Metabolomic Analysis of Dictyophora Indusiata Fruiting Bodies During Post-Harvest Morphological Development. Food Chem. 2021, 339, 127884. DOI: 10.1016/j.foodchem.2020.127884.
  • Tang, N.; An, J.; Deng, W.; Gao, Y.; Chen, Z.; Li, Z. Metabolic and Transcriptional Regulatory Mechanism Associated with Postharvest Fruit Ripening and Senescence in Cherry Tomatoes. Postharvest. Biol. Technol. 2020, 168, 111274. DOI: 10.1016/j.postharvbio.2020.111274.
  • Wang, K.; Li, T.; Chen, S.; Li, Y.; Rashid, A. The Biochemical and Molecular Mechanisms of Softening Inhibition by Chitosan Coating in Strawberry Fruit (Fragaria X Ananassa) During Cold Storage. Sci. Hortic. 2020, 271, 109483. DOI: 10.1016/j.scienta.2020.109483.
  • Jiang, L.; Kang, R.; Feng, L.; Yu, Z.; Luo, H. iTraq-Based Quantitative Proteomic Analysis of Peach Fruit (Prunus Persica L.) at Different Ripening and Postharvest Storage Stages. Postharvest. Biol. Technol. 2020, 164, 111137. DOI: 10.1016/j.postharvbio.2020.111137.
  • Mathabe, P. M. K.; Belay, Z. A.; Ndlovu, T.; Caleb, O. J. Progress in Proteomic Profiling of Horticultural Commodities During Postharvest Handling and Storage: A Review. Sci. Hortic. 2020, 261, 108996. DOI: 10.1016/j.scienta.2019.108996.
  • Papoutsis, K.; Mathioudakis, M. M.; Hasperué, J. H.; Ziogas, V. Non-Chemical Treatments for Preventing the Postharvest Fungal Rotting of Citrus Caused by Penicillium Digitatum (Green Mold) and Penicillium Italicum (Blue Mold). Trends Food Sci. Technol. 2019, 86, 479–491. DOI: 10.1016/j.tifs.2019.02.053.
  • Tang, N.; Chen, N.; Hu, N.; Deng, W.; Chen, Z.; Li, Z. Comparative Metabolomics and Transcriptomic Profiling Reveal the Mechanism of Fruit Quality Deterioration and the Resistance of Citrus Fruit Against Penicillium Digitatum. Postharvest. Biol. Technol. 2018, 145, 61–73. DOI: 10.1016/j.postharvbio.2018.06.007.
  • Bang, J.; Lim, S.; Yi, G.; Lee, J. G.; Lee, E. J. Integrated Transcriptomic-Metabolomic Analysis Reveals Cellular Responses of Harvested Strawberry Fruit Subjected to Short-Term Exposure to High Levels of Carbon Dioxide. Postharvest. Biol. Technol. 2019, 148, 120–131. DOI: 10.1016/j.postharvbio.2018.11.003.
  • Luo, H.; Song, J.; Toivonen, P.; Gong, Y.; Forney, C.; Campbell Palmer, L.; Fillmore, S.; Pang, X.; Zhang, Z. Proteomic Changes in ‘Ambrosia’ Apple Fruit During Cold Storage and in Response to Delayed Cooling Treatment. Postharvest. Biol. Technol. 2018, 137, 66–76. DOI: 10.1016/j.postharvbio.2017.11.011.
  • Hwang, J. U.; Song, W. Y.; Hong, D.; Ko, D.; Yamaoka, Y.; Jang, S.; Yim, S.; Lee, E.; Khare, D.; Kim, K.; et al. Plant ABC Transporters Enable Many Unique Aspects of a Terrestrial Plant’s Lifestyle. Mol. Plant. 2016, 9(3), 338–355. DOI: 10.1016/j.molp.2016.02.003.
  • Zou, J.; Chen, J.; Tang, N.; Gao, Y.; Hong, M.; Wei, W.; Cao, H.; Jian, W.; Li, N.; Deng, W.; et al. Transcriptome Analysis of Aroma Volatile Metabolism Change in Tomato (Solanum Lycopersicum) Fruit Under Different Storage Temperatures and 1-MCP Treatment. Postharvest. Biol. Technol. 2018, 135, 57–67. DOI: 10.1016/j.postharvbio.2017.08.017.
  • Gavicho, U. V.; Fuentealba, C.; Hernandez, I.; Defilippi-Bruzzone, B.; Meneses, C.; Campos-Vargas, R.; Lurie, S.; Hertog, M.; Carpentier, S.; Poblete-Echeverria, C.; et al. Integration of Proteomics and Metabolomics Data of Early and Middle Season Hass Avocados Under Heat Treatment. Food Chem. 2019, 289, 512–521. DOI: 10.1016/j.foodchem.2019.03.090.
