485
Views
2
CrossRef citations to date
0
Altmetric
Review

Impact of Phytophenols on Myofibrillar Proteins: Revisit the Interaction Scenarios Inspired for Meat Products Innovation

ORCID Icon, , , &

References

  • Cheng, J.; Liu, X.; Zhang, W.; Chen, Z.; Wang, X. Stability of Phenolic Compounds and Antioxidant Capacity of Concentrated Mulberry Juice-Enriched Dried-Minced Pork Slices During Preparation and Storage. Food Control. 2018, 89, 187–195. DOI: 10.1016/j.foodcont.2018.02.008.
  • Yu, T. Y.; Morton, J. D.; Clerens, S.; Dyer, J. M. Cooking‐induced Protein Modifications in Meat. Compr. Rev. Food Sci. Food Saf. 2017, 16(1), 141–159. DOI: 10.1111/1541-4337.12243.
  • Tornberg, E. Effects of Heat on Meat Proteins–implications on Structure and Quality of Meat Products. Meat Sci. 2005, 70(3), 493–508. DOI: 10.1016/j.meatsci.2004.11.021.
  • Li, C.; Xiong, Y. L. Mild Oxidation Promotes Myosin S2 Cross-Linking by Microbial Transglutaminase. Food Chem. 2019, 287, 390–397. DOI: 10.1016/j.foodchem.2019.02.097.
  • Chen, X.; Xu, X.; Zhou, G. Potential of High Pressure Homogenization to Solubilize Chicken Breast Myofibrillar Proteins in Water. Innovative Food Sci. Emerg. Technol. 2016, 33, 170–179. DOI: 10.1016/j.ifset.2015.11.012.
  • Pan, J.; Lian, H.; Jia, H.; Hao, R.; Wang, Y.; Ju, H.; Li, S.; Dong, X. Dose Affected the Role of Gallic Acid on Mediating Gelling Properties of Oxidatively Stressed Japanese Seerfish Myofibrillar Protein. LWT Food Sci. Technol. 2020, 118, 108849. DOI: 10.1016/j.lwt.2019.108849.
  • Buamard, N.; Benjakul, S. Combination Effect of High Pressure Treatment and Ethanolic Extract from Coconut Husk on Gel Properties of Sardine Surimi. LWT Food Sci. Technol. 2018, 91, 361–367. DOI: 10.1016/j.lwt.2018.01.074.
  • Cao, Y.; Ai, N.; True, A. D.; Xiong, Y. L. Effects of (-)-Epigallocatechin-3-Gallate Incorporation on the Physicochemical and Oxidative Stability of Myofibrillar Protein-Soybean Oil Emulsions. Food Chem. 2018, 245, 439–445. DOI: 10.1016/j.foodchem.2017.10.111.
  • Li, Y.; Liu, H.; Liu, Q.; Kong, B.; Diao, X. Effects of Zein Hydrolysates Coupled with Sage (Salvia officinalis) Extract on the Emulsifying and Oxidative Stability of Myofibrillar Protein Prepared Oil-In-Water Emulsions. Food Hydrocolloids. 2019, 87, 149–157. DOI: 10.1016/j.foodhyd.2018.07.052.
  • Lv, Y.; Chen, L.; Wu, H.; Xu, X.; Zhou, G.; Zhu, B.; Feng, X. (-)-Epigallocatechin-3-Gallate-Mediated Formation of Myofibrillar Protein Emulsion Gels Under Malondialdehyde-Induced Oxidative Stress. Food Chem. 2019, 285, 139–146. DOI: 10.1016/j.foodchem.2019.01.147.
  • Majumdar, R. K.; Saha, A.; Maurya, P. K.; Roy, D.; Shitole, S.; Balange, A. K. Textural and Functional Properties of Surimi from Striped Catfish Pangasianodon Hypophthalmus (Sauvage, 1878) as Affected by Natural Spice Extracts. Indian J. Fish. 2016, 63(3), 88–93. DOI: 10.21077/ijf.2016.63.3.48568-12.
  • Ahmad, S.; Gokulakrishnan, P.; Giriprasad, R.; Yatoo, M. Fruit-Based Natural Antioxidants in Meat and Meat Products: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55(11), 1503–1513. DOI: 10.1080/10408398.2012.701674.
  • Bhattacharya, D.; Kandeepan, G.; Vishnuraj, M. R. Protein Oxidation in Meat and Meat Products-A Review. J. J. Meat Sci. Technol. 2016, 4, 44.
  • Jiang, J.; Xiong, Y. L. Natural Antioxidants as Food and Feed Additives to Promote Health Benefits and Quality of Meat Products: A Review. Meat Sci. 2016, 120, 107–117. DOI: 10.1016/j.meatsci.2016.04.005.
  • Chu, Q.; Bao, B.; Wu, W. Mechanism of Interaction Between Phenolic Compounds and Proteins Based on Non-Covalent and Covalent Interactions. Med. Res. 2018, 2(3), 180014.
