336
Views
0
CrossRef citations to date
0
Altmetric
Review

Sprouted Andean grains: an alternative for the development of nutritious and functional products

, , , , , ORCID Icon & show all

References

  • Alandia, G.; Rodriguez, J. P.; Jacobsen, S.-E.; Bazile, D.; Condori, B. Global Expansion of Quinoa and Challenges for the Andean Region. Glob. Food Secur. 2020, 26, 100429. DOI: 10.1016/j.gfs.2020.100429.
  • Martinez-Lopez, A.; Millan-Linares, M. C.; Rodriguez-Martin, N. M.; Millan, F.; Montserrat-de la paz, S. Nutraceutical Value of Kiwicha (Amaranthus Caudatus L.). J. Funct. Foods. 2020, 65, 103735. DOI: 10.1016/j.jff.2019.103735.
  • Luna-Mercado, G. I.; Repo-Carrasco-Valencia, R. Gluten-Free Bread Applications: Thermo-Mechanical and Techno-Functional Characterization of Kañiwa Flour. Cereal Chem 2021, 98(3), 474–481. DOI: 10.1002/cche.10386.
  • Berru, L. B.; Glorio-Paulet, P.; Basso, C.; Scarafoni, A.; Camarena, F.; Hidalgo, A.; Brandolini, A. Chemical Composition, Tocopherol and Carotenoid Content of Seeds from Different Andean Lupin (Lupinus Mutabilis) Ecotypes. Plant Foods Hum. Nutr 2021, 76(1), 98–104. DOI: 10.1007/s11130-021-00880-0.
  • Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted Grains: A Comprehensive Review. Nutrients. 2019, 11(2), 421. DOI: 10.3390/nu11020421.
  • Guzmán-Ortiz, F. A.; Castro-Rosas, J.; Gómez-Aldapa, C. A.; Mora-Escobedo, R.; Rojas-León, A.; Rodríguez-Marín, M. L.; Falfán-Cortés, R. N.; Román-Gutiérrez, A. D. Enzyme Activity during Germination of Different Cereals: A Review. Food Rev. Int. 2019, 35(3), 177–200. DOI: 10.1080/87559129.2018.1514623.
  • Ichinose, Y.; Kuwabara, T.; Hakoyama, S. Germination of Wheat Grains at Various Temperatures in Relation to the Activities of α-Amylase and Endoprotease. Plant Prod. Sci. 2002, 5(2), 110–116. DOI: 10.1626/pps.5.110.
  • Elkhalifa, A. E. O.; Bernhardt, R. Influence of Grain Germination on Functional Properties of Sorghum Flour. Food Chem 2010, 121(2), 387–392. DOI: 10.1016/j.foodchem.2009.12.041.
  • Wunthunyarat, W.; Seo, H.-S.; Wang, Y.-J. Effects of Germination Conditions on Enzyme Activities and Starch Hydrolysis of Long-Grain Brown Rice in Relation to Flour Properties and Bread Qualities. J. Food Sci 2020, 85(2), 349–357. DOI: 10.1111/1750-3841.15008.
  • Aparicio-García, N.; Martínez-Villaluenga, C.; Frias, J.; Peñas, E. Sprouted Oat as a Potential Gluten-Free Ingredient with Enhanced Nutritional and Bioactive Properties. Food Chem 2021, 338, 127972. DOI: 10.1016/j.foodchem.2020.127972.
  • Donkor, O. N.; Stojanovska, L.; Ginn, P.; Ashton, J.; Vasiljevic, T. Germinated Grains – Sources of Bioactive Compounds. Food Chem 2012, 135(3), 950–959. DOI: 10.1016/j.foodchem.2012.05.058.
  • Abderrahim, F.; Huanatico, E.; Repo-Carrasco-Valencia, R.; Arribas, S. M.; Gonzalez, M. C.; Condezo-Hoyos, L. Effect of Germination on Total Phenolic Compounds, Total Antioxidant Capacity, Maillard Reaction Products and Oxidative Stress Markers in Canihua (Chenopodium Pallidicaule). J. Cereal Sci 2012, 56(2), 410–417. DOI: 10.1016/j.jcs.2012.04.013.
  • Khan, M. K.; Karnpanit, W.; Nasar‐Abbas, S. M.; Huma, Z.; Jayasena, V. Development of a Fermented Product with Higher Phenolic Compounds and Lower Anti‐nutritional Factors from Germinated Lupin (Lupinus Angustifolius L.). J. Food Process. Preserv 2018, 42(12), e13843. DOI: 10.1111/jfpp.13843.
  • Paucar-Menacho, L. M.; Peñas, E.; Dueñas, M.; Frias, J.; Martínez-Villaluenga, C. Optimizing Germination Conditions to Enhance the Accumulation of Bioactive Compounds and the Antioxidant Activity of Kiwicha (Amaranthus Caudatus) Using Response Surface Methodology. LWT - Food Sci. Technol 2017, 76, 245–252. DOI: 10.1016/j.lwt.2016.07.038.
  • Al-Qabba, M. M.; El-Mowafy, M. A.; Althwab, S. A.; Alfheeaid, H. A.; Aljutaily, T.; Barakat, H. Phenolic Profile, Antioxidant Activity, and Ameliorating Efficacy of Chenopodium Quinoa Sprouts against CCl4-Induced Oxidative Stress in Rats. Nutrients. 2020, 12(10), 2904. DOI: 10.3390/nu12102904.
  • Aphalo, P.; Martínez, E. N.; Añón, M. C. Amaranth Sprouts: A Potential Health Promoting and Nutritive Natural Food. Int. J. Food Prop 2015, 18(12), 2688–2698. DOI: 10.1080/10942912.2015.1004585.
  • Dueñas, M.; Hernández, T.; Estrella, I.; Fernández, D. Germination as a Process to Increase the Polyphenol Content and Antioxidant Activity of Lupin Seeds (Lupinus Angustifolius L.). Food Chem 2009, 117(4), 599–607. DOI: 10.1016/j.foodchem.2009.04.051.
  • Mäkinen, O. E.; Arendt, E. K. Nonbrewing Applications of Malted Cereals, Pseudocereals, and Legumes: A Review. J. Am. Soc. Brew. Chem. 2015, 73(3), 223–227. DOI: 10.1094/ASBCJ-2015-0515-01.
  • Ding, H.; Fu, T.-J.; Smith, M. A. Microbial Contamination in Sprouts: How Effective Is Seed Disinfection Treatment? J. Food Sci 2013, 78(4), R495–R501. DOI: 10.1111/1750-3841.12064.
  • Warriner, K.; Smal, B. Chapter 11 - Microbiological Safety of Sprouted Seeds: Interventions and Regulations. In The Produce Contamination Problem (Second Edition); Matthews, K.R., Sapers, G.M., Gerba, C.P., Eds.; Academic Press: San Diego, 2014; pp 237–268. DOI:10.1016/B978-0-12-404611-5.00011-7.
  • Finnie. Sprouted Grains as a Food Ingredient - ScienceDirect
  • Gan, R.-Y.; Lui, W.-Y.; Wu, K.; Chan, C.-L.; Dai, S.-H.; Sui, Z.-Q.; Corke, H. Bioactive Compounds and Bioactivities of Germinated Edible Seeds and Sprouts: An Updated Review. Trends Food Sci. Technol 2017, 59, 1–14. DOI: 10.1016/j.tifs.2016.11.010.
  • Nonogaki, H. Seed Germination and Reserve Mobilization. In: Encyclopedia of Life Sciences (ELS); Chichester: John Wiley & Sons, 2008; pp. 1–9. DOI:10.1002/9780470015902.a0002047.pub2.
  • Ninfali, P.; Panato, A.; Bortolotti, F.; Valentini, L.; Gobbi, P. Morphological Analysis of the Seeds of Three Pseudocereals by Using Light Microscopy and ESEM-EDS. Eur. J. Histochem. 2020, 64, 1. DOI: 10.4081/ejh.2020.3075.
  • Prego, I.; Maldonado, S., and Otegui, M. Seed Structure and Localization of Reserves in Chenopodium Quinoa. Ann. Bot. U. K. 1998, 82, 481–488. DOI: 10.1006/anbo.1998.0704.
  • Marti, A.; Cardone, G., and Pagani, M. A. Sprouted Cereal Grains and Products. In Innovative Processing Technologies for Healthy Grains, Pojić, Milica, Tiwari, Uma; Chichester,UK: John Wiley & Sons, Ltd: 2020; pp 113–141. DOI:10.1002/9781119470182.ch6.
  • Cilla, A.; López-García, G.; Barberá, R. In Vitro Bioavailability of Iron and Calcium in Cereals and Derivatives: A Review. Food Rev. Int. 2018, 34(1), 1–33. DOI: 10.1080/87559129.2016.1210631.
  • Kumar, V.; Sinha, A. K.; Makkar, H. P. S.; Becker, K. Dietary Roles of Phytate and Phytase in Human Nutrition: A Review. Food Chem 2010, 120(4), 945–959. DOI: 10.1016/j.foodchem.2009.11.052.
  • Nelson, K.; Stojanovska, L.; Vasiljevic, T.; Mathai, M. Germinated Grains: A Superior Whole Grain Functional Food? Can. J. Physiol. Pharmacol. 2013, 91(6), 429–441. DOI: 10.1139/cjpp-2012-0351.
  • Aguilar, J.; Miano, A. C.; Obregón, J.; Soriano-Colchado, J.; Barraza-Jáuregui, G. Malting Process as an Alternative to Obtain High Nutritional Quality Quinoa Flour. J. Cereal Sci 2019, 90, 102858. DOI: 10.1016/j.jcs.2019.102858.
  • Jimenez, M. D.; Lobo, M.; Sammán, N. 12th IFDC 2017 Special Issue – Influence of Germination of Quinoa (Chenopodium Quinoa) and Amaranth (Amaranthus) Grains on Nutritional and Techno-Functional Properties of Their Flours. J. Food Compos. Anal 2019, 84, 103290. DOI: 10.1016/j.jfca.2019.103290.
  • Pachari Vera, E.; Alca, J. J.; Rondón Saravia, G.; Callejas Campioni, N.; Jachmanián Alpuy, I. Comparison of the Lipid Profile and Tocopherol Content of Four Peruvian Quinoa (Chenopodium Quinoa Willd.) Cultivars (‘amarilla de Maranganí’, ‘Blanca de Juli’, INIA 415 ‘Roja Pasankalla’, INIA 420 ‘Negra Collana’) during Germination. J. Cereal Sci 2019, 88, 132–137. DOI: 10.1016/j.jcs.2019.05.015.
  • Bhinder, S.; Kumari, S.; Singh, B.; Kaur, A.; Singh, N. Impact of Germination on Phenolic Composition, Antioxidant Properties, Antinutritional Factors, Mineral Content and Maillard Reaction Products of Malted Quinoa Flour. Food Chem 2021, October 2020, 346, 128915. DOI: 10.1016/j.foodchem.2020.128915.
  • Montemurro, M.; Pontonio, E.; Gobbetti, M.; Rizzello, C. G. Investigation of the Nutritional, Functional and Technological Effects of the Sourdough Fermentation of Sprouted Flours. Int. J. Food Microbiol 2019, June 2018, 302, 47–58. DOI: 10.1016/j.ijfoodmicro.2018.08.005.
  • Park, S. H.; Morita, N. Changes of Bound Lipids and Composition of Fatty Acids in Germination of Quinoa Seeds. Food Sci. Technol. Res 2004, 10(3), 303–306. DOI: 10.3136/fstr.10.303.
  • Suárez-Estrella, D.; Bresciani, A.; Iametti, S.; Marengo, M.; Pagani, M. A.; Marti, A. Effect of Sprouting on Proteins and Starch in Quinoa (Chenopodium Quinoa Willd.). Plant Foods Hum. Nutr 2020, 75(4), 635–641. DOI: 10.1007/s11130-020-00864-6.
  • Hager, A.-S.; Mäkinen, O. E.; Arendt, E. K. Amylolytic Activities and Starch Reserve Mobilization during the Germination of Quinoa. Eur. Food Res. Technol 2014, 239(4), 621–627. DOI: 10.1007/s00217-014-2258-0.
  • Chauhan, A.; Saxena, D. C.; Singh, S. Total Dietary Fibre and Antioxidant Activity of Gluten Free Cookies Made from Raw and Germinated Amaranth (Amaranthus Spp.) Flour. LWT - Food Sci. Technol 2015, 63(2), 939–945. DOI: 10.1016/j.lwt.2015.03.115.
  • Guardianelli, L. M.; Salinas, M. V.; Puppo, M. C. Chemical and Thermal Properties of Flours from Germinated Amaranth Seeds. J. Food Meas. Charact 2019, 13(2), 1078–1088. DOI: 10.1007/s11694-018-00023-1.
  • Cornejo, F.; Novillo, G.; Villacrés, E.; Rosell, C. M. Evaluation of the Physicochemical and Nutritional Changes in Two Amaranth Species (Amaranthus Quitensis and Amaranthus Caudatus) after Germination. Food Res. Int 2019, September 2018, 121, 933–939. DOI: 10.1016/j.foodres.2019.01.022.
  • Perales-Sánchez, J. X. K.; Reyes-Moreno, C.; Gómez-Favela, M. A.; Milán-Carrillo, J.; Cuevas-Rodríguez, E. O.; Valdez-Ortiz, A.; Gutiérrez-Dorado, R. Increasing the Antioxidant Activity, Total Phenolic and Flavonoid Contents by Optimizing the Germination Conditions of Amaranth Seeds. Plant Foods Hum. Nutr 2014, 69(3), 196–202. DOI: 10.1007/s11130-014-0430-0.
  • Gamel, T. H.; Linssen, J. P.; Mesallam, A. S.; Damir, A. A.; Shekib, L. A. Effect of Seed Treatments on the Chemical Composition of Two Amaranth Species: Oil, Sugars, Fibres, Minerals and Vitamins. J. Sci. Food Agric. 2005, 86(1), 82–89. DOI: 10.1002/jsfa.2318.
  • Pilco-Quesada, S.; Tian, Y.; Yang, B.; Repo-Carrasco-Valencia, R.; Suomela, J.-P. Effects of Germination and Kilning on the Phenolic Compounds and Nutritional Properties of Quinoa (Chenopodium Quinoa) and Kiwicha (Amaranthus Caudatus). J. Cereal Sci 2020, 94, 102996. DOI: 10.1016/j.jcs.2020.102996.
  • Gulewicz, P.; Martínez-Villaluenga, C.; Frias, J.; Ciesiolka, D.; Gulewicz, K.; Vidal-Valverde, C. Effect of Germination on the Protein Fraction Composition of Different Lupin Seeds. Food Chem 2008, 107(2), 830–844. DOI: 10.1016/j.foodchem.2007.08.087.
  • Dagnia, S. G.; Petterson, D. S.; Bell, R. R.; Flanagan, F. V. Germination Alters the Chemical Composition and Protein Quality of Lupin Seeds. J. Sci. Food Agric. 1992, 60(4), 419–423. DOI: 10.1002/jsfa.2740600403.
  • Chilomer, K.; Kasprowicz‐Potocka, M.; Gulewicz, P.; Frankiewicz, A. The Influence of Lupin Seed Germination on the Chemical Composition and Standardized Ileal Digestibility of Protein and Amino Acids in Pigs. J. Anim. Physiol. Anim. Nutr. 2013, 97(4), 639–646. DOI: 10.1111/j.1439-0396.2012.01304.x.
  • Kaczmarska, K. T.; Chandra-Hioe, M. V.; Zabaras, D.; Frank, D.; Arcot, J. Effect of Germination and Fermentation on Carbohydrate Composition of Australian Sweet Lupin and Soybean Seeds and Flours. J. Agric. Food Chem 2017, 65(46), 10064–10073. DOI: 10.1021/acs.jafc.7b02986.
  • Bewley, J. D.; Bradford, K.; Hilhorst, H. Nonogaki, Hiroyuki. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed; Springer-Verlag: New York, 2013. Doi:10.1007/978-1-4614-4693-4.
  • Suárez-Estrella, D.; Cardone, G.; Buratti, S.; Pagani, M. A.; Marti, A. Sprouting as a Pre-Processing for Producing Quinoa-Enriched Bread. J. Cereal Sci September 2020, 96, 103111. DOI: 10.1016/j.jcs.2020.103111.
  • Borek, S., and Kubala, S. Diverse Regulation by Sucrose of Enzymes Involved in Storage Lipid Breakdown in Germinating Lupin Seeds. J. Acta Physiol Plant. 2013, 35, 2147–2156. DOI:10.1007/s11738-013-1251-8.
  • Czubinski, J.; Grygier, A.; Siger, A. Lupinus Mutabilis Seed Composition and Its Comparison with Other Lupin Species. J. Food Compos. Anal 2021, October 2020, 99, 103875. DOI: 10.1016/j.jfca.2021.103875.
  • Borek, S.; Paluch-Lubawa, E.; Pukacka, S.; Pietrowska-Borek, M.; Ratajczak, L. Asparagine Slows down the Breakdown of Storage Lipid and Degradation of Autophagic Bodies in Sugar-Starved Embryo Axes of Germinating Lupin Seeds. J. Plant Physiol. 2017, 209, 51–67. DOI: 10.1016/j.jplph.2016.10.016.
  • Borek, S.; Galor, A.; Paluch, E. Asparagine Enhances Starch Accumulation in Developing and Germinating Lupin Seeds. J. Plant Growth Regul. 2013, 32(3), 471–482. DOI: 10.1007/s00344-012-9313-5.
  • Nonogaki, H.; Bassel, G. W.; Bewley, J. D. Germination—Still a Mystery. Plant Sci 2010, 179(6), 574–581. DOI: 10.1016/j.plantsci.2010.02.010.