  • Karagiannis, E.; Michailidis, M.; Karamanoli, K.; Lazaridou, A.; Minas, I. S.; Molassiotis, A. Postharvest Responses of Sweet Cherry Fruit and Stem Tissues Revealed by Metabolomic Profiling. Plant Physiol. Biochem. 2018, 127, 478–484. DOI: 10.1016/j.plaphy.2018.04.029.
  • Zhou, D.; Zhang, Q.; Li, P.; Pan, L.; Tu, K. Combined Transcriptomics and Proteomics Analysis Provides Insight into Metabolisms of Sugars, Organic Acids and Phenols in UV-C Treated Peaches During Storage. Plant Physiol. Biochem. 2020, 157, 148–159. DOI: 10.1016/j.plaphy.2020.10.022.
  • Lu, X.; Zhang, Y.; Xu, B.; Zhu, L.; Luo, X. Protein Degradation and Structure Changes of Beef Muscle During Superchilled Storage. Meat Sci. 2020, 168, 108180. DOI: 10.1016/j.meatsci.2020.108180.
  • Wen, D.; Liu, Y.; Yu, Q. Metabolomic Approach to Measuring Quality of Chilled Chicken Meat During Storage. Poult. Sci. 2020, 99(5), 2543–2554. DOI: 10.1016/j.psj.2019.11.070.
  • Castejon, D.; Garcia-Segura, J. M.; Escudero, R.; Herrera, A.; Cambero, M. I. Metabolomics of Meat Exudate: Its Potential to Evaluate Beef Meat Conservation and Aging. Anal. Chim. Acta. 2015, 901, 1–11. DOI: 10.1016/j.aca.2015.08.032.
  • Jia, W.; Zhang, R.; Liu, L.; Zhu, Z. B.; Xu, M. D.; Shi, L. Molecular Mechanism of Protein Dynamic Change for Hengshan Goat Meat During Freezing Storage Based on High-Throughput Proteomics. Food Res. Int. 2021, 143, 110289. DOI: 10.1016/j.foodres.2021.110289.
  • Lana, A.; Longo, V.; Dalmasso, A.; D’-Alessandro, A.; Bottero, M. T.; Zolla, L. Omics Integrating Physical Techniques: Aged Piedmontese Meat Analysis. Food Chem. 2015, 172, 731–741. DOI: 10.1016/j.foodchem.2014.09.146.
  • Hou, X.; Liu, Q.; Meng, Q.; Wang, L.; Yan, H.; Zhang, L.; Wang, L. TMT-Based Quantitative Proteomic Analysis of Porcine Muscle Associated with Postmortem Meat Quality. Food Chem. 2020, 328, 127133. DOI: 10.1016/j.foodchem.2020.127133.
  • Lu, X.; Zhang, Y.; Zhu, L.; Luo, X.; Hopkins, D. L. Effect of Superchilled Storage on Shelf Life and Quality Characteristics of M. Longissimus Lumborum from Chinese Yellow Cattle. Meat Sci. 2019, 149, 79–84. DOI: 10.1016/j.meatsci.2018.11.014.
  • Jia, W.; Shi, Q.; Zhang, R.; Shi, L.; Chu, X. Unraveling Proteome Changes of Irradiated Goat Meat and Its Relationship to Off-Flavor Analyzed by High-Throughput Proteomics Analysis. Food Chem. 2021, 337, 127806. DOI: 10.1016/j.foodchem.2020.127806.
  • Purslow, P. P.; Warner, R. D.; Clarke, F. M.; Hughes, J. M. Variations in Meat Colour Due to Factors Other Than Myoglobin Chemistry; a Synthesis of Recent Findings (Invited Review). Meat Sci. 2020, 159, 107941. DOI: 10.1016/j.meatsci.2019.107941.
  • Wu, S.; Luo, X.; Yang, X.; Hopkins, D. L.; Mao, Y.; Zhang, Y. Understanding the Development of Color and Color Stability of Dark Cutting Beef Based on Mitochondrial Proteomics. Meat Sci. 2020, 163, 108046. DOI: 10.1016/j.meatsci.2020.108046.
  • Yu, Q.; Wu, W.; Tian, X.; Jia, F.; Xu, L.; Dai, R.; Li, X. Comparative Proteomics to Reveal Muscle-Specific Beef Color Stability of Holstein Cattle During Post-Mortem Storage. Food Chem. 2017, 229, 769–778. DOI: 10.1016/j.foodchem.2017.03.004.