  • Guo, A.; Xiong, Y. L. Myoprotein–phytophenol Interaction: Implications for Muscle Food Structure‐forming Properties. Compr. Rev. Food Sci. Food Saf. 2021, 20(3), 2801–2824. DOI: 10.1111/1541-4337.12733.
  • Liu, J.; Yong, H.; Yao, X.; Hu, H.; Yun, D.; Xiao, L. Recent Advances in Phenolic–protein Conjugates: Synthesis, Characterization, Biological Activities and Potential Applications. RSC Adv. 2019, 9(61), 35825–35840. DOI: 10.1039/C9RA07808H.
  • Cheng, J.; Xu, L.; Xiang, R.; Liu, X.; Zhu, M. Effects of Mulberry Polyphenols on Oxidation Stability of Sarcoplasmic and Myofibrillar Proteins in Dried Minced Pork Slices During Processing and Storage. Meat Sci. 2020, 160, 107973. DOI: 10.1016/j.meatsci.2019.107973.
  • Rysman, T.; Utrera, M.; Morcuende, D.; Van Royen, G.; Van Weyenberg, S.; De Smet, S.; Estevez, M. Apple Phenolics as Inhibitors of the Carbonylation Pathway During in vitro Metal-Catalyzed Oxidation of Myofibrillar Proteins. Food Chem. 2016, 211, 784–790. DOI: 10.1016/j.foodchem.2016.05.126.
  • Estévez, M. Critical Overview of the Use of Plant Antioxidants in the Meat Industry: Opportunities, Innovative Applications and Future Perspectives. Meat Sci. 2021, 181, 108610. DOI: 10.1016/j.meatsci.2021.108610.
  • Cao, Y.; Ma, W.; Huang, J.; Xiong, Y. L. Effects of Sodium Pyrophosphate Coupled with Catechin on the Oxidative Stability and Gelling Properties of Myofibrillar Protein. Food Hydrocolloids. 2020, 104, 105722. DOI: 10.1016/j.foodhyd.2020.105722.
  • Jongberg, S.; Terkelsen, L. D. S.; Miklos, R.; Lund, M. N. Green Tea Extract Impairs Meat Emulsion Properties by Disturbing Protein Disulfide Cross-Linking. Meat Sci. 2015, 100, 2–9. DOI: 10.1016/j.meatsci.2014.09.003.
  • Guo, A.; Jiang, J.; True, A. D.; Xiong, Y. L. Myofibrillar Protein Cross-Linking and Gelling Behavior Modified by Structurally Relevant Phenolic Compounds. J. Agric. Food Chem. 2021, 69(4), 1308–1317. DOI: 10.1021/acs.jafc.0c04365.
  • Ozdal, T.; Capanoglu, E.; Altay, F. A Review on Protein–phenolic Interactions and Associated Changes. Food Res. Int. 2013, 51(2), 954–970. DOI: 10.1016/j.foodres.2013.02.009.
  • Zhang, Q.; Cheng, Z.; Wang, Y., and Fu, L. Dietary Protein-Phenolic Interactions: Characterization, Biochemical-Physiological Consequences, and Potential Food Applications. Crit. Rev. Food Sci. Nutr. 2021, 61(21), 3589–3615.
  • Cheng, J.; Zhu, M.; Liu, X. Insight into the Conformational and Functional Properties of Myofibrillar Protein Modified by Mulberry Polyphenols. Food Chem. 2020, 308, 125592. DOI: 10.1016/j.foodchem.2019.125592.
  • Bandyopadhyay, P.; Ghosh, A. K.; Ghosh, C. Recent Developments on Polyphenol–protein Interactions: Effects on Tea and Coffee Taste, Antioxidant Properties and the Digestive System. Food Funct. 2012, 3(6), 592–605. DOI: 10.1039/c2fo00006g.
  • Yildirim Elikoglu, S.; Erdem, Y. K. Interactions Between Milk Proteins and Polyphenols: Binding Mechanisms, Related Changes, and the Future Trends in the Dairy Industry. Food Rev. Int. 2018, 34(7), 665–697. DOI: 10.1080/87559129.2017.1377225.
  • Tran Hong, Q.; Benjakul, S.; Sae Leaw, T.; Balange, A. K.; Maqsood, S. Protein-Polyphenol Conjugates: Antioxidant Property, Functionalities and Their Applications. Trends Food Sci. Technol. 2019, 91, 507–517. DOI: 10.1016/j.tifs.2019.07.049.
  • Balange, A.; Benjakul, S. Enhancement of Gel Strength of Bigeye Snapper (Priacanthus tayenus) Surimi Using Oxidised Phenolic Compounds. Food Chem. 2009, 113(1), 61–70. DOI: 10.1016/j.foodchem.2008.07.039.