  • Omary, M. B.; Fong, C.; Rothschild, J.; Finney, P. REVIEW: Effects of Germination on the Nutritional Profile of Gluten-Free Cereals and Pseudocereals: A Review. Cereal Chem 2012, 89(1), 1–14. DOI: 10.1094/CCHEM-01-11-0008.
  • Aphalo, P.; Martínez, E. N.; Añón, M. C. Structural Modifications of Amaranth Proteins during Germination. Protein J 2009, 28(3–4), 131–138. DOI: 10.1007/s10930-009-9173-4.
  • Verbruggen, N.; Hermans, C. Proline Accumulation in Plants: A Review. Amino Acids. 2008, 35(4), 753–759. DOI: 10.1007/s00726-008-0061-6.
  • Chilomer, K.; Zaleska, K.; Ciesiolka, D.; Gulewicz, P.; Frankiewicz, A.; Gulewicz, K. Changes in the Alkaloid, α-Galactoside and Protein Fractions Content during Germination of Different Lupin Species. Acta Soc. Bot. Pol. 2011, 79(1), 11–20. DOI: 10.5586/asbp.2010.002.
  • Kaczmarska, K. T.; Chandra-Hioe, M. V.; Frank, D.; Arcot, J. Enhancing Wheat Muffin Aroma through Addition of Germinated and Fermented Australian Sweet Lupin (Lupinus Angustifolius L.) and Soybean (Glycine Max L.) Flour. LWT. 2018, November 2017, 96, 205–214. DOI: 10.1016/j.lwt.2018.05.034.
  • Martínez-Villaluenga, C.; Kuo, Y.-H.; Lambein, F.; Frías, J.; Vidal-Valverde, C. Kinetics of Free Protein Amino Acids, Free Non-Protein Amino Acids and Trigonelline in Soybean (Glycine Max L.) and Lupin (Lupinus Angustifolius L.) Sprouts. Eur. Food Res. Technol 2006, 224(2), 177–186. DOI: 10.1007/s00217-006-0300-6.
  • Borek, S.; Kubala, S.; Kubala, S. Regulation by Sucrose of Storage Compounds Breakdown in Germinating Seeds of Yellow Lupine (Lupinus Luteus L.), White Lupine (Lupinus Albus L.) and Andean Lupine (Lupinus Mutabilis Sweet): I. Mobilization of Storage Protein. Acta Physiol. Plant. 2012, 34(2), 701–711. DOI: 10.1007/s11738-011-0870-1.
  • Córdova-Ramos, J. S.; Glorio-Paulet, P.; Camarena, F.; Brandolini, A.; Hidalgo, A. Andean Lupin (Lupinus Mutabilis Sweet): Processing Effects on Chemical Composition, Heat Damage, and in Vitro Protein Digestibility. Cereal Chem 2020, 97(4), 827–835. DOI: 10.1002/cche.10303.
  • Graham, I. A. Seed Storage Oil Mobilization. Annu. Rev. Plant Biol 2008, 59(1), 115–142. DOI: 10.1146/annurev.arplant.59.032607.092938.
  • Nelson, D. L., and Cox, M. In Lehninger Principles of Biochemistry, 4th; Nelson, D.L., Michael, M. New York: Freeman; 2004; pp. 1600.
  • Dar, A. A.; Choudhury, A. R.; Kancharla, P. K.; Arumugam, N. The FAD2 Gene in Plants: Occurrence, Regulation, and Role. Front. Plant Sci 2017, 8, 8. DOI: 10.3389/fpls.2017.01789.
  • Borek, S.; Ratajczak, W.; Ratajczak, L. Regulation of Storage Lipid Metabolism in Developing and Germinating Lupin (Lupinus Spp .) Seeds. Acta Physiol. Plant. 2015, 37(6), 1–11. DOI: 10.1007/s11738-015-1871-2.
  • Borek, S.; Nuc, K. Sucrose Controls Storage Lipid Breakdown on Gene Expression Level in Germinating Yellow Lupine (Lupinus Luteus L.) Seeds. J. Plant Physiol. 2011, 168(15), 1795–1803. DOI: 10.1016/j.jplph.2011.05.016.
  • Viuda-Martos, M.; López-Marcos, M. C.; Fernández-López, J.; Sendra, E.; López-Vargas, J. H.; Pérez-Álvarez, J. A. Role of Fiber in Cardiovascular Diseases: A Review. Compr. Rev. Food Sci. Food Saf 2010, 9(2), 240–258. DOI: 10.1111/j.1541-4337.2009.00102.x.
  • Suma, P. F.; Urooj, A. Influence of Germination on Bioaccessible Iron and Calcium in Pearl Millet (Pennisetum Typhoideum). J. Food Sci. Technol 2014, 51(5), 976–981. DOI: 10.1007/s13197-011-0585-8.
  • Demir, B., and Bilgiçli, N. Changes in Chemical and Anti-Nutritional Properties of Pasta Enriched with Raw and Germinated Quinoa (Chenopodium Quinoa Willd.) Flours. J. Food Sci. Technol 2020, 57(10), 3884–3892. DOI: 10.1007/s13197-020-04420-7.
  • Mohammed, M. A.; Mohamed, E. A.; Yagoub, A. E. A.; Mohamed, A. R.; Babiker, E. E. Effect of Processing Methods on Alkaloids, Phytate, Phenolics, Antioxidants Activity and Minerals of Newly Developed Lupin (Lupinus Albus L.) Cultivar. J. Food Process. Preserv 2017, 41(1), e12960. DOI: 10.1111/jfpp.12960.
  • Ertaş, N.; Bilgiçli, N. Effect of Different Debittering Processes on Mineral and Phytic Acid Content of Lupin (Lupinus Albus L.) Seeds. J. Food Sci. Technol 2014, 51(11), 3348–3354. DOI: 10.1007/s13197-012-0837-2.
  • Han, Y. M.; Chi, J. W.; Ma, Y. X.; Jia, X. C.; Fan, S. H.; Liu, L. Changes in Protein, Saponin Content and Starch Profiles of Quinoa (Chenopodium Quinoa Willd) Seeds during Germination. Mod. Food Sci. Technol. 2019, 35(6), 17–23. DOI: 10.13982/j.mfst.1673-9078.2019.6.003.
  • Ruiz, A. S. C. D. E.; Bressani, R. Effect of Germination on the Chemical Composition and Nutritive Value of Amaranth Grain. Cereal Chem 1990, 67(6), 519–522.
  • Chaparro-Rojas, D. C.; Piasmag-Portilla, R.; Elizalde-Correa, A.; Vivas.Quila, N.; Erazo-Caicedo, C. Effect of the Germination on Protein Content and Digestibility in Amaranth, Quinua, Soy Bean and Guandul Seeds. Fac. Cienc. Agropecu. 2010, 8, 35–42.
  • Najdi Hejazi, S.; Orsat, V.; Azadi, B.; Kubow, S. Improvement of the in Vitro Protein Digestibility of Amaranth Grain through Optimization of the Malting Process. J. Cereal Sci 2016, 68, 59–65. DOI: 10.1016/j.jcs.2015.11.007.
  • Liu, H.; Kang, Y.; Zhao, X.; Liu, Y.; Zhang, X.; Zhang, S. Effects of Elicitation on Bioactive Compounds and Biological Activities of Sprouts. J. Funct. Foods. 2019, 53, 136–145. DOI: 10.1016/j.jff.2018.12.019.
  • Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E. K.; Gallagher, E. Polyphenol Composition and in Vitro Antioxidant Activity of Amaranth, Quinoa Buckwheat and Wheat as Affected by Sprouting and Baking. Food Chem 2010, 119(2), 770–778. DOI: 10.1016/j.foodchem.2009.07.032.
  • Paucar-Menacho, L. M.; Martínez-Villaluenga, C.; Dueñas, M.; Frias, J.; Peñas, E. Response Surface Optimisation of Germination Conditions to Improve the Accumulation of Bioactive Compounds and the Antioxidant Activity in Quinoa. Int. J. Food Sci. Technol 2018, 53(2), 516–524. DOI: 10.1111/ijfs.13623.
  • Carciochi, R. A.; Manrique, G. D.; Dimitrov, K. Changes in Phenolic Composition and Antioxidant Activity during Germination of Quinoa Seeds (Chenopodium Quinoa Willd.). Int. Food Res. J 2014, 21(2), 767–773.
  • Złotek, U.; Gawlik-Dziki, U.; Dziki, D.; Świeca, M.; Nowak, R.; Martinez, E. Influence of Drying Temperature on Phenolic Acids Composition and Antioxidant Activity of Sprouts and Leaves of White and Red Quinoa. J. Chem 2019, 2019, 7125169. DOI: 10.1155/2019/7125169.
  • Laus, M. N.; Cataldi, M. P.; Robbe, C.; D’Ambrosio, T.; Amodio, M. L.; Colelli, G.; De Santis, G.; Flagella, Z.; Pastore, D. Antioxidant Capacity, Phenolic and Vitamin C Contents of Quinoa (Chenopodium Quinoa Willd.) as Affected by Sprouting and Storage Conditions. Ital. J. Agron., 2017, 12(1), 63–68. DOI: 10.4081/ija.2017.816.
  • Carciochi, R. A.; Dimitrov, K.; Galván D´Alessandro, L. Effect of Malting Conditions on Phenolic Content, Maillard Reaction Products Formation, and Antioxidant Activity of Quinoa Seeds. J. Food Sci. Technol 2016, 53(11), 3978–3985. DOI: 10.1007/s13197-016-2393-7.
  • Kaur, I.; Tanwar, B.; Reddy, M.; Chauhan, A. Vitamin C, Total Polyphenols and Antioxidant Activity in Raw, Domestically Processed and Industrially Processed Indian Chenopodium Quinoa Seeds. J. Appl. Pharm. Sci 2016, 6(4), 139–145. DOI: 10.7324/JAPS.2016.60419.
  • Paśko, P.; Sajewicz, M.; Gorinstein, S.; Zachwieja, Z. Analysis of Selected Phenolic Acids and Flavonoids in Amaranthus Cruentus and Chenopodium Quinoa Seeds and Sprouts by HPLC. Acta Chromatogr 2008, 20(4), 661–672. DOI: 10.1556/AChrom.20.2008.4.11.
  • Paśko, P.; Bartoń, H.; Zagrodzki, P.; Gorinstein, S.; Folta, M.; Zachwieja, Z. Anthocyanins, Total Polyphenols and Antioxidant Activity in Amaranth and Quinoa Seeds and Sprouts during Their Growth. Food Chem 2009, 115(3), 994–998. DOI: 10.1016/j.foodchem.2009.01.037.
  • Tarasevičienė, Ž.; Viršilė, A.; Danilčenko, H.; Duchovskis, P.; Paulauskienė, A.; Gajewski, M. Effects of Germination Time on the Antioxidant Properties of Edible Seeds. CyTA - J. Food. 2019, 17(1), 447–454. DOI: 10.1080/19476337.2018.1553895.
  • Danciu, C.; Pavel, I.; Babuta, R.; Ersilia, A.; Oana, S.; Pop, G.; Soica, C.; Dehelean, C.; Radulov, I. Total Phenolic Content, FTIR Analysis, and Antiproliferative Evaluation of Lupin Seeds Harvest from Western Romania. Ann. Agric. Environ. Med 2017, 24(4), 726–731. DOI: 10.26444/aaem/80795.
  • Rumiyati; Jayasena, V.; James, A. P. Total Phenolic and Phytosterol Compounds and the Radical Scavenging Activity of Germinated Australian Sweet Lupin Flour. Plant Foods Hum. Nutr 2013, 68(4), 352–357. DOI: 10.1007/s11130-013-0377-6.
  • Fernandez-Orozco, R.; Piskula, M. K.; Zielinski, H.; Kozlowska, H.; Frias, J.; Vidal-Valverde, C. Germination as a Process to Improve the Antioxidant Capacity of Lupinus Angustifolius L. Var. Zapaton. Eur. Food Res. Technol 2006, 223(4), 495–502. DOI: 10.1007/s00217-005-0229-1.
  • Hübner, F.; Arendt, E. K. Germination of Cereal Grains as A Way to Improve the Nutritional Value: A Review. Crit. Rev. Food Sci. Nutr 2013, 53(8), 853–861. DOI: 10.1080/10408398.2011.562060.
  • Maillard, M.-N.; Soum, M.-H.; Boivin, P.; Berset, C. Antioxidant Activity of Barley and Malt: Relationship with Phenolic Content. LWT - Food Sci. Technol 1996, 29(3), 238–244. DOI: 10.1006/fstl.1996.0035.
  • Carciochi, R. A.; Galván-D’Alessandro, L.; Vandendriessche, P.; Chollet, S. Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds. Plant Foods Hum. Nutr 2016, 71(4), 361–367. DOI: 10.1007/s11130-016-0567-0.
  • Khandelwal, S.; Udipi, S. A.; Ghugre, P. Polyphenols and Tannins in Indian Pulses: Effect of Soaking, Germination and Pressure Cooking. Food Res. Int 2010, 43(2), 526–530. DOI: 10.1016/j.foodres.2009.09.036.
  • Adom, K. K.; Liu, R. H. Antioxidant Activity of Grains. J. Agric. Food Chem 2002, 50(21), 6182–6187. DOI: 10.1021/jf0205099.
  • Andor, B.; Danciu, C.; Alexa, E.; Zupko, I.; Hogea, E.; Cioca, A.; Coricovac, D.; Pinzaru, I.; Pătrașcu, J. M.; Mioc, M., et al. Germinated and Ungerminated Seeds Extract from Two Lupinus Species: Biological Compounds Characterization and in Vitro and in Vivo Evaluations. Evid. Based Complement. Alternat. Med, 2016, 2016, 1–8. DOI: 10.1155/2016/7638542.
  • Mathers, J. C. Pulses and Carcinogenesis: Potential for the Prevention of Colon, Breast and Other Cancers. Br. J. Nutr 2002, 88(S3), 273–279. DOI: 10.1079/BJN2002717.
  • Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different in Vitro Assays. J. Nutr 2003, 133(9), 2812–2819. DOI: 10.1093/jn/133.9.2812.
  • Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr 2005, 45(4), 287–306. DOI: 10.1080/1040869059096.
  • Frias, J.; Miranda, M. L.; Doblado, R.; Vidal-Valverde, C. Effect of Germination and Fermentation on the Antioxidant Vitamin Content and Antioxidant Capacity of Lupinus Albus L. Var. Multolupa. Food Chem 2005, 92(2), 211–220. DOI: 10.1016/j.foodchem.2004.06.049.
  • Combs, G. F., and McClung, J. P. Chapter 1 - What Is a Vitamin? In The Vitamins; 5th Combs, G.F., McClung, J.P., Eds.; London, UK: Academic Press, 2017; pp 3–6. DOI:10.1016/B978-0-12-802965-7.00001-0.
  • Gan, R.-Y.; Chan, C.-L.; Yang, -Q.-Q.; Li, H.-B.; Zhang, D.; Ge, -Y.-Y.; Gunaratne, A.; Ge, J., and Corke, H. Bioactive Compounds and Beneficial Functions of Sprouted Grains. In Sprouted Grains, Feng, Hao, Nemzer, Boris, DeVries, Jonathan W. Eds.; Duxford, UK: Elsevier: 2019; pp 191–246. DOI:10.1016/B978-0-12-811525-1.00009-9.
  • Wei, Y.; Wang, X.; Shao, X.; Xu, F.; Wang, H. Sucrose Treatment of Mung Bean Seeds Results in Increased Vitamin C, Total Phenolics, and Antioxidant Activity in Mung Bean Sprouts. Food Sci. Nutr 2019, 7(12), 4037–4044. DOI: 10.1002/fsn3.1269.
  • Xu, M.-J.; Dong, J.-F.; Zhu, M.-Y. Effects of Germination Conditions on Ascorbic Acid Level and Yield of Soybean Sprouts. J. Sci. Food Agric. 2005, 85(6), 943–947. DOI: 10.1002/jsfa.2050.
  • Chavan, J. K.; Kadam, S. S.; Beuchat, L. R. Nutritional Improvement of Cereals by Sprouting. Crit. Rev. Food Sci. Nutr 1989, 28(5), 401–437. DOI: 10.1080/10408398909527508.
  • Pinheiro, S. S.; Anunciação, P. C.; de Cardoso, L. M.; Della Lucia, C. M.; de Carvalho, C. W. P.; Queiroz, V. A. V.; Pinheiro Sant’Ana, H. M. Stability of B Vitamins, Vitamin E, Xanthophylls and Flavonoids during Germination and Maceration of Sorghum (Sorghum Bicolor L.). Food Chem 2021, 345, 128775. DOI: 10.1016/j.foodchem.2020.128775.
  • Ting Wong, C. G.; Bottiglieri, T.; Snead, O. C. GABA, γ-Hydroxybutyric Acid, and Neurological Disease. Ann. Neurol. 2003, 54(S6), S3–S12. DOI: 10.1002/ana.10696.
  • Zhao, M.; Tuo, H.; Wang, S.; Zhao, L. The Effects of Dietary Nutrition on Sleep and Sleep Disorders. Mediators Inflamm. 2020, 2020, e3142874. DOI: 10.1155/2020/3142874.
  • Tamer, C. E.; Suna, S., and Özcan-Sinir, G. Toxicological Aspects of Ingredients Used in Nonalcoholic Beverages. In Non-Alcoholic Beverages, Alexandru Mihai, G., Alina Maria, H., Eds.; Duxford, UK: Elsevier: 2019; pp 441–481. DOI:10.1016/B978-0-12-815270-6.00014-1.
  • Jimoh, M. O.; Afolayan, A. J.; Lewu, F. B. Nutrients and Antinutrient Constituents of Amaranthus Caudatus L. Cultivated on Different Soils. Saudi J. Biol. Sci. 2020, 27(12), 3570–3580. DOI: 10.1016/j.sjbs.2020.07.029.
  • Taylor, J. R. N., and Emmambux, M. N. Products Containing Other Speciality Grains: Sorghum, the Millets and Pseudocereals. In Technology of Functional Cereal Products Hamaker, Bruce R.; Boca Raton, USA: CRC Press LLC: 2008; pp 281–335. DOI:10.1533/9781845693886.2.281.
  • Suárez-Estrella, D.; Borgonovo, G.; Buratti, S.; Ferranti, P.; Accardo, F.; Pagani, M. A.; Marti, A. Sprouting of Quinoa (Chenopodium Quinoa Willd.): Effect on Saponin Content and Relation to the Taste and Astringency Assessed by Electronic Tongue. LWT. March 2021, 144, 111234. DOI: 10.1016/j.lwt.2021.111234.
  • Gamel, T. H.; Linssen, J. P.; Mesallam, A. S.; Damir, A. A., and Shekib, L. A. Seed Treatments Affect Functional and Antinutritional Properties of Amaranth Flours. J. Sci. Food Agric March 2006, 1102, 1095–1102. DOI:10.1002/jsfa.2463.
  • De Cortes Sánchez, M.; Altares, P.; Pedrosa, M. M.; Burbano, C.; Cuadrado, C.; Goyoaga, C.; Muzquiz, M.; Jiménez-Martínez, C.; Dávila-Ortiz, G. Alkaloid Variation during Germination in Different Lupin Species. Food Chem 2005, 90(3), 347–355. DOI: 10.1016/j.foodchem.2004.04.008.
  • de Cuadra, C. L.; Muzquiz, M.; Burbano, C.; Ayet, G.; Calvo, R.; Osagie, A.; Cuadrado, C. Alkaloid, α-Galactoside and Phytic Acid Changes in Germinating Lupin Seeds. J. Sci. Food Agric. 1994, 66(3), 357–364. DOI: 10.1002/jsfa.2740660313.
  • Kanensi, O. J.; Ochola, S.; Gikonyo, N. K.; Makokha, A. Optimization of the Period of Steeping and Germination for Amaranth Grain. J Agric Food Tech. 2011, 1(6), 101–105.
  • Soares, S.; Brandão, E.; Guerreiro, C.; Soares, S.; Mateus, N.; de Freitas, V. Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules. 2020, 25(11), 2590. DOI: 10.3390/molecules25112590.
  • Valencia-Chamorro, S. A. Quinoa: Overview. In Encyclopedia of Food Grains-; Wrigley, C., Corke, H., Seetharaman, K., Faubion, J., Eds.; THE WORLD OF FOOD GRAINS; Academic Press- Elsevier: Oxford,UK, 2016; Vol. 1, pp 341–348.
  • Abugoch James, L. E. Quinoa (Chenopodium Quinoa Willd.): Composition, Chemistry, Nutritional, and Functional Properties. Adv. Food Nutr. Res. 2009, 58(9), 1–31. DOI: 10.1016/S1043-4526(09)58001-1.
  • Arya, S. S., and Pegu, K. Quinoa. In Whole Grains; Mir, S.A., Manickavasagan, A., Shah, M.A., Eds.; CRC Press : Boca Raton, 2019; pp 22.
  • Gulisano, A.; Alves, S.; Martins, J. N.; Trindade, L. M. Genetics and Breeding of Lupinus Mutabilis: An Emerging Protein Crop. Front. Plant Sci 2019, 10, 10. DOI: 10.3389/fpls.2019.01385.
  • Cortés-Avendaño, P.; Tarvainen, M.; Suomela, J.-P.; Glorio-Paulet, P.; Yang, B.; Repo-Carrasco-Valencia, R. Profile and Content of Residual Alkaloids in Ten Ecotypes of Lupinus Mutabilis Sweet after Aqueous Debittering Process. Plant Foods Hum. Nutr 2020, 75(2), 184–191. DOI: 10.1007/s11130-020-00799-y.
  • Martínez-Villaluenga, C.; Frias, J.; Vidal-Valverde, C. Alpha-Galactosides: Antinutritional Factors or Functional Ingredients? Crit. Rev. Food Sci. Nutr 2008, 48(4), 301–316. DOI: 10.1080/10408390701326243.
  • Jimenez, D.; Miraballes, M.; Gámbaro, A.; Lobo, M.; Samman, N. Baby Purees Elaborated with Andean Crops. Influence of Germination and Oils in Physico-Chemical and Sensory Characteristics. LWT. 2020, March 2019, 124, 108901. DOI: 10.1016/j.lwt.2019.108901.
  • Rumiyati, R.; James, A. P.; Jayasena, V. Effects of Lupin Incorporation on the Physical Properties and Stability of Bioactive Constituents in Muffins. Int. J. Food Sci. Technol 2015, 50(1), 103–110. DOI: 10.1111/ijfs.12688.
  • Horstmann, S. W.; Atzler, J. J.; Heitmann, M.; Zannini, E.; Lynch, K. M.; Arendt, E. K. A Comparative Study of Gluten-Free Sprouts in the Gluten-Free Bread-Making Process. Eur. Food Res. Technol 2019, 245(3), 617–629. DOI: 10.1007/s00217-018-3185-2.
  • Guardianelli, L. M.; Salinas, M. V.; Puppo, M. C. Hydration and Rheological Properties of Amaranth-Wheat Flour Dough: Influence of Germination of Amaranth Seeds. Food Hydrocoll 2019, December 2018, 97, 105242. DOI: 10.1016/j.foodhyd.2019.105242.
  • Al Omari, D. Z.; Abdul-Hussain, S. S.; Ajo, R. Y. Germinated Lupin (Lupinus Albus) Flour Improves Arabic Flat Bread Properties. Qual. Assur. Saf. Crops Foods. 2016, 8(1), 57–63. DOI: 10.3920/QAS2014.0441.
  • Obedait, B. A.; ABDUL-HUSSAIN, S. S.; OMARI, A. L.; Z, D. Effect of Addition of Germinated Lupin Flour on the Physiochemical and Organoleptic Properties of Cookies. J. Food Process. Preserv 2013, 37(5), 637–643. DOI: 10.1111/j.1745-4549.2012.00688.x.
  • Seol, H.; Sim, K. H. Quality Characteristics of Noodles with Added Germinated Black Quinoa Powder. Korean J. Food Nutr 2017, 30(1), 19–30. DOI: 10.9799/ksfan.2017.30.1.019.
  • Jiménez, D.; Lobo, M.; Irigaray, B.; Grompone, M. A.; Sammán, N. Oxidative Stability of Baby Dehydrated Purees Formulated with Different Oils and Germinated Grain Flours of Quinoa and Amaranth. LWT. 2020, 127, 109229. DOI: 10.1016/j.lwt.2020.109229.
  • Joy Ujiroghene, O.; Liu, L.; Zhang, S.; Lu, J.; Zhang, C.; Lv, J.; Pang, X.; Zhang, M. Antioxidant Capacity of Germinated Quinoa-Based Yoghurt and Concomitant Effect of Sprouting on Its Functional Properties. Lwt. 2019, 116(September), 108592. DOI: 10.1016/j.lwt.2019.108592.
  • Bueno, D. B.; da Silva Júnior, S. I.; Seriani Chiarotto, A. B.; Cardoso, T. M.; Neto, J. A.; Lopes Dos Reis, G. C.; Glória, M. B. A.; Tavano, O. L. The Germination of Soybeans Increases the Water-Soluble Components and Could Generate Innovations in Soy-Based Foods. LWT. 2020, 117, 108599. DOI: 10.1016/j.lwt.2019.108599.
  • Vann, K.; Techaparin, A.; Apiraksakorn, J. Beans Germination as a Potential Tool for GABA-Enriched Tofu Production. J. Food Sci. Technol 2020, 57(11), 3947–3954. DOI: 10.1007/s13197-020-04423-4.
  • Pagand, J.; Heirbaut, P.; Pierre, A.; Pareyt, B. The Magic and Challenges of Sprouted Grains. Cereal Foods World. 2017, 62(5), 221–226. DOI: 10.1094/CFW-62-5-0221.
  • Hermann, M. The Impact of the European Novel Food Regulation on Trade and Food Innovation Based on Traditional Plant Foods from Developing Countries. Food Policy. 2009, 34(6), 499–507. DOI: 10.1016/j.foodpol.2009.08.005.
  • Repo-Carrasco Valencia, R, and Solórzano, F. 2020 Granos Andinos: Súper alimentos en la cocnia Repo Carrasco Valencia, Ritva, Solórzano, Flavio, Eds.; Lima, Perú: Industria Gráfica Cimagraf S.A.C; pp. 217.
  • de Lopes, C. O.; de Barcelos, M. F. P.; de Vieira, C. N. G.; de Abreu, W. C.; Ferreira, E. B.; Pereira, R. C.; de Angelis-Pereira, M. C. Effects of Sprouted and Fermented Quinoa (Chenopodium Quinoa) on Glycemic Index of Diet and Biochemical Parameters of Blood of Wistar Rats Fed High Carbohydrate Diet. J. Food Sci. Technol 2019, 56(1), 40–48. DOI: 10.1007/s13197-018-3436-z.
  • Obaroakpo, J. U.; Nan, W.; Hao, L.; Liu, L.; Zhang, S.; Lu, J.; Pang, X.; Lv, J. The Hyperglycemic Regulatory Effect of Sprouted Quinoa Yoghurt in High-Fat-Diet and Streptozotocin-Induced Type 2 Diabetic Mice via Glucose and Lipid Homeostasis. Food Funct 2020, 11(9), 8354–8368. DOI: 10.1039/D0FO01575J.
  • Corzo-Ríos, L. J.; Garduño-Siciliano, L.; Sánchez-Chino, X. M.; Martínez-Herrera, J.; Cardador-Martínez, A.; Jiménez-Martínez, C. Effect of the Consumption of Amaranth Seeds and Their Sprouts on Alterations of Lipids and Glucose Metabolism in Mice. Int. J. Food Sci. Technol 2021, 56(7), 3269–3277. DOI: 10.1111/ijfs.15014.
  • Rifna, E. J.; Ratish Ramanan, K.; Mahendran, R. Emerging Technology Applications for Improving Seed Germination. Trends Food Sci. Technol 2019, December 2017, 86, 95–108. DOI: 10.1016/j.tifs.2019.02.029.
  • Xia, Q.; Li, Y. Mild High Hydrostatic Pressure Pretreatments Applied before Soaking Process to Modulate Wholegrain Brown Rice Germination: An Examination on Embryo Growth and Physicochemical Properties. Food Res. Int 2018, 106, 817–824. DOI: 10.1016/J.FOODRES.2018.01.052.
  • Xia, Q.; Wang, L.; Li, Y. Exploring High Hydrostatic Pressure-Mediated Germination to Enhance Functionality and Quality Attributes of Wholegrain Brown Rice. Food Chem 2018, 249, 104–110. DOI: 10.1016/J.FOODCHEM.2018.01.007.
  • Ampofo, J. O.; Ngadi, M. Ultrasonic Assisted Phenolic Elicitation and Antioxidant Potential of Common Bean (Phaseolus Vulgaris) Sprouts. Ultrason. Sonochem 2020, 64, 104974. DOI: 10.1016/j.ultsonch.2020.104974.
  • Castillejo, N.; Martínez-Zamora, L.; Artés-Hernández, F. Periodical UV-B Radiation Hormesis in Biosynthesis of Kale Sprouts Nutraceuticals. Plant Physiol. Biochem. 2021, 165, 274–285. DOI: 10.1016/j.plaphy.2021.05.022.
  • Bian, Z.-X.; Wang, J.-F.; Ma, H.; Wang, S.-M.; Luo, L.; Wang, S.-M. Effect of Microwave Radiation on Antioxidant Capacities of Tartary Buckwheat Sprouts. J. Food Sci. Technol 2020, 57(10), 3913–3919. DOI: 10.1007/s13197-020-04451-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.