  • Marin-Garzon, N. A.; Magalhaes, A. F. B.; Mota, L. F. M.; Fonseca, L. F. S.; Chardulo, L. A. L.; Albuquerque, L. G. Genome-Wide Association Study Identified Genomic Regions and Putative Candidate Genes Affecting Meat Color Traits in Nellore Cattle. Meat Sci. 2021, 171, 108288. DOI: 10.1016/j.meatsci.2020.108288.
  • Yu, Q.; Wu, W.; Tian, X.; Hou, M.; Dai, R.; Li, X. Unraveling Proteome Changes of Holstein Beef M. Semitendinosus and Its Relationship to Meat Discoloration During Post-Mortem Storage Analyzed by Label-Free Mass Spectrometry. J. Proteomics. 2017, 154, 85–93. DOI: 10.1016/j.jprot.2016.12.012.
  • Thomas, C.; Martin, A.; Sachsenroder, J.; Bandick, N. Effects of Modified Atmosphere Packaging on an Extended-Spectrum Beta-Lactamase-Producing Escherichia Coli, the Microflora, and Shelf Life of Chicken Meat. Poultr. Sci. 2020, 99(12), 7004–7014. DOI: 10.1016/j.psj.2020.09.021.
  • Yang, X.; Wu, S.; Hopkins, D. L.; Liang, R.; Zhu, L.; Zhang, Y.; Luo, X. Proteomic Analysis to Investigate Color Changes of Chilled Beef Longissimus Steaks Held Under Carbon Monoxide and High Oxygen Packaging. Meat Sci. 2018, 142, 23–31. DOI: 10.1016/j.meatsci.2018.04.001.
  • Nimbkar, S.; Auddy, M.; Manoj, I.; Shanmugasundaram, S. Novel Techniques for Quality Evaluation of Fish: A Review. Food Rev. Int. 2021, 1–24. doi:10.1080/87559129.2021.1925291.
  • Jaaskelainen, E.; Jakobsen, L. M. A.; Hultman, J.; Eggers, N.; Bertram, H. C.; Bjorkroth, J. Metabolomics and Bacterial Diversity of Packaged Yellowfin Tuna (Thunnus Albacares) and Salmon (Salmo Salar) Show Fish Species-Specific Spoilage Development During Chilled Storage. Int. J. Food Microbiol. 2019, 293, 44–52. DOI: 10.1016/j.ijfoodmicro.2018.12.021.
  • Chang, W. C.; Wu, H. Y.; Yeh, Y.; Liao, P. C. Untargeted Foodomics Strategy Using High-Resolution Mass Spectrometry Reveals Potential Indicators for Fish Freshness. Anal. Chim. Acta. 2020, 1127, 98–105. DOI: 10.1016/j.aca.2020.06.016.
  • Aru, V.; Pisano, M. B.; Savorani, F.; Engelsen, S. B.; Cosentino, S.; Cesare Marincola, F. Metabolomics Analysis of Shucked Mussels’ Freshness. Food Chem. 2016, 205, 58–65. DOI: 10.1016/j.foodchem.2016.02.152.
  • Bao, Y.; Wang, K.; Yang, H.; Regenstein, J. M.; Ertbjerg, P.; Zhou, P. Protein Degradation of Black Carp (Mylopharyngodon Piceus) Muscle During Cold Storage. Food Chem. 2020, 308, 125576. DOI: 10.1016/j.foodchem.2019.125576.
  • Men, L.; Li, Y.; Wang, X.; Li, R.; Zhang, T.; Meng, X.; Liu, S.; Gong, X.; Gou, M. Protein Biomarkers Associated with Frozen Japanese Puffer Fish (Takifugu Rubripes) Quality Traits. Food Chem. 2020, 327, 127002. DOI: 10.1016/j.foodchem.2020.127002.
  • Zhang, X.; Xie, J. Analysis of Proteins Associated with Quality Deterioration of Grouper Fillets Based on TMT Quantitative Proteomics During Refrigerated Storage. Molecules. 2019, 24(14), 2641. DOI: 10.3390/molecules24142641.
  • Zhang, B.; Mao, J. L.; Yao, H.; Aubourg, S. P. Label-Free Based Proteomics Analysis of Protein Changes in Frozen Whiteleg Shrimp (Litopenaeus Vannamei) Pre-Soaked with Sodium Trimetaphosphate. Food Res. Int. 2020, 137, 109455. DOI: 10.1016/j.foodres.2020.109455.
  • Fan, X. R.; Jin, Z.; Liu, Y.; Chen, Y. W.; Konno, K.; Zhu, B. W.; Dong, X. P. Effects of Super-Chilling Storage on Shelf-Life and Quality Indicators of Coregonus Peled Based on Proteomics Analysis. Food Res. Int. 2021, 143, 110229. DOI: 10.1016/j.foodres.2021.110229.
  • Shui, S. S.; Yao, H.; Jiang, Z. D.; Benjakul, S.; Aubourg, S. P.; Zhang, B. The Differences of Muscle Proteins Between Neon Flying Squid (Ommastrephes Bartramii) and Jumbo Squid (Dosidicus Gigas) Mantles via Physicochemical and Proteomic Analyses. Food Chem. 2021, 364, 130374. DOI: 10.1016/j.foodchem.2021.130374.
  • Deng, X.; Lei, Y.; Yu, Y.; Lu, S.; Zhang, J. The Discovery of Proteins Associated with Freshness of Coregonus Peled Muscle During Refrigerated Storage. J. Food Sci. 2019, 84(6), 1266–1272. DOI: 10.1111/1750-3841.14639.
  • Shi, J.; Zhang, L.; Lei, Y.; Shen, H.; Yu, X.; Luo, Y. Differential Proteomic Analysis to Identify Proteins Associated with Quality Traits of Frozen Mud Shrimp (Solenocera Melantho) Using an iTraq-Based Strategy. Food Chem. 2018, 251, 25–32. DOI: 10.1016/j.foodchem.2018.01.046.
  • Guglielmetti, C.; Manfredi, M.; Brusadore, S.; Sciuto, S.; Esposito, G.; Ubaldi, P. G.; Magnani, L.; Gili, S.; Marengo, E.; Acutis, P. L.; et al. Two-Dimensional Gel and Shotgun Proteomics Approaches to Distinguish Fresh and Frozen-Thawed Curled Octopus (Eledone Cirrhosa). J. Proteomics. 2018, 186, 1–7. DOI: 10.1016/j.jprot.2018.07.017.
  • Chen, L. P.; Zhang, H. W.; Zhang, X. M.; Yu, F. Q. H.; Zhang, F.; Xue, C. H.; Xue, Y.; Tang, Q. J.; Li, Z. J. Identification of Potential Peptide Markers for the Shelf-Life of Pacific Oysters (Crassostrea Gigas) During Anhydrous Preservation via Mass Spectrometry-Based Peptidomics. Lwt. 2020, 134, 109922. DOI: 10.1016/j.lwt.2020.109922.
  • Alves, V. L. C. D.; Rico, B. P. M.; Cruz, R. M. S.; Vicente, A. A.; Khmelinskii, I.; Vieira, M. C. Preparation and Characterization of a Chitosan Film with Grape Seed Extract-Carvacrol Microcapsules and Its Effect on the Shelf-Life of Refrigerated Salmon (Salmo Salar). Lwt. 2018, 89, 525–534. DOI: 10.1016/j.lwt.2017.11.013.
  • Zhao, X.; Wu, J.; Chen, L.; Yang, H. Effect of Vacuum Impregnated Fish Gelatin and Grape Seed Extract on Metabolite Profiles of Tilapia (Oreochromis Niloticus) Fillets During Storage. Food Chem. 2019, 293, 418–428. DOI: 10.1016/j.foodchem.2019.05.001.
  • Zhao, L.; Zhang, Z.; Wang, M.; Sun, J.; Li, H.; Malakar, P. K.; Liu, H.; Pan, Y.; Zhao, Y. New Insights into the Changes of the Proteome and Microbiome of Shrimp (Litopenaeus Vannamei) Stored in Acidic Electrolyzed Water Ice. J. Agric. Food Chem. 2018, 66(19), 4966–4976. DOI: 10.1021/acs.jafc.8b00498.
  • Shen, Q.; Yang, Q.; Cheung, H. Y. Hydrophilic Interaction Chromatography Based Solid-Phase Extraction and MALDI TOF Mass Spectrometry for Revealing the Influence of Pseudomonas Fluorescens on Phospholipids in Salmon Fillet. Anal. Bioanal. Chem. 2015, 407(5), 1475–1484. DOI: 10.1007/s00216-014-8365-8.
  • Tsironi, T.; Anjos, L.; Pinto, P. I. S.; Dimopoulos, G.; Santos, S.; Santa, C.; Manadas, B.; Canario, A.; Taoukis, P.; Power, D. High Pressure Processing of European Sea Bass (Dicentrarchus Labrax) Fillets and Tools for Flesh Quality and Shelf Life Monitoring. J. Food Eng. 2019, 262, 83–91. DOI: 10.1016/j.jfoodeng.2019.05.010.
  • Mozuraityte, R.; Standal, I. B.; Cropotova, J.; Budźko, E.; Rustad, T. Superchilled, Chilled and Frozen Storage of Atlantic Mackerel (Scomber Scombrus)-Effect on Lipids and Low Molecular Weight Metabolites. Int. J. Food Sci. Technol. 2021, 56(4), 1918–1928. DOI: 10.1111/ijfs.14821.
  • Li, X.; Li, L.; Ma, Y.; Wang, R.; Gu, Y.; Day, L. Changes in Protein Interactions in Pasteurized Milk During Cold Storage. Food Biosci. 2020, 34, 100530. DOI: 10.1016/j.fbio.2020.100530.
  • Tan, D. F.; Ma, A. J.; Wang, S. L.; Zhang, Q. Y.; Jia, M.; Kamal-Eldin, A.; Wu, H. X.; Chen, G. Effects of the Oxygen Content and Light Intensity on Milk Photooxidation Using Untargeted Metabolomic Analysis. J. Agric. Food Chem. 2021, 69(26), 7488–7497. DOI: 10.1021/acs.jafc.1c02823.
  • Zhu, D.; Kebede, B.; Chen, G.; McComb, K.; Frew, R. Effects of the Vat Pasteurization Process and Refrigerated Storage on the Bovine Milk Metabolome. J. Dairy Sci. 2020, 103(3), 2077–2088. DOI: 10.3168/jds.2019-17512.
  • Zhu, D.; Kebede, B.; Chen, G.; McComb, K.; Frew, R. Impact of Freeze-Drying and Subsequent Storage on Milk Metabolites Based on 1H NMR and UHPLC-QToF/ms. Food Control. 2020, 116, 107017. DOI: 10.1016/j.foodcont.2019.107017.
  • Edwards, K. M.; Badiger, A.; Heldman, D. R.; Klein, M. S. Metabolomic Markers of Storage Temperature and Time in Pasteurized Milk. Metabolites. 2021, 11(7), 419. DOI: 10.3390/metabo11070419.
  • Zhang, L.; Wu, Y.; Ma, Y.; Xu, Z.; Ma, Y.; Zhou, P. Macronutrients, Total Aerobic Bacteria Counts and Serum Proteome of Human Milk During Refrigerated Storage. Food Biosci. 2020, 35, 100562. DOI: 10.1016/j.fbio.2020.100562.
  • Troise, A. D.; Buonanno, M.; Fiore, A.; Monti, S. M.; Fogliano, V. Evolution of Protein Bound Maillard Reaction End-Products and Free Amadori Compounds in Low Lactose Milk in Presence of Fructosamine Oxidase I. Food Chem. 2016, 212, 722–729. DOI: 10.1016/j.foodchem.2016.06.037.
  • Xu, Q. B.; Zhang, Y. D.; Zheng, N.; Wang, Q.; Li, S.; Zhao, S. G.; Wen, F.; Meng, L.; Wang, J. Q. Short Communication: Decrease of Lipid Profiles in Cow Milk by Ultra-High-Temperature Treatment but Not by Pasteurization. J. Dairy Sci. 2020, 103(2), 1900–1907. DOI: 10.3168/jds.2019-17329.
  • Tan, D.; Zhang, X.; Su, M.; Jia, M.; Zhu, D.; Kebede, B.; Wu, H.; Chen, G. Establishing an Untargeted-To-MRM Liquid Chromatography-Mass Spectrometry Method for Discriminating Reconstituted Milk from Ultra-High Temperature Milk. Food Chem. 2021, 337, 127946. DOI: 10.1016/j.foodchem.2020.127946.
  • Milkovska-Stamenova, S.; Hoffmann, R. Influence of Storage and Heating on Protein Glycation Levels of Processed Lactose-Free and Regular Bovine Milk Products. Food Chem. 2017, 221, 489–495. DOI: 10.1016/j.foodchem.2016.10.092.
  • Nielsen, S. D.; Jansson, T.; Le, T. T.; Jensen, S.; Eggers, N.; Rauh, V.; Sundekilde, U. K.; Sørensen, J.; Andersen, H. J.; Bertram, H. C.; et al. Correlation Between Sensory Properties and Peptides Derived from Hydrolysed-Lactose UHT Milk During Storage. Int. Dairy J. 2017, 68, 23–31. DOI: 10.1016/j.idairyj.2016.12.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.