  • Cao, Y.; Xiong, Y. L. Chlorogenic Acid-Mediated Gel Formation of Oxidatively Stressed Myofibrillar Protein. Food Chem. 2015, 180, 235–243. DOI: 10.1016/j.foodchem.2015.02.036.
  • Tang, C.; Zhang, W.; Wang, Y.; Xing, L.; Xu, X.; Zhou, G. Identification of Rosmarinic Acid-Adducted Sites in Meat Proteins in a Gel Model Under Oxidative Stress by Triple TOF MS/MS. J. Agric. Food Chem. 2016, 64(33), 6466–6476. DOI: 10.1021/acs.jafc.6b02438.
  • Hagerman, A. E.; Rice, M. E.; Ritchard, N. T. Mechanisms of Protein Precipitation for Two Tannins, Pentagalloyl Glucose and Epicatechin16 (4→ 8) Catechin (Procyanidin). J. Agric. Food Chem. 1998, 46(7), 2590–2595. DOI: 10.1021/jf971097k.
  • Charlton, A. J.; Baxter, N. J.; Khan, M. L.; Moir, A. J.; Haslam, E.; Davies, A. P.; Williamson, M. P. Polyphenol/Peptide Binding and Precipitation. J. Agric. Food Chem. 2002, 50(6), 1593–1601. DOI: 10.1021/jf010897z.
  • Arsad, S. S.; Zainudin, M. A. M.; De Gobba, C.; Jongberg, S.; Larsen, F. H.; Lametsch, R.; Andersen, M. L.; Lund, M. N. Quantitation of Protein Cysteine–phenol Adducts in Minced Beef Containing 4-Methyl Catechol. J. Agric. Food Chem. 2020, 68(8), 2506–2515. DOI: 10.1021/acs.jafc.9b07752.
  • Cheng, J.; Xiang, R.; Tang, D.; Zhu, M.; Liu, X. Regulation of Protein Oxidation in Cantonese Sausages by Rutin, Quercetin and Caffeic Acid. Meat Sci. 2021, 175, 108422. DOI: 10.1016/j.meatsci.2020.108422.
  • Wang, Z.; He, Z.; Zhang, D.; Li, H. Antioxidant Activity of Purslane Extract and Its Inhibitory Effect on the Lipid and Protein Oxidation of Rabbit Meat Patties During Chilled Storage. J. Sci. Food Agric. 2020, 101, 1953–1962. DOI: 10.1002/jsfa.10811.
  • Mocherla, B.; Xavier, K. A. M.; Dhanabalan, V.; Nayak, B.; Balange, A. Development of Ready-To-Cook Shrimp Analogue from Surimi: Effect of Natural Plant Extracts on the Chemical Quality During Refrigerated Storage. LWT- Food Sci. Technol. 2020, 135, 110239.
  • Jia, N.; Zhang, F.; Liu, Q.; Wang, L.; Lin, S.; Liu, D. The Beneficial Effects of Rutin on Myofibrillar Protein Gel Properties and Related Changes in Protein Conformation. Food Chem. 2019, 301, 125206. DOI: 10.1016/j.foodchem.2019.125206.
  • Jia, N.; Wang, L.; Shao, J.; Liu, D.; Kong, B. Changes in the Structural and Gel Properties of Pork Myofibrillar Protein Induced by Catechin Modification. Meat Sci. 2017, 127, 45–50. DOI: 10.1016/j.meatsci.2017.01.004.
  • Xu, Q.; Yu, Z.; Zeng, W. Structural and Functional Modifications of Myofibrillar Protein by Natural Phenolic Compounds and Their Application in Pork Meatball. Food Res. Int. 2021, 148, 110593. DOI: 10.1016/j.foodres.2021.110593.
  • Bortnowska, G.; Przybylska, S.; Iwański, R. Physicochemical Properties, Oxidative Stability and Antioxidant Capacity of Clean Label Meat-Based Sauces: Effects of Phenolic Extracts Addition and Cold Storage. J. Food Sci. Technol. 2021, 58, 110–120. DOI: 10.1007/s13197-020-04519-x.
  • Utrera, M.; Morcuende, D.; Ganhao, R.; Estevez, M. Role of Phenolics Extracting from Rosa Canina L. On Meat Protein Oxidation During Frozen Storage and Beef Patties Processing. Food Bioprocess. Technol. 2015, 8(4), 854–864. DOI: 10.1007/s11947-014-1450-3.
  • Turgut, S. S.; Isikci, F.; Soyer, A. Antioxidant Activity of Pomegranate Peel Extract on Lipid and Protein Oxidation in Beef Meatballs During Frozen Storage. Meat Sci. 2017, 129, 111–119. DOI: 10.1016/j.meatsci.2017.02.019.
  • Ozen, B. O.; Soyer, A. Effect of Plant Extracts on Lipid and Protein Oxidation of Mackerel (Scomber scