353
Views
1
CrossRef citations to date
0
Altmetric
Review

Dietary Plant Extracts in Improving Skeletal Muscle Development and Metabolic Function

, & ORCID Icon

References

  • Chal, J.; Pourquie, O. Making Muscle: Skeletal Myogenesis in Vivo and in Vitro. Development. 2017, 144(12), 2104–2122. DOI: 10.1242/dev.151035.
  • Mahdy, M. A. A. Skeletal Muscle Fibrosis: An Overview. Cell Tissue Res. 2019, 375(3), 575–588. DOI: 10.1007/s00441-018-2955-2.
  • Schmidt, M.; Schuler, S. C.; Huttner, S. S.; von Eyss, B.; von Maltzahn, J. Adult Stem Cells at Work: Regenerating Skeletal Muscle. Cell. Mol. Life Sci. 2019, 76(13), 2559–2570. DOI: 10.1007/s00018-019-03093-6.
  • Li, P.; Liu, A.; Xiong, W.; Lin, H.; Xiao, W.; Huang, J.; Zhang, S.; Liu, Z. Catechins Enhance Skeletal Muscle Performance. Crit. Rev. Food Sci. Nutr. 2020, 60(3), 515–528. DOI: 10.1080/10408398.2018.1549534.
  • Widmann, M.; Niess, A. M.; Munz, B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. Sports Med. 2019, 49(4), 509–523. DOI: 10.1007/s40279-019-01070-4.
  • Wang, L.; Xu, Z.; Ling, D.; Li, J.; Wang, Y.; Shan, T. The Regulatory Role of Dietary Factors in Skeletal Muscle Development, Regeneration and Function. Crit. Rev. Food Sci. Nutr. 2020, 1–19. DOI: 10.1080/10408398.2020.1828812.
  • Akhmedov, D.; Berdeaux, R. The Effects of Obesity on Skeletal Muscle Regeneration. Front. Physiol. 2013, 4, 371. DOI: 10.3389/fphys.2013.00371.
  • Wang, H. N.; Xiang, J. Z.; Qi, Z.; Du, M. Plant Extracts in Prevention of Obesity. Crit. Rev. Food Sci. Nutr. 2020, 1–14. DOI: 10.1080/10408398.2020.1852171.
  • Buckingham, M.; Relaix, F. PAX3 and PAX7 as Upstream Regulators of Myogenesis. Semin. Cell Dev. Biol. 2015, 44, 115–125. DOI: 10.1016/j.semcdb.2015.09.017.
  • Buckingham, M.; Rigby, P. W. J. Gene Regulatory Networks and Transcriptional Mechanisms That Control Myogenesis. Dev. Cell. 2014, 28(3), 225–238. DOI: 10.1016/j.devcel.2013.12.020.
  • Zhao, L.; Huang, Y.; Du, M. Farm Animals for Studying Muscle Development and Metabolism: Dual Purposes for Animal Production and Human Health. Anim. Front. 2019, 9(3), 21–27. DOI: 10.1093/af/vfz015.
  • Du, M.; Tong, J.; Zhao, J.; Underwood, K. R.; Zhu, M.; Ford, S. P.; Nathanielsz, P. W. Fetal Programming of Skeletal Muscle Development in Ruminant Animals. J. Anim. Sci. 2010, 88(suppl_13), E51–E60. DOI: 10.2527/jas.2009-2311.
  • Gros, J.; Manceau, M.; Thome, V.; Marcelle, C. A Common Somitic Origin for Embryonic Muscle Progenitors and Satellite Cells. Nature. 2005, 435(7044), 954–958. DOI: 10.1038/nature03572.
  • Biressi, S.; Bjornson, C. R.; Carlig, P. M.; Nishijo, K.; Keller, C.; Rando, T. A. Myf5 Expression During Fetal Myogenesis Defines the Developmental Progenitors of Adult Satellite Cells. Dev. Biol. 2013, 379(2), 195–207. DOI: 10.1016/j.ydbio.2013.04.021.
  • Joe, A. W. B.; Yi, L.; Natarajan, A.; Le Grand, F.; So, L.; Wang, J.; Rudnicki, M. A.; Rossi, F. M. V. Muscle Injury Activates Resident Fibro/adipogenic Progenitors That Facilitate Myogenesis. Nat. Cell Biol. 2010, 12(2), 153–U144. DOI: 10.1038/ncb2015.
  • Schiaffino, S.; Dyar, K. A.; Ciciliot, S.; Blaauw, B.; Sandri, M. Mechanisms Regulating Skeletal Muscle Growth and Atrophy. Febs J. 2013, 280(17), 4294–4314. DOI: 10.1111/febs.12253.
  • Taylor, W. E.; Bhasin, S.; Artaza, J.; Byhower, F.; Azam, M.; Willard, D. H.; Kull, F. C.; Gonzalez-Cadavid, N. Myostatin Inhibits Cell Proliferation and Protein Synthesis in C2C12 Muscle Cells. Am. J. Physiol. Endocrinol. Metab. 2001, 280(2), E221–E228. DOI: 10.1152/ajpendo.2001.280.2.E221.
  • Rommel, C.; Bodine, S. C.; Clarke, B. A.; Rossman, R.; Nunez, L.; Stitt, T. N.; Yancopoulos, G. D.; Glass, D. J. Mediation of IGF-1-Induced Skeletal Myotube Hypertrophy by Pi(3)k/akt/mtor and Pi(3)k/akt/gsk3 Pathways. Nat. Cell Biol. 2001, 3(11), 1009–1013. DOI: 10.1038/ncb1101-1009.
  • Bodine, S. C.; Stitt, T. N.; Gonzalez, M.; Kline, W. O.; Stover, G. L.; Bauerlein, R.; Zlotchenko, E.; Scrimgeour, A.; Lawrence, J. C.; Glass D. J.; et al. Akt/mtor Pathway is a Crucial Regulator of Skeletal Muscle Hypertrophy and Can Prevent Muscle Atrophy in vivo. Nat. Cell Biol. 2001, 3(11), 1014–1019.
  • Ma, X. M.; Blenis, J. Molecular Mechanisms of mTor-Mediated Translational Control. Nat. Rev. Mol. Cell Biol. 2009, 10(5), 307–318. DOI: 10.1038/nrm2672.
  • Le Bacquer, O.; Petroulakis, E.; Paglialunga, S.; Poulin, F.; Richard, D.; Cianflone, K.; Sonenberg, N. Elevated Sensitivity to Diet-Induced Obesity and Insulin Resistance in Mice Lacking 4E-BP1 and 4E-BP2. J. Clin. Invest. 2007, 117(2), 387–396. DOI: 10.1172/JCI29528.
  • Rodriguez, J.; Vernus, B.; Chelh, I.; Cassar-Malek, I.; Gabillard, J. C.; Hadj Sassi, A.; Seiliez, I.; Picard, B.; Bonnieu, A. Myostatin and the Skeletal Muscle Atrophy and Hypertrophy Signaling Pathways. Cell. Mol. Life Sci. 2014, 71(22), 4361–4371. DOI: 10.1007/s00018-014-1689-x.
  • Sartori, R.; Milan, G.; Patron, M.; Mammucari, C.; Blaauw, B.; Abraham, R.; Sandri, M. Smad2 and 3 Transcription Factors Control Muscle Mass in Adulthood. Am. J. Physiol. Cell Physiol. 2009, 296(6), C1248–57. DOI: 10.1152/ajpcell.00104.2009.
  • Lee, S. J.; Lehar, A.; Liu, Y.; Ly, C. H.; Pham, Q. M.; Michaud, M.; Rydzik, R.; Youngstrom, D. W.; Shen, M. M., Kaartinen, V.; et al. Functional Redundancy of Type I and Type II Receptors in the Regulation of Skeletal Muscle Growth by Myostatin and Activin a. Proc. Natl. Acad. Sci. U. S. A. 2020, 117(49), 30907–30917.
  • Chelh, I.; Meunier, B.; Picard, B.; Reecy, M. J.; Chevalier, C.; Hocquette, J. F.; Cassar-Malek, I. Molecular Profiles of Quadriceps Muscle in Myostatin-Null Mice Reveal PI3K and Apoptotic Pathways as Myostatin Targets. BMC Genom. 2009, 10(1), 196. DOI: 10.1186/1471-2164-10-196.
  • Chelh, I.; Picard, B.; Hocquette, J. F.; Cassar-Malek, I. Myostatin Inactivation Induces a Similar Muscle Molecular Signature in Double-Muscled Cattle as in Mice. Animal. 2011, 5(2), 278–286. DOI: 10.1017/S1751731110001862.
  • Mammucari, C.; Milan, G.; Romanello, V.; Masiero, E.; Rudolf, R.; Del Piccolo, P.; Burden, S. J.; Di Lisi, R.; Sandri, C., Zhao, J.; et al. FoxO3 Controls Autophagy in Skeletal Muscle in vivo. Cell Metab. 2007, 6(6), 458–471.
  • Levine, B.; Kroemer, G. Autophagy in the Pathogenesis of Disease. Cell. 2008, 132(1), 27–42. DOI: 10.1016/j.cell.2007.12.018.
  • Zhao, J.; Brault, J. J.; Schild, A.; Cao, P.; Sandri, M.; Schiaffino, S.; Lecker, S. H.; Goldberg, A. L. FoxO3 Coordinately Activates Protein Degradation by the Autophagic/lysosomal and Proteasomal Pathways in Atrophying Muscle Cells. Cell Metab. 2007, 6(6), 472–483. DOI: 10.1016/j.cmet.2007.11.004.
  • Attaix, D.; Aurousseau, E.; Combaret, L.; Kee, A.; Larbaud, D.; Ralliere, C.; Souweine, B.; Taillandier, D.; Tilignac, T. Ubiquitin-Proteasome-Dependent Proteolysis in Skeletal Muscle. Reprod. Nutr. Dev. 1998, 38(2), 153–165. DOI: 10.1051/rnd:19980202.
  • Kedar, V.; McDonough, H.; Arya, R.; Li, H. H.; Rockman, H. A.; Patterson, C. Muscle-Specific RING Finger 1 is a Bona Fide Ubiquitin Ligase That Degrades Cardiac Troponin I. Proc. Natl. Acad. Sci. U S A. 2004, 101(52), 18135–18140. DOI: 10.1073/pnas.0404341102.
  • Bodine, S. C.; Latres, E.; Baumhueter, S.; Lai, V. K.; Nunez, L.; Clarke, B. A.; Poueymirou, W. T.; Panaro, F. J.; Na, E., Dharmarajan, K.; et al. Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy. Science. 2001, 294(5547), 1704–1708.
  • Clarke, B. A.; Drujan, D.; Willis, M. S.; Murphy, L. O.; Corpina, R. A.; Burova, E.; Rakhilin, S. V.; Stitt, T. N.; Patterson, C., Latres, E.; et al. The E3 Ligase MuRf1 Degrades Myosin Heavy Chain Protein in Dexamethasone-Treated Skeletal Muscle. Cell Metab. 2007, 6(5), 376–385.
  • Cohen, S.; Brault, J. J.; Gygi, S. P.; Glass, D. J.; Valenzuela, D. M.; Gartner, C.; Latres, E.; Goldberg, A. L. During Muscle Atrophy, Thick, but Not Thin, Filament Components are Degraded by MuRf1-Dependent Ubiquitylation. J. Cell Biol. 2009, 185(6), 1083–1095. DOI: 10.1083/jcb.200901052.
  • Tintignac, L. A.; Lagirand, J.; Batonnet, S.; Sirri, V.; Leibovitch, M. P.; Leibovitch, S. A. Degradation of MyoD Mediated by the SCF (MAFbx) Ubiquitin Ligase. J. Biol. Chem. 2005, 280(4), 2847–2856. DOI: 10.1074/jbc.M411346200.
  • Lokireddy, S.; Wijesoma, I. W.; Sze, S. K.; McFarlane, C.; Kambadur, R.; Sharma, M. Identification of Atrogin-1-Targeted Proteins During the Myostatin-Induced Skeletal Muscle Wasting (Vol 303, Pg C512, 2012). Am. J. Physiol. 2014, 307(12), C1151–C1151. DOI: 10.1152/ajpcell.zh0-7657-corr.2014.
  • Sandri, M.; Sandri, C.; Gilbert, A.; Skurk, C.; Calabria, E.; Picard, A.; Walsh, K.; Schiaffino, S.; Lecker, S. H.; Goldberg A. L. Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy. Cell. 2004, 117(3), 399–412.
  • Stitt, T. N.; Drujan, D.; Clarke, B. A.; Panaro, F.; Timofeyva, Y.; Kline, W. O.; Gonzalez, M.; Yancopoulos, G. D.; Glass, D. J. The IGF-1/pi3k/akt Pathway Prevents Expression of Muscle Atrophy-Induced Ubiquitin Ligases by Inhibiting FOXO Transcription Factors. Mol. Cell. 2004, 14(3), 395–403. DOI: 10.1016/s1097-2765(04)00211-4.
  • Waddell, D. S.; Baehr, L. M.; van den Brandt, J.; Johnsen, S. A.; Reichardt, H. M.; Furlow, J. D.; Bodine, S. C. The Glucocorticoid Receptor and FOXO1 Synergistically Activate the Skeletal Muscle Atrophy-Associated MuRf1 Gene. Am. J. Physiol. Endocrinol. Metab. 2008, 295(4), E785–97. DOI: 10.1152/ajpendo.00646.2007.
  • Shimizu, N.; Yoshikawa, N.; Ito, N.; Maruyama, T.; Suzuki, Y.; Takeda, S.; Nakae, J.; Tagata, Y.; Nishitani, S., Takehana, K.; et al. Crosstalk Between Glucocorticoid Receptor and Nutritional Sensor mTor in Skeletal Muscle. Cell Metab. 2011, 13(2), 170–182.
  • Jackman, R. W.; Cornwell, E. W.; Wu, C. L.; Kandarian, S. C. Nuclear Factor-?B Signalling and Transcriptional Regulation in Skeletal Muscle Atrophy. Exp. Physiol. 2013, 98(1), 19–24. DOI: 10.1113/expphysiol.2011.063321.
  • Cai, D.; Frantz, J. D.; Tawa, N. E., Jr.; Melendez, P. A.; Oh, B. C.; Lidov, H. G.; Hasselgren, P. O.; Frontera, W. R.; Lee, J., Glass, D. J.; et al. IKKβ/NF-κB Activation Causes Severe Muscle Wasting in Mice. Cell. 2004, 119(2), 285–298.
  • Mourkioti, F.; Kratsios, P.; Luedde, T.; Song, Y. H.; Delafontaine, P.; Adami, R.; Parente, V.; Bottinelli, R.; Pasparakis, M., Rosenthal, N.; et al. Targeted Ablation of IKK2 Improves Skeletal Muscle Strength, Maintains Mass, and Promotes Regeneration. J. Clin. Invest. 2006, 116(11), 2945–2954.
  • Nakao, R.; Hirasaka, K.; Goto, J.; Ishidoh, K.; Yamada, C.; Ohno, A.; Okumura, Y.; Nonaka, I.; Yasutomo, K., Baldwin, K. M.; et al. Ubiquitin Ligase Cbl-B is a Negative Regulator for Insulin-Like Growth Factor 1 Signaling During Muscle Atrophy Caused by Unloading. Mol. Cell. Biol. 2009, 29(17), 4798–4811.
  • Sandri, M.; Carraro, U. Apoptosis of Skeletal Muscles During Development and Disease. Int. J. Biochem. Cell Biol. 1999, 31(12), 1373–1390. DOI: 10.1016/s1357-2725(99)00063-1.
  • Marzetti, E.; Calvani, R.; Bernabei, R.; Leeuwenburgh, C. Apoptosis in Skeletal Myocytes: A Potential Target for Interventions Against Sarcopenia and Physical Frailty - a Mini-Review. Gerontology. 2012, 58(2), 99–106. DOI: 10.1159/000330064.
  • Dupont-Versteegden, E. E. Apoptosis in Skeletal Muscle and Its Relevance to Atrophy. World J. Gastroenterol. 2006, 12(46), 7463–7466. DOI: 10.3748/wjg.v12.i46.7463.
  • Heydemann, A. Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy—implications for Therapies. Nutrients. 2018, 10(6), 796. DOI: 10.3390/nu10060796.
  • Morales, P. E.; Bucarey, J. L.; Espinosa, A. Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins. J. Diabetes Res. 2017, 2017, 1789395. DOI: 10.1155/2017/1789395.
  • Schiaffino, S.; Reggiani, C. Fiber Types in Mammalian Skeletal Muscles. Physiol. Rev. 2011, 91(4), 1447–1531. DOI: 10.1152/physrev.00031.2010.
  • Pette, D.; Staron, R. S. Myosin Isoforms, Muscle Fiber Types, and Transitions. Microsc. Res. Tech. 2000, 50(6), 500–509. DOI: 10.1002/1097-0029(20000915)50:6<500:AID-JEMT7>3.0.CO;2-7.
  • Stuart, C. A.; McCurry, M. P.; Marino, A.; South, M. A.; Howell, M. E.; Layne, A. S.; Ramsey, M. W.; Stone, M. H. Slow-Twitch Fiber Proportion in Skeletal Muscle Correlates with Insulin Responsiveness. J. Clin. Endocrinol. Metab. 2013, 98(5), 2027–2036. DOI: 10.1210/jc.2012-3876.
  • Rosenberg, I. H. Sarcopenia: Origins and Clinical Relevance. Clin. Geriatr. Med. 2011, 27(3), 337–339. DOI: 10.1016/j.cger.2011.03.003.
  • Dupont-Versteegden, E. E. Apoptosis in Muscle Atrophy: Relevance to Sarcopenia. Exp. Gerontol. 2005, 40(6), 473–481. DOI: 10.1016/j.exger.2005.04.003.
  • Ljubicic, V.; Burt, M.; Lunde, J. A.; Jasmin, B. J. Resveratrol Induces Expression of the Slow, Oxidative Phenotype in Mdx Mouse Muscle Together with Enhanced Activity of the SIRT1-PGC-1alpha Axis. Am. J. Physiol. Cell Physiol. 2014, 307(1), C66–82. DOI: 10.1152/ajpcell.00357.2013.
  • Jiang, Q.; Cheng, X.; Cui, Y.; Xia, Q.; Yan, X.; Zhang, M.; Lan, G.; Liu, J.; Shan, T., Huang, Y.; et al. Resveratrol Regulates Skeletal Muscle Fibers Switching Through the AdipoR1-AMPK-PGC-1α Pathway. Food Funct. 2019, 10(6), 3334–3343.
  • Zhang, C.; Luo, J. Q.; Yu, B.; Zheng, P.; Huang, Z. Q.; Mao, X. B.; He, J.; Yu, J.; Chen, J. L., Chen, D.; et al. Dietary Resveratrol Supplementation Improves Meat Quality of Finishing Pigs Through Changing Muscle Fiber Characteristics and Antioxidative Status. Meat Sci. 2015, 102, 15–21. DOI: 10.1016/j.meatsci.2014.11.014.
  • Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P., Elliott, P.; et al. Resveratrol Improves Mitochondrial Function and Protects Against Metabolic Disease by Activating SIRT1 and PGC-1α. Cell. 2006, 127(6), 1109–1122.
  • Price, N. L.; Gomes, A. P.; Ling, A. J. Y.; Duarte, F. V.; Martin-Montalvo, A.; North, B. J.; Agarwal, B.; Ye, L.; Ramadori, G., Teodoro, J.; et al. SIRT1 is Required for AMPK Activation and the Beneficial Effects of Resveratrol on Mitochondrial Function. Cell Metab. 2012, 15(5), 675–690.
  • Wen, W.; Chen, X.; Huang, Z.; Chen, D.; Chen, H.; Luo, Y.; He, J.; Zheng, P.; Yu, J., Yu, B.; et al. Resveratrol Regulates Muscle Fiber Type Conversion via miR-22-3p and AMPK/SIRT1/PGC-1α Pathway. J. Nutr. Biochem. 2020, 77, 108297. DOI: 10.1016/j.jnutbio.2019.108297.
  • Wang, D. T.; Yin, Y.; Yang, Y. J.; Lv, P. J.; Shi, Y.; Lu, L.; Wei, L. B. Resveratrol Prevents TNF-Alpha-Induced Muscle Atrophy via Regulation of Akt/mtor/foxo1 Signaling in C2C12 Myotubes. Int. Immunopharmacol. 2014, 19(2), 206–213. DOI: 10.1016/j.intimp.2014.02.002.
  • Kawamura, A.; Aoi, W.; Abe, R.; Kobayashi, Y.; Wada, S.; Kuwahata, M.; Higashi, A. Combined Intake of Astaxanthin, Beta-Carotene, and Resveratrol Elevates Protein Synthesis During Muscle Hypertrophy in Mice. Nutrition. 2020, 69, 110561. DOI: 10.1016/j.nut.2019.110561.
  • Huang, Y.; Zhu, X.; Chen, K.; Lang, H.; Zhang, Y.; Hou, P.; Ran, L.; Zhou, M.; Zheng, J., Yi, L.; et al. Resveratrol Prevents Sarcopenic Obesity by Reversing Mitochondrial Dysfunction and Oxidative Stress via the PKA/LKB1/AMPK Pathway. Aging (Albany NY). 2019, 11(8), 2217–2240.
  • Liao, Z. Y.; Chen, J. L.; Xiao, M. H.; Sun, Y.; Zhao, Y. X.; Pu, D.; Lv, A. K.; Wang, M. L.; Zhou, J., Zhu, S.-Y.; et al. The Effect of Exercise, Resveratrol or Their Combination on Sarcopenia in Aged Rats via Regulation of Ampk/sirt1 Pathway. Exp. Gerontology. 2017, 98, 177–183. DOI: 10.1016/j.exger.2017.08.032.
  • Manas-Garcia, L.; Guitart, M.; Duran, X.; Barreiro, E. Satellite Cells and Markers of Muscle Regeneration During Unloading and Reloading: Effects of Treatment with Resveratrol and Curcumin. Nutrients. 2020, 12(6), 1870. DOI: 10.3390/nu12061870.
  • Hsu, Y. J.; Ho, C. S.; Lee, M. C.; Ho, C. S.; Huang, C. C.; Kan, N. W. Protective Effects of Resveratrol Supplementation on Contusion Induced Muscle Injury. Int. J. Med. Sci. 2020, 17(1), 53–62. DOI: 10.7150/ijms.35977.
  • Feng, Y.; He, Z.; Mao, C.; Shui, X.; Cai, L. Therapeutic Effects of Resveratrol Liposome on Muscle Injury in Rats. Med. Sci. Monit. 2019, 25, 2377–2385. DOI: 10.12659/MSM.913409.
  • Bennett, B. T.; Mohamed, J. S.; Alway, S. E. Effects of Resveratrol on the Recovery of Muscle Mass Following Disuse in the Plantaris Muscle of Aged Rats. PLoS One. 2013, 8(12), e83518. DOI: 10.1371/journal.pone.0083518.
  • Gong, L.; Guo, S.; Zou, Z. Resveratrol Ameliorates Metabolic Disorders and Insulin Resistance in High-Fat Diet-Fed Mice. Life Sci. 2020, 242, 117212. DOI: 10.1016/j.lfs.2019.117212.
  • Zhang, Y. J.; Zhao, H.; Dong, L.; Zhen, Y. F.; Xing, H. Y.; Ma, H. J.; Song, G. Y. Resveratrol Ameliorates High-Fat Diet-Induced Insulin Resistance and Fatty Acid Oxidation via ATM-AMPK Axis in Skeletal Muscle. Eu. R Rev. Med. Pharmacol. Sci. 2019, 23(20), 9117–9125. DOI: 10.26355/eurrev_201910_19315.
  • Hamidie, R. D. R.; Shibaguchi, T.; Yamada, T.; Koma, R.; Ishizawa, R.; Saito, Y.; Hosoi, T.; Masuda, K. Curcumin Induces Mitochondrial Biogenesis by Increasing Cyclic AMP Levels via Phosphodiesterase 4A Inhibition in Skeletal Muscle. Br. J. Nutr. 2021, 1–9. DOI: 10.1017/S0007114521000490.
  • Wang, D. T.; Yang, Y. J.; Zou, X. H.; Zheng, Z. N.; Zhang, J. Curcumin Ameliorates CKD-Induced Mitochondrial Dysfunction and Oxidative Stress Through Inhibiting GSK-3β Activity. J. Nutr. Biochem. 2020, 83, 108404. DOI: 10.1016/j.jnutbio.2020.108404.
  • Ray Hamidie, R. D.; Yamada, T.; Ishizawa, R.; Saito, Y.; Masuda, K. Curcumin Treatment Enhances the Effect of Exercise on Mitochondrial Biogenesis in Skeletal Muscle by Increasing cAmp Levels. Metabolism. 2015, 64(10), 1334–1347. DOI: 10.1016/j.metabol.2015.07.010.
  • Manas-Garcia, L.; Bargallo, N.; Gea, J.; Barreiro, E. Muscle Phenotype, Proteolysis, and Atrophy Signaling During Reloading in Mice: Effects of Curcumin on the Gastrocnemius. Nutrients. 2020, 12(2), 388. DOI: 10.3390/nu12020388.
  • Ono, T.; Takada, S.; Kinugawa, S.; Tsutsui, H. Curcumin Ameliorates Skeletal Muscle Atrophy in Type 1 Diabetic Mice by Inhibiting Protein Ubiquitination. Exp. Physiol. 2015, 100(9), 1052–1063. DOI: 10.1113/EP085049.
  • Liu, Y.; Chen, L. Y.; Shen, Y.; Tan, T.; Xie, N. Z.; Luo, M.; Li, Z. H.; Xie, X. Y. Curcumin Ameliorates Ischemia-Induced Limb Injury Through Immunomodulation. Med. Sci. Monit. 2016, 22, 2035–2042. DOI: 10.12659/Msm.896217.
  • Kawanishi, N.; Kato, K.; Takahashi, M.; Mizokami, T.; Otsuka, Y.; Imaizumi, A.; Shiva, D.; Yano, H.; Suzuki, K. Curcumin Attenuates Oxidative Stress Following Downhill Running-Induced Muscle Damage. Biochem. Biophys. Res. Commun. 2013, 441(3), 573–578. DOI: 10.1016/j.bbrc.2013.10.119.
  • Yu, T. Z.; Dohl, J.; Wang, L.; Chen, Y. F.; Gasier, H. G.; Deuster, P. A. Curcumin Ameliorates Heat-Induced Injury Through NADPH Oxidase-Dependent Redox Signaling and Mitochondrial Preservation in C2C12 Myoblasts and Mouse Skeletal Muscle. J. Nutr. 2020, 150(9), 2257–2267. DOI: 10.1093/jn/nxaa201.
  • Huang, W. C.; Chiu, W. C.; Chuang, H. L.; Tang, D. W.; Lee, Z. M.; Wei, L.; Chen, F. A.; Huang, C. C. Effect of Curcumin Supplementation on Physiological Fatigue and Physical Performance in Mice. Nutrients. 2015, 7(2), 905–921. DOI: 10.3390/nu7020905.
  • Lee, D. Y.; Chun, Y. S.; Kim, J. K.; Lee, J. O.; Ku, S. K.; Shim, S. M. Curcumin Attenuates Sarcopenia in Chronic Forced Exercise Executed Aged Mice by Regulating Muscle Degradation and Protein Synthesis with Antioxidant and Anti-Inflammatory Effects. J. Agric. Food Chem. 2021, 69(22), 6214–6228. DOI: 10.1021/acs.jafc.1c00699.
  • Chen, C.; Yang, J. S.; Lu, C. C.; Chiu, Y. J.; Chen, H. C.; Chung, M. I.; Wu, Y. T.; Chen, F. A. Effect of Quercetin on Dexamethasone-Induced C2C12 Skeletal Muscle Cell Injury. Molecules. 2020, 25(14). DOI: 10.3390/molecules25143267.
  • Jiang, H.; Yamashita, Y.; Nakamura, A.; Croft, K.; Ashida, H. Quercetin and Its Metabolite Isorhamnetin Promote Glucose Uptake Through Different Signalling Pathways in Myotubes. Sci. Rep. 2019, 9(1), 2690. DOI: 10.1038/s41598-019-38711-7.
  • Chen, X.; Liang, D.; Huang, Z.; Jia, G.; Zhao, H.; Liu, G. Quercetin Regulates Skeletal Muscle Fiber Type Switching via Adiponectin Signaling. Food Funct. 2021, 12(6), 2693–2702. DOI: 10.1039/d1fo00031d.
  • Mohammadrezaei Khorramabadi, R.; Anbari, K.; Salahshoor, M. R.; Alasvand, M.; Assadollahi, V.; Gholami, M. Quercetin Postconditioning Attenuates Gastrocnemius Muscle Ischemia/reperfusion Injury in Rats. J. Cell. Physiol. 2020, 235(12), 9876–9883. DOI: 10.1002/jcp.29801.
  • Akdemir, F. N. E.; Gulcin, I.; Karagoz, B.; Soslu, R. Quercetin Protects Rat Skeletal Muscle from Ischemia Reperfusion Injury. J. Enzyme Inhib. Med. Chem. 2016, 31(sup2), 162–166. DOI: 10.1080/14756366.2016.1193735.
  • Le, N. H.; Kim, C. S.; Park, T.; Park, J. H. Y.; Sung, K.; Lee, D. G.; Hong, S. M.; Choe, S. Y.; Goto, T., Kawada, T.; et al. Quercetin Protects Against Obesity-Induced Skeletal Muscle Inflammation and Atrophy. Mediators Inflammation. 2014, 2014, 834294. DOI: 10.1155/2014/834294.
  • Selsby, J. T.; Ballmann, C. G.; Spaulding, H. R.; Ross, J.; Quindry, J. C. Oral Quercetin Administration Transiently Protects Respiratory Function in Dystrophin-Deficient Mice. J. Physiol.-London. 2016, 594(20), 6037–6053. DOI: 10.1113/Jp272057.
  • Casuso, R. A.; Martinez-Lopez, E. J.; Nordsborg, N. B.; Hita-Contreras, F.; Martinez-Romero, R.; Canuelo, A.; Martinez-Amat, A. Oral Quercetin Supplementation Hampers Skeletal Muscle Adaptations in Response to Exercise Training. Scand. J. Med. Sci. Sports. 2014, 24(6), 920–927. DOI: 10.1111/sms.12136.
  • Mukai, R.; Nakao, R.; Yamamoto, H.; Nikawa, T.; Takeda, E.; Terao, J. Quercetin Prevents Unloading-Derived Disused Muscle Atrophy by Attenuating the Induction of Ubiquitin Ligases in Tail-Suspension Mice. J. Nat. Prod. 2010, 73(10), 1708–1710. DOI: 10.1021/np100240y.
  • Mukai, R.; Matsui, N.; Fujikura, Y.; Matsumoto, N.; Hou, D. X.; Kanzaki, N.; Shibata, H.; Horikawa, M.; Iwasa, K., Hirasaka, K.; et al. Preventive Effect of Dietary Quercetin on Disuse Muscle Atrophy by Targeting Mitochondria in Denervated Mice. J. Nutr. Biochem. 2016, 31, 67–76. DOI: 10.1016/j.jnutbio.2016.02.001.
  • Henagan, T. M.; Lenard, N. R.; Gettys, T. W.; Stewart, L. K. Dietary Quercetin Supplementation in Mice Increases Skeletal Muscle PGC1 Alpha Expression, Improves Mitochondrial Function and Attenuates Insulin Resistance in a Time-Specific Manner. PLoS One. 2014, 9(2), e89365. DOI: 10.1371/journal.pone.0089365.
  • Jang, Y. J.; Son, H. J.; Choi, Y. M.; Ahn, J.; Jung, C. H.; Ha, T. Y. Apigenin Enhances Skeletal Muscle Hypertrophy and Myoblast Differentiation by Regulating Prmt7. Oncotarget. 2017, 8(45), 78300–78311. DOI: 10.18632/oncotarget.20962.
  • Choi, W. H.; Jang, Y. J.; Son, H. J.; Ahn, J.; Jung, C. H.; Ha, T. Y. Apigenin Inhibits Sciatic Nerve Denervation-Induced Muscle Atrophy. Muscle Nerve. 2018, 58(2), 314–318. DOI: 10.1002/mus.26133.
  • Choi, W. H.; Son, H. J.; Jang, Y. J.; Ahn, J.; Jung, C. H.; Ha, T. Y. Apigenin Ameliorates the Obesity-Induced Skeletal Muscle Atrophy by Attenuating Mitochondrial Dysfunction in the Muscle of Obese Mice. Mol. Nutr. Food Res. 2017, 61(12), 1700218. DOI: 10.1002/mnfr.201700218.
  • Wang, D.; Yang, Y.; Zou, X.; Zhang, J.; Zheng, Z.; Wang, Z. Antioxidant Apigenin Relieves Age-Related Muscle Atrophy by Inhibiting Oxidative Stress and Hyperactive Mitophagy and Apoptosis in Skeletal Muscle of Mice. J Gerontol a Biol Sci Med Sci. 2020, 75(11), 2081–2088. DOI: 10.1093/gerona/glaa214.
  • Gutierrez-Salmean, G.; Ciaraldi, T. P.; Nogueira, L.; Barboza, J.; Taub, P. R.; Hogan, M. C.; Henry, R. R.; Meaney, E.; Villarreal, F., Ceballos, G.; et al. Effects of (−)-Epicatechin on Molecular Modulators of Skeletal Muscle Growth and Differentiation. J. Nutr. Biochem. 2014, 25(1), 91–94.
  • Moreno-Ulloa, A.; Miranda-Cervantes, A.; Licea-Navarro, A.; Mansour, C.; Beltran-Partida, E.; Donis-Maturano, L.; Delgado De la Herran, H. C.; Villarreal, F.; Alvarez-Delgado, C. (-)-Epicatechin Stimulates Mitochondrial Biogenesis and Cell Growth in C2C12 Myotubes via the G-Protein Coupled Estrogen Receptor. Eur. J. Pharmacol. 2018, 822, 95–107. DOI: 10.1016/j.ejphar.2018.01.014.
  • McDonald, C. M.; Ramirez-Sanchez, I.; Oskarsson, B.; Joyce, N.; Aguilar, C.; Nicorici, A.; Dayan, J.; Goude, E.; Abresch, R. T., Villarreal, F.; et al. (−)-Epicatechin Induces Mitochondrial Biogenesis and Markers of Muscle Regeneration in Adults with Becker Muscular Dystrophy. Muscle Nerve. 2021, 63(2), 239–249.
  • Meador, B. M.; Mirza, K. A.; Tian, M.; Skelding, M. B.; Reaves, L. A.; Edens, N. K.; Tisdale, M. J.; Pereira, S. L. The Green Tea Polyphenol Epigallocatechin-3-Gallate (EGCg) Attenuates Skeletal Muscle Atrophy in a Rat Model of Sarcopenia. J. Frailty Aging. 2015, 4(4), 209–215. DOI: 10.14283/jfa.2015.58.
  • Li, P.; Liu, A.; Liu, C.; Qu, Z.; Xiao, W.; Huang, J.; Liu, Z.; Zhang, S. Role and Mechanism of Catechin in Skeletal Muscle Cell Differentiation. J. Nutr. Biochem. 2019, 74, 108225. DOI: 10.1016/j.jnutbio.2019.108225.
  • Ueda-Wakagi, M.; Hayashibara, K.; Nagano, T.; Ikeda, M.; Yuan, S.; Ueda, S.; Shirai, Y.; Yoshida, K.; Ashida, H. Epigallocatechin Gallate Induces GLUT4 Translocation in Skeletal Muscle Through Both PI3K-And AMPK-Dependent Pathways. Food Funct. 2018, 9(8), 4223–4233. DOI: 10.1039/c8fo00807h.
  • Kim, A. R.; Kim, K. M.; Byun, M. R.; Hwang, J. H.; Park, J. I.; Oh, H. T.; Jeong, M. G.; Hwang, E. S.; Hong, J. H. (-)-Epigallocatechin-3-Gallate Stimulates Myogenic Differentiation Through TAZ Activation. Biochem. Biophys. Res. Commun. 2017, 486(2), 378–384. DOI: 10.1016/j.bbrc.2017.03.049.
  • Yan, J.; Feng, Z.; Liu, J.; Shen, W.; Wang, Y.; Wertz, K.; Weber, P.; Long, J.; Liu, J. Enhanced Autophagy Plays a Cardinal Role in Mitochondrial Dysfunction in Type 2 Diabetic Goto-Kakizaki (GK) Rats: Ameliorating Effects of (-)-Epigallocatechin-3-Gallate. J. Nutr. Biochem. 2012, 23(7), 716–724. DOI: 10.1016/j.jnutbio.2011.03.014.
  • Chang, Y. C.; Liu, H. W.; Chan, Y. C.; Hu, S. H.; Liu, M. Y.; Chang, S. J. The Green Tea Polyphenol Epigallocatechin-3-Gallate Attenuates Age-Associated Muscle Loss via Regulation of miR-486-5p and Myostatin. Arch. Biochem. Biophys. 2020, 692, 108511. DOI: 10.1016/j.abb.2020.108511.
  • Liu, H. W.; Chan, Y. C.; Wang, M. F.; Wei, C. C.; Chang, S. J. Dietary (-)-Epigallocatechin-3-Gallate Supplementation Counteracts Aging-Associated Skeletal Muscle Insulin Resistance and Fatty Liver in Senescence-Accelerated Mouse. J. Agric. Food Chem. 2015, 63(38), 8407–8417. DOI: 10.1021/acs.jafc.5b02501.
  • Ergun, Y.; Kilinc, M.; Aral, M.; Hedef, A.; Kaya, E. Protective Effect of Epigallocatechin Gallate in Ischemia-Reperfusion Injury of Rat Skeletal Muscle. J. Surg. Res. 2020, 247, 1–7. DOI: 10.1016/j.jss.2019.11.004.
  • Kim, A. R.; Kim, K. M.; Byun, M. R.; Hwang, J. H.; Park, J. I.; Oh, H. T.; Kim, H. K.; Jeong, M. G.; Hwang, E. S., Hong, J.-H.; et al. Catechins Activate Muscle Stem Cells by Myf5 Induction and Stimulate Muscle Regeneration. Biochem. Biophys. Res. Commun. 2017, 489(2), 142–148.
  • Takagaki, A.; Yoshioka, Y.; Yamashita, Y.; Nagano, T.; Ikeda, M.; Hara-Terawaki, A.; Seto, R.; Ashida, H. Effects of Microbial Metabolites of (-)-Epigallocatechin Gallate on Glucose Uptake in L6 Skeletal Muscle Cell and Glucose Tolerance in ICR Mice. Biol. Pharm. Bull. 2019, 42(2), 212–221. DOI: 10.1248/bpb.b18-00612.
  • Jiang, X.; Li, X.; Zhu, C.; Sun, J.; Tian, L.; Chen, W.; Bai, W. The Target Cells of Anthocyanins in Metabolic Syndrome. Crit. Rev. Food Sci. Nutr. 2019, 59(6), 921–946. DOI: 10.1080/10408398.2018.1491022.
  • Choi, K. H.; Lee, H. A.; Park, M. H.; Han, J. S. Mulberry (Morus alba L.) Fruit Extract Containing Anthocyanins Improves Glycemic Control and Insulin Sensitivity via Activation of AMP-Activated Protein Kinase in Diabetic C57bl/ksj-Db/db Mice. J. Med. Food. 2016, 19(8), 737–745. DOI: 10.1089/jmf.2016.3665.
  • Seymour, E. M.; Tanone, I.I.; Urcuyo-Llanes, D. E.; Lewis, S. K.; Kirakosyan, A.; Kondoleon, M. G.; Kaufman, P. B.; Bolling, S. F. Blueberry Intake Alters Skeletal Muscle and Adipose Tissue Peroxisome Proliferator-Activated Receptor Activity and Reduces Insulin Resistance in Obese Rats. J. Med. Food. 2011, 14(12), 1511–1518. DOI: 10.1089/jmf.2010.0292.
  • Murata, M.; Kosaka, R.; Kurihara, K.; Yamashita, S.; Tachibana, H. Delphinidin Prevents Disuse Muscle Atrophy and Reduces Stress-Related Gene Expression. Biosci. Biotechnol., Biochem. 2016, 80(8), 1636–1640. DOI: 10.1080/09168451.2016.1184560.
  • Murata, M.; Nonaka, H.; Komatsu, S.; Goto, M.; Morozumi, M.; Yamada, S.; Lin, I. C.; Yamashita, S.; Tachibana, H. Delphinidin Prevents Muscle Atrophy and Upregulates miR-23a Expression. J. Agric. Food Chem. 2017, 65(1), 45–50. DOI: 10.1021/acs.jafc.6b03661.
  • Ho, G. T.; Kase, E. T.; Wangensteen, H.; Barsett, H. Phenolic Elderberry Extracts, Anthocyanins, Procyanidins, and Metabolites Influence Glucose and Fatty Acid Uptake in Human Skeletal Muscle Cells. J. Agric. Food Chem. 2017, 65(13), 2677–2685. DOI: 10.1021/acs.jafc.6b05582.
  • Hirasaka, K.; Saito, S.; Yamaguchi, S.; Miyazaki, R.; Wang, Y.; Haruna, M.; Taniyama, S.; Higashitani, A.; Terao, J., Nikawa, T.; et al. Dietary Supplementation with Isoflavones Prevents Muscle Wasting in Tumor-Bearing Mice. J. Nutr. Sci. Vitaminol. (Tokyo). 2016, 62(3), 178–184.
  • Hirasaka, K.; Maeda, T.; Ikeda, C.; Haruna, M.; Kohno, S.; Abe, T.; Ochi, A.; Mukai, R.; Oarada, M., Eshima-Kondo, S.; et al. Isoflavones Derived from Soy Beans Prevent MuRf1-Mediated Muscle Atrophy in C2C12 Myotubes Through SIRT1 Activation. J. Nutr. Sci. Vitaminol. (Tokyo). 2013, 59(4), 317–324.
  • Aoyama, S.; Jia, H. J.; Nakazawa, K.; Yamamura, J.; Saito, K.; Kato, H. Dietary Genistein Prevents Denervation-Induced Muscle Atrophy in Male Rodents via Effects on Estrogen Receptor-Alpha. J. Nutr. 2016, 146(6), 1147–1154. DOI: 10.3945/jn.115.226316.
  • Palacios-Gonzalez, B.; Zarain-Herzberg, A.; Flores-Galicia, I.; Noriega, L. G.; Aleman-Escondrillas, G.; Zarinan, T.; Ulloa-Aguirre, A.; Torres, N.; Tovar, A. R. Genistein Stimulates Fatty Acid Oxidation in a Leptin Receptor-Independent Manner Through the JAK2-Mediated Phosphorylation and Activation of AMPK in Skeletal Muscle. Biochim. Biophys. Acta. 2014, 1841(1), 132–140. DOI: 10.1016/j.bbalip.2013.08.018.
  • Gan, M. L.; Shen, L. Y.; Liu, L.; Guo, Z. X.; Wang, S. J.; Chen, L.; Zheng, T.; Fan, Y.; Tan, Y., Jiang, D.; et al. miR-222 is Involved in the Regulation of Genistein on Skeletal Muscle Fiber Type. J. Nutr. Biochem. 2020, 80, 108320. DOI: 10.1016/j.jnutbio.2019.108320.
  • Ding, W. H.; Liu, Y. H. Genistein Attenuates Genioglossus Muscle Fatigue Under Chronic Intermittent Hypoxia by Down-Regulation of Oxidative Stress Level and Up-Regulation of Antioxidant Enzyme Activity Through ERK1/2 Signaling Pathway. Oral Dis. 2011, 17(7), 677–684. DOI: 10.1111/j.1601-0825.2011.01822.x.
  • Zheng, W. Y.; Hengevoss, J.; Soukup, S. T.; Kulling, S. E.; Xie, M. Y.; Diel, P. An Isoflavone Enriched Diet Increases Skeletal Muscle Adaptation in Response to Physical Activity in Ovariectomized Rats. Mol. Nutr. Food Res. 2017, 61(10), 1600843. DOI: 10.1002/mnfr.201600843.
  • Rehfeldt, C.; Kalbe, C.; Nurnberg, G.; Mau, M. Dose-Dependent Effects of Genistein and Daidzein on Protein Metabolism in Porcine Myotube Cultures. J. Agric. Food Chem. 2009, 57(3), 852–857. DOI: 10.1021/jf803039b.
  • Mau, M.; Kalbe, C.; Wollenhaupt, K.; Nurnberg, G.; Rehfeldt, C. IGF-I- and EGF-Dependent DNA Synthesis of Porcine Myoblasts is Influenced by the Dietary Isoflavones Genistein and Daidzein. Domest. Anim. Endocrinol. 2008, 35(3), 281–289. DOI: 10.1016/j.domaniend.2008.06.004.
  • Mau, M.; Kalbe, C.; Viergutz, T.; Nurnberg, G.; Rehfeldt, C. Effects of Dietary Isoflavones on Proliferation and DNA Integrity of Myoblasts Derived from Newborn Piglets. Pediatr. Res. 2008, 63(1), 39–45. DOI: 10.1203/PDR.0b013e31815b8e60.
  • Yin, L.; Chen, X.; Li, N.; Jia, W.; Wang, N.; Hou, B.; Yang, H.; Zhang, L.; Qiang, G., Yang, X.; et al. Puerarin Ameliorates Skeletal Muscle Wasting and Fiber Type Transformation in STZ-Induced Type 1 Diabetic Rats. Biomed. Pharmacother. 2021, 133, 110977. DOI: 10.1016/j.biopha.2020.110977.
  • Chen, X. F.; Wang, L.; Wu, Y. Z.; Song, S. Y.; Min, H. Y.; Yang, Y.; He, X.; Liang, Q.; Yi, L., Wang, Y.; et al. Effect of Puerarin in Promoting Fatty Acid Oxidation by Increasing Mitochondrial Oxidative Capacity and Biogenesis in Skeletal Muscle in Diabetic Rats. Nutr. Diabetes. 2018, 8(1), 1.
  • Chen, X.; Wang, L.; Fan, S.; Song, S.; Min, H.; Wu, Y.; He, X.; Liang, Q.; Wang, Y., Yi, L.; et al. Puerarin Acts on the Skeletal Muscle to Improve Insulin Sensitivity in Diabetic Rats Involving μ-Opioid Receptor. Eur. J. Pharmacol. 2018, 818, 115–123. DOI: 10.1016/j.ejphar.2017.10.033.
  • Jung, H. W.; Kang, A. N.; Kang, S. Y.; Park, Y. K.; Song, M. Y. The Root Extract of Pueraria Lobata and Its Main Compound, Puerarin, Prevent Obesity by Increasing the Energy Metabolism in Skeletal Muscle. Nutrients. 2017, 9(1), 33. DOI: 10.3390/nu9010033.
  • Prasain, J. K.; Peng, N.; Rajbhandari, R.; Wyss, J. M. The Chinese Pueraria Root Extract (Pueraria Lobata) Ameliorates Impaired Glucose and Lipid Metabolism in Obese Mice. Phytomedicine. 2012, 20(1), 17–23. DOI: 10.1016/j.phymed.2012.09.017.
  • Zheng, G.; Lin, L.; Zhong, S.; Zhang, Q.; Li, D. Effects of Puerarin on Lipid Accumulation and Metabolism in High-Fat Diet-Fed Mice. PLoS One. 2015, 10(3), e0122925. DOI: 10.1371/journal.pone.0122925.
  • Kitakaze, T.; Jiang, H.; Nomura, T.; Hironao, K. Y.; Yamashita, Y.; Ashida, H. Kaempferol Promotes Glucose Uptake in Myotubes Through a JAK2-Dependent Pathway. J. Agric. Food Chem. 2020, 68(47), 13720–13729. DOI: 10.1021/acs.jafc.0c05236.
  • Alkhalidy, H.; Moore, W.; Zhang, Y.; McMillan, R.; Wang, A.; Ali, M.; Suh, K. S.; Zhen, W.; Cheng, Z., Jia, Z.; et al. Small Molecule Kaempferol Promotes Insulin Sensitivity and Preserved Pancreatic β-Cell Mass in Middle-Aged Obese Diabetic Mice. J. Diabetes Res. 2015, 2015, 532984. DOI: 10.1155/2015/532984.
  • Dong, Z. H.; Lin, H. Y.; Chen, F. L.; Che, X. Q.; Bi, W. K.; Shi, S. L.; Wang, J.; Gao, L.; He, Z., Zhao, J.-J.; et al. Berberine Improves Intralipid-Induced Insulin Resistance in Murine. Acta Pharmacol. Sin. 2021, 42(5), 735–743.
  • Chen, L. Y.; Su, X. J.; Hu, Y. Berberine Down-Regulated Myostatin Expression and Facilitated Metabolism via Smad Pathway in Insulin Resistant Mice. Diabetes Metab. Syndr. Obesity-Targets Ther. 2020, 13, 4561–4569. DOI: 10.2147/Dmso.S275301.
  • Kong, W. J.; Zhang, H.; Song, D. Q.; Xue, R.; Zhao, W.; Wei, J.; Wang, Y. M.; Shan, N.; Zhou, Z. X., Yang, P.; et al. Berberine Reduces Insulin Resistance Through Protein Kinase C–dependent Up-Regulation of Insulin Receptor Expression. Metab.-Clin. Exp. 2009, 58(1), 109–119.
  • Gomes, A. P.; Duarte, F. V.; Nunes, P.; Hubbard, B. P.; Teodoro, J. S.; Varela, A. T.; Jones, J. G.; Sinclair, D. A.; Palmeira, C. M., Rolo, A. P.; et al. Berberine Protects Against High Fat Diet-Induced Dysfunction in Muscle Mitochondria by Inducing SIRT1-Dependent Mitochondrial Biogenesis. Biochim. Biophys. Acta, Mol. Basis Dis. 2012, 1822(2), 185–195.
  • Yu, Y.; Zhao, Y.; Teng, F.; Li, J.; Guan, Y.; Xu, J.; Lv, X.; Guan, F.; Zhang, M., Chen, L.; et al. Berberine Improves Cognitive Deficiency and Muscular Dysfunction via Activation of the AMPK/SIRT1/PGC-1a Pathway in Skeletal Muscle from Naturally Aging Rats. J. Nutr. Health Aging. 2018, 22(6), 710–717.
  • Yao, S.; Yuan, Y.; Zhang, H.; Meng, X.; Jin, L.; Yang, J.; Wang, W.; Ning, G.; Zhang, Y., Zhang, Z.; et al. Berberine Attenuates the Abnormal Ectopic Lipid Deposition in Skeletal Muscle. Free Radic Biol Med. 2020, 159, 66–75. DOI: 10.1016/j.freeradbiomed.2020.07.028.
  • Xu, X. H.; Hu, Q.; Zhou, L. S.; Xu, L. J.; Zou, X.; Lu, F. E.; Yi, P. Berberine Inhibits Gluconeogenesis in Skeletal Muscles and Adipose Tissues in Streptozotocin-Induced Diabetic Rats via LKB1-AMPK-TORC2 Signaling Pathway. Curr. Med. Sci. 2020, 40(3), 530–538. DOI: 10.1007/s11596-020-2210-4.
  • Ma, X.; Egawa, T.; Kimura, H.; Karaike, K.; Masuda, S.; Iwanaka, N.; Hayashi, T. Berberine-Induced Activation of 5’-Adenosine Monophosphate-Activated Protein Kinase and Glucose Transport in Rat Skeletal Muscles. Metabolism. 2010, 59(11), 1619–1627. DOI: 10.1016/j.metabol.2010.03.009.
  • Poudel, A.; Zhou, J. Y.; Mekala, N.; Welchko, R.; Rosca, M. G.; Li, L. X. Berberine Hydrochloride Protects Against Cytokine-Induced Inflammation Through Multiple Pathways in Undifferentiated C2C12 Myoblast Cells. Can. J. Physiol. Pharmacol. 2019, 97(8), 699–707. DOI: 10.1139/cjpp-2018-0653.
  • Zhou, G.; Wang, L.; Xu, Y.; Yang, K.; Luo, L.; Wang, L.; Li, Y.; Wang, J.; Shu, G., Wang, S.; et al. Diversity Effect of Capsaicin on Different Types of Skeletal Muscle. Mol. Cell. Biochem. 2018, 443(1–2), 11–23.
  • Luo, Z. D.; Ma, L. Q.; Zhao, Z. G.; He, H. B.; Yang, D. C.; Feng, X. L.; Ma, S. T.; Chen, X. P.; Zhu, T. Q., Cao, T.; et al. TRPV1 Activation Improves Exercise Endurance and Energy Metabolism Through PGC-1α Upregulation in Mice. Cell Res. 2012, 22(3), 551–564.
  • Lotteau, S.; Ducreux, S.; Romestaing, C.; Legrand, C.; Van Coppenolle, F. Characterization of Functional TRPV1 Channels in the Sarcoplasmic Reticulum of Mouse Skeletal Muscle. PLoS One. 2013, 8(3), e58673. DOI: 10.1371/journal.pone.0058673.
  • Hsu, Y. J.; Huang, W. C.; Chiu, C. C.; Liu, Y. L.; Chiu, W. C.; Chiu, C. H.; Chiu, Y. S.; Huang, C. C. Capsaicin Supplementation Reduces Physical Fatigue and Improves Exercise Performance in Mice. Nutrients. 2016, 8(10), 648. DOI: 10.3390/nu8100648.
  • Kazuya, Y.; Tonson, A.; Pecchi, E.; Dalmasso, C.; Vilmen, C.; Fur, Y. L.; Bernard, M.; Bendahan, D.; Giannesini, B. A Single Intake of Capsiate Improves Mechanical Performance and Bioenergetics Efficiency in Contracting Mouse Skeletal Muscle. Am. J. Physiol. Endocrinol. Metab. 2014, 306(10), E1110–9. DOI: 10.1152/ajpendo.00520.2013.
  • Kim, D. H.; Joo, J. I.; Choi, J. W.; Yun, J. W. Differential Expression of Skeletal Muscle Proteins in High-Fat Diet-Fed Rats in Response to Capsaicin Feeding. Proteomics. 2010, 10(15), 2870–2881. DOI: 10.1002/pmic.200900815.
  • de Freitas, M. C.; Cholewa, J. M.; Panissa, V. L. G.; Toloi, G. G.; Netto, H. C.; Zanini de Freitas, C.; Freire, R. V.; Lira, F. S.; Rossi, F. E. Acute Capsaicin Supplementation Improved Resistance Exercise Performance Performed After a High-Intensity Intermittent Running in Resistance-Trained Men. J. Strength Cond. Res. 2019. DOI: 10.1519/JSC.0000000000003431.
  • Conrado de Freitas, M.; Cholewa, J. M.; Freire, R. V.; Carmo, B. A.; Bottan, J.; Bratfich, M.; Della Bandeira, M. P.; Goncalves, D. C.; Caperuto, E. C., Lira, F. S.; et al. Acute Capsaicin Supplementation Improves Resistance Training Performance in Trained Men. J. Strength Cond. Res. 2018, 32(8), 2227–2232.
  • Tsuda, S.; Hayashi, T.; Egawa, T. The Effects of Caffeine on Metabolomic Responses to Muscle Contraction in Rat Skeletal Muscle. Nutrients. 2019, 11(8), 1819. DOI: 10.3390/nu11081819.
  • da Costa Santos, V. B.; Ruiz, R. J.; Vettorato, E. D.; Nakamura, F. Y.; Juliani, L. C.; Polito, M. D.; Siqueira, C. P.; de Paula Ramos, S. Effects of Chronic Caffeine Intake and Low-Intensity Exercise on Skeletal Muscle of Wistar Rats. Exp. Physiol. 2011, 96(11), 1228–1238. DOI: 10.1113/expphysiol.2011.060483.
  • Sacramento, J. F.; Ribeiro, M. J.; Yubero, S.; Melo, B. F.; Obeso, A.; Guarino, M. P.; Gonzalez, C.; Conde, S. V. Disclosing Caffeine Action on Insulin Sensitivity: Effects on Rat Skeletal Muscle. Eur. J. Pharm. Sci. 2015, 70, 107–116. DOI: 10.1016/j.ejps.2015.01.011.
  • Egawa, T.; Tsuda, S.; Ma, X.; Hamada, T.; Hayashi, T. Caffeine Modulates Phosphorylation of Insulin Receptor Substrate-1 and Impairs Insulin Signal Transduction in Rat Skeletal Muscle. J. Appl. Physiol. (1985). 2011, 111(6), 1629–1636. DOI: 10.1152/japplphysiol.00249.2011.
  • Yokokawa, T.; Hashimoto, T.; Iwanaka, N. Caffeine Increases Myoglobin Expression via the Cyclic AMP Pathway in L6 Myotubes. Physiol. Rep. 2021, 9(9), e14869. DOI: 10.14814/phy2.14869.
  • Enyart, D. S.; Crocker, C. L.; Stansell, J. R.; Cutrone, M.; Dintino, M. M.; Kinsey, S. T.; Brown, S. L.; Baumgarner, B. L. Low-Dose Caffeine Administration Increases Fatty Acid Utilization and Mitochondrial Turnover in C2C12 Skeletal Myotubes. Physiol. Rep. 2020, 8(1), e14340. DOI: 10.14814/phy2.14340.
  • Hughes, M. A.; Downs, R. M.; Webb, G. W.; Crocker, C. L.; Kinsey, S. T.; Baumgarner, B. L. Acute High-Caffeine Exposure Increases Autophagic Flux and Reduces Protein Synthesis in C2C12 Skeletal Myotubes. J. Muscle Res. Cell Motil. 2017, 38(2), 201–214. DOI: 10.1007/s10974-017-9473-9.
  • Fang, C.; Hayashi, S.; Du, X.; Cai, X.; Deng, B.; Zheng, H.; Ishido, S.; Tsutsui, H.; Sheng, J. Caffeine Protects Against Stress-Induced Murine Depression Through Activation of PPARgammaC1alpha-Mediated Restoration of the Kynurenine Pathway in the Skeletal Muscle. Sci. Rep. 2021, 11(1), 7287. DOI: 10.1038/s41598-021-86659-4.
  • Grgic, J.; Trexler, E. T.; Lazinica, B.; Pedisic, Z. Effects of Caffeine Intake on Muscle Strength and Power: A Systematic Review and Meta-Analysis. J. Int. Soc. Sports Nutr. 2018, 15(1), 11. DOI: 10.1186/s12970-018-0216-0.
  • Mielgo-Ayuso, J.; Calleja-Gonzalez, J.; Del Coso, J.; Urdampilleta, A.; Leon-Guereno, P.; Fernandez-Lazaro, D. Caffeine Supplementation and Physical Performance, Muscle Damage and Perception of Fatigue in Soccer Players: A Systematic Review. Nutrients. 2019, 11(2). DOI: 10.3390/nu11020440.
  • Ali, A.; O’-Donnell, J.; Foskett, A.; Rutherfurd-Markwick, K. The Influence of Caffeine Ingestion on Strength and Power Performance in Female Team-Sport Players. J. Int. Soc. Sports Nutr. 2016, 13(1), 46. DOI: 10.1186/s12970-016-0157-4.
  • Trexler, E. T.; Smith-Ryan, A. E.; Roelofs, E. J.; Hirsch, K. R.; Mock, M. G. Effects of Coffee and Caffeine Anhydrous on Strength and Sprint Performance. Eur. J. Sport Sci. 2016, 16(6), 702–710. DOI: 10.1080/17461391.2015.1085097.
  • Ribeiro, B. G.; Morales, A. P.; Sampaio-Jorge, F.; Barth, T.; de Oliveira, M. B. C.; Coelho, G. M. D. O.; Leite, T. C. Caffeine Attenuates Decreases in Leg Power Without Increased Muscle Damage. J. Strength Conditioning Res. 2016, 30(8), 2354–2360. DOI: 10.1519/Jsc.0000000000001332.
  • Leber, A.; Hontecillas, R.; Tubau-Juni, N.; Zoccoli-Rodriguez, V.; Goodpaster, B.; Bassaganya-Riera, J. Abscisic Acid Enriched Fig Extract Promotes Insulin Sensitivity by Decreasing Systemic Inflammation and Activating LANCL2 in Skeletal Muscle. Sci. Rep. 2020, 10(1), 10463. DOI: 10.1038/s41598-020-67300-2.
  • Magnone, M.; Emionite, L.; Guida, L.; Vigliarolo, T.; Sturla, L.; Spinelli, S.; Buschiazzo, A.; Marini, C.; Sambuceti, G., De Flora, A.; et al. Insulin-Independent Stimulation of Skeletal Muscle Glucose Uptake by Low-Dose Abscisic Acid via AMPK Activation. Sci. Rep. 2020, 10(1), 1454.
  • Spinelli, S.; Begani, G.; Guida, L.; Magnone, M.; Galante, D.; D’-Arrigo, C.; Scotti, C.; Iamele, L.; De Jonge, H., Zocchi, E.; et al. LANCL1 Binds Abscisic Acid and Stimulates Glucose Transport and Mitochondrial Respiration in Muscle Cells via the AMPK/PGC-1α/Sirt1 Pathway. Mol. Metab. 2021, 53, 101263. DOI: 10.1016/j.molmet.2021.101263.
  • Liu, S.; Yang, D.; Yu, L.; Aluo, Z.; Zhang, Z.; Qi, Y.; Li, Y.; Song, Z.; Xu, G., Zhou, L.; et al. Effects of Lycopene on Skeletal Muscle-Fiber Type and High-Fat Diet-Induced Oxidative Stress. J. Nutr. Biochem. 2021, 87, 108523. DOI: 10.1016/j.jnutbio.2020.108523.
  • Wen, W.; Chen, X.; Huang, Z.; Chen, D.; Yu, B.; He, J.; Zheng, P.; Luo, Y.; Yan, H., Yu, J.; et al. Lycopene Increases the Proportion of Slow-Twitch Muscle Fiber by AMPK Signaling to Improve Muscle Anti-Fatigue Ability. J. Nutr. Biochem. 2021, 94, 108750. DOI: 10.1016/j.jnutbio.2021.108750.
  • Liu, C. C.; Huang, C. C.; Lin, W. T.; Hsieh, C. C.; Huang, S. Y.; Lin, S. J.; Yang, S. C. Lycopene Supplementation Attenuated Xanthine Oxidase and Myeloperoxidase Activities in Skeletal Muscle Tissues of Rats After Exhaustive Exercise. Br. J. Nutr. 2005, 94(4), 595–601. DOI: 10.1079/bjn20051541.
  • Kirisci, M.; Guneri, B.; Seyithanoglu, M.; Kazanci, U.; Doganer, A.; Gunes, H. The Protective Effects of Lycopene on Ischemia/reperfusion Injury in Rat Hind Limb Muscle Model. Ulus Travma Acil Cerrahi Derg. 2020, 26(3), 351–360. DOI: 10.14744/tjtes.2020.81456.
  • Ogawa, M.; Kariya, Y.; Kitakaze, T.; Yamaji, R.; Harada, N.; Sakamoto, T.; Hosotani, K.; Nakano, Y.; Inui, H. The Preventive Effect of Beta-Carotene on Denervation-Induced Soleus Muscle Atrophy in Mice. Br. J. Nutr. 2013, 109(8), 1349–1358. DOI: 10.1017/S0007114512003297.
  • Liu, P. H.; Aoi, W.; Takami, M.; Terajima, H.; Tanimura, Y.; Naito, Y.; Itoh, Y.; Yoshikawa, T. The Astaxanthin-Induced Improvement in Lipid Metabolism During Exercise is Mediated by a PGC-1 Alpha Increase in Skeletal Muscle. J. Clin. Biochem. Nutr. 2014, 54(2), 86–89. DOI: 10.3164/jcbn.13-110.
  • Nishida, Y.; Nawaz, A.; Kado, T.; Takikawa, A.; Igarashi, Y.; Onogi, Y.; Wada, T.; Sasaoka, T.; Yamamoto, S., Sasahara, M.; et al. Astaxanthin Stimulates Mitochondrial Biogenesis in Insulin Resistant Muscle via Activation of AMPK Pathway. J. Cachexia Sarcopenia Muscle. 2020, 11(1), 241–258.
  • Shibaguchi, T.; Yamaguchi, Y.; Miyaji, N.; Yoshihara, T.; Naito, H.; Goto, K.; Ohmori, D.; Yoshioka, T.; Sugiura, T. Astaxanthin Intake Attenuates Muscle Atrophy Caused by Immobilization in Rats. Physiol. Rep. 2016, 4(15), e12885. DOI: 10.14814/phy2.12885.
  • Maezawa, T.; Tanaka, M.; Kanazashi, M.; Maeshige, N.; Kondo, H.; Ishihara, A.; Fujino, H. Astaxanthin Supplementation Attenuates Immobilization-Induced Skeletal Muscle Fibrosis via Suppression of Oxidative Stress. J. Physiol. Sci. 2017, 67(5), 603–611. DOI: 10.1007/s12576-016-0492-x.
  • Kanazashi, M.; Tanaka, M.; Nakanishi, R.; Maeshige, N.; Fujino, H. Effects of Astaxanthin Supplementation and Electrical Stimulation on Muscle Atrophy and Decreased Oxidative Capacity in Soleus Muscle During Hindlimb Unloading in Rats. J. Physiol. Sci. 2019, 69(5), 757–767. DOI: 10.1007/s12576-019-00692-7.
  • Feng, W. H.; Wang, Y. X.; Guo, N.; Huang, P.; Mi, Y. Effects of Astaxanthin on Inflammation and Insulin Resistance in a Mouse Model of Gestational Diabetes Mellitus. Dose-Response. 2020, 18(2), 1559325820926765. DOI: 10.1177/1559325820926765.
  • Yu, T.; Dohl, J.; Chen, Y.; Gasier, H. G.; Deuster, P. A. Astaxanthin but Not Quercetin Preserves Mitochondrial Integrity and Function, Ameliorates Oxidative Stress, and Reduces Heat-Induced Skeletal Muscle Injury. J. Cell. Physiol. 2019, 234(8), 13292–13302. DOI: 10.1002/jcp.28006.
  • Takamura, Y.; Makanae, Y.; Ato, S.; Yoshii, N.; Kido, K.; Nomura, M.; Uchiyama, A.; Shiozawa, N.; Fujita, S. Panaxatriol Derived from Ginseng Augments Resistance Exercised-Induced Protein Synthesis via mTorc1 Signaling in Rat Skeletal Muscle. Nutr. Res. 2016, 36(11), 1193–1201. DOI: 10.1016/j.nutres.2016.09.002.
  • Takamura, Y.; Nomura, M.; Uchiyama, A.; Fujita, S. Effects of Aerobic Exercise Combined with Panaxatriol Derived from Ginseng on Insulin Resistance and Skeletal Muscle Mass in Type 2 Diabetic Mice. J. Nutr. Sci. Vitaminol. (Tokyo). 2017, 63(5), 339–348. DOI: 10.3177/jnsv.63.339.
  • Szentandrassy, N.; Szentesi, P.; Magyar, J.; Nanasi, P. P.; Csernoch, L. Effect of Thymol on Kinetic Properties of Ca and K Currents in Rat Skeletal Muscle. BMC Pharmacol. 2003, 3(1), 9. DOI: 10.1186/1471-2210-3-9.
  • Luo, P.; Wang, L.; Luo, L.; Wang, L.; Yang, K.; Shu, G.; Wang, S.; Zhu, X.; Gao, P., Jiang, Q.; et al. Ca 2+ -Calcineurin-NFAT Pathway Mediates the Effect of Thymol on Oxidative Metabolism and Fiber-Type Switch in Skeletal Muscle. Food Funct. 2019, 10(8), 5166–5173.
  • Cardoso, E. S.; Santana, T. A.; Diniz, P. B.; Montalvao, M. M.; Bani, C. C.; Thomazzi, S. M. Thymol Accelerates the Recovery of the Skeletal Muscle of Mice Injured with Cardiotoxin. J. Pharm. Pharmacol. 2016, 68(3), 352–360. DOI: 10.1111/jphp.12520.
  • Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R. H.; van de Weijer, T.; Goossens, G. H.; Hoeks, J.; van der Krieken, S.; Ryu, D., Kersten, S.; et al. Calorie Restriction-Like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans. Cell Metab. 2011, 14(5), 612–622.
  • Murillo Ortiz, B. O.; Fuentes Preciado, A. R.; Ramirez Emiliano, J.; Martinez Garza, S.; Ramos Rodriguez, E.; de Alba Macias, L. A. Recovery of Bone and Muscle Mass in Patients with Chronic Kidney Disease and Iron Overload on Hemodialysis and Taking Combined Supplementation with Curcumin and Resveratrol. Clin. Interv. Aging. 2019, 14, 2055–2062. DOI: 10.2147/CIA.S223805.
  • Jager, R.; Purpura, M.; Kerksick, C. M. Eight Weeks of a High Dose of Curcumin Supplementation May Attenuate Performance Decrements Following Muscle-Damaging Exercise. Nutrients. 2019, 11(7), 1692. DOI: 10.3390/nu11071692.
  • Kim, H.; Suzuki, T.; Saito, K.; Yoshida, H.; Kojima, N.; Kim, M.; Sudo, M.; Yamashiro, Y.; Tokimitsu, I. Effects of Exercise and Tea Catechins on Muscle Mass, Strength and Walking Ability in Community-Dwelling Elderly Japanese Sarcopenic Women: A Randomized Controlled Trial. Geriatr. Gerontol. Int. 2013, 13(2), 458–465. DOI: 10.1111/j.1447-0594.2012.00923.x.
  • Mahler, A.; Steiniger, J.; Bock, M.; Klug, L.; Parreidt, N.; Lorenz, M.; Zimmermann, B. F.; Krannich, A.; Paul, F., Boschmann, M.; et al. Metabolic Response to Epigallocatechin-3-Gallate in Relapsing-Remitting Multiple Sclerosis: A Randomized Clinical Trial. Am. J. Clin. Nutr. 2015, 101(3), 487–495.
  • Guevara-Cruz, M.; Godinez-Salas, E. T.; Sanchez-Tapia, M.; Torres-Villalobos, G.; Pichardo-Ontiveros, E.; Guizar-Heredia, R.; Arteaga-Sanchez, L.; Gamba, G.; Mojica-Espinosa, R.; Schcolnik-Cabrera A.; et al. Genistein Stimulates Insulin Sensitivity Through Gut Microbiota Reshaping and Skeletal Muscle AMPK Activation in Obese Subjects. BMJ Open Diabetes Res. Care. 2020, 8(1), e000948.
  • Djordjevic, B.; Baralic, I.; Kotur-Stevuljevic, J.; Stefanovic, A.; Ivanisevic, J.; Radivojevic, N.; Andjelkovic, M.; Dikic, N. Effect of Astaxanthin Supplementation on Muscle Damage and Oxidative Stress Markers in Elite Young Soccer Players. J. Sports Med. Phys. Fitness. 2012, 52(4), 382–392.
  • Sahin, K.; Pala, R.; Tuzcu, M.; Ozdemir, O.; Orhan, C.; Sahin, N.; Juturu, V. Curcumin Prevents Muscle Damage by Regulating NF-κB and Nrf2 Pathways and Improves Performance: An in vivo Model. J. Inflammation Res. 2016, 9, 147–154. DOI: 10.2147/Jir.S110873.
  • Koshinaka, K.; Honda, A.; Masuda, H.; Sato, A. Effect of Quercetin Treatment on Mitochondrial Biogenesis and Exercise-Induced AMP-Activated Protein Kinase Activation in Rat Skeletal Muscle. Nutrients. 2020, 12(3), 729. DOI: 10.3390/nu12030729.
  • Funakoshi, T.; Kanzaki, N.; Otsuka, Y.; Izumo, T.; Shibata, H.; Machida, S. Quercetin Inhibits Adipogenesis of Muscle Progenitor Cells in vitro. Biochem. Biophys. Rep. 2018, 13, 39–44. DOI: 10.1016/j.bbrep.2017.12.003.
  • Wang, L.; Wang, Z.; Yang, K.; Shu, G.; Wang, S.; Gao, P.; Zhu, X.; Xi, Q.; Zhang, Y., Jiang, Q.; et al. Epigallocatechin Gallate Reduces Slow-Twitch Muscle Fiber Formation and Mitochondrial Biosynthesis in C2C12 Cells by Repressing AMPK Activity and PGC-1α Expression. J. Agric. Food Chem. 2016, 64(34), 6517–6523.
  • Arunkumar, E.; Anuradha, C. V. Genistein Promotes Insulin Action Through Adenosine Monophosphate-Activated Protein Kinase Activation and P70 Ribosomal Protein S6 Kinase 1 Inhibition in the Skeletal Muscle of Mice Fed a High Energy Diet. Nutr. Res. 2012, 32(8), 617–625. DOI: 10.1016/j.nutres.2012.06.002.
  • Chen, X.; Yi, L.; Song, S.; Wang, L.; Liang, Q.; Wang, Y.; Wu, Y.; Gao, Q. Puerarin Attenuates Palmitate-Induced Mitochondrial Dysfunction, Impaired Mitophagy and Inflammation in L6 Myotubes. Life Sci. 2018, 206, 84–92. DOI: 10.1016/j.lfs.2018.05.041.
  • Xiao, H. B.; Fang, J.; Lu, X. Y.; Sun, Z. L. Kaempferol Improves Carcase Characteristics in Broiler Chickens by Regulating ANGPTL3 Gene Expression. Br. Poult. Sci. 2012, 53(6), 836–842. DOI: 10.1080/00071668.2012.751486.
  • Zhang, Q.; Xiao, X. H.; Feng, K.; Wang, T.; Li, W. H.; Yuan, T.; Sun, X. F.; Sun, Q.; Xiang, H. D., et al. Berberine Moderates Glucose and Lipid Metabolism Through Multipathway Mechanism. Evid. Based Complement. Altern. Med. 2011, 2011, 1–10. DOI: 10.1155/2011/924851.
  • Lee, Y. S.; Kim, W. S.; Kim, K. H.; Yoon, M. J.; Cho, H. J.; Shen, Y.; Ye, J. M.; Lee, C. H.; Oh, W. K., Kim, C. T.; et al. Berberine, a Natural Plant Product, Activates AMP-Activated Protein Kinase with Beneficial Metabolic Effects in Diabetic and Insulin-Resistant States. Diabetes. 2006, 55(8), 2256–2264.
  • Hamada, T.; Egawa, T.; Karaike, K.; Xiao, M.; Shimizu, Y.; Sakane, N.; Hayashi, T. Caffeine Can Activate 5 ’-AMP-Activated Protein Kinase and Increase Insulin-Independent Glucose Uptake in Rat Skeletal Muscles. Diabetes. 2008, 57, A718–A718.
  • Luo, P.; Luo, L.; Zhao, W.; Wang, L.; Sun, L.; Wu, H.; Li, Y.; Zhang, R.; Shu, G., Wang, S.; et al. Dietary Thymol Supplementation Promotes Skeletal Muscle Fibre Type Switch in Longissimus Dorsi of Finishing Pigs. J. Anim. Physiol. Anim. Nutr. (Berl). 2020, 104(2), 570–578.
  • Placha, I.; Ocelova, V.; Chizzola, R.; Battelli, G.; Gai, F.; Bacova, K.; Faix, S. Effect of Thymol on the Broiler Chicken Antioxidative Defence System After Sustained Dietary Thyme Oil Application. Br. Poult. Sci. 2019, 60(5), 589–596. DOI: 10.1080/00071668.2019.1631445.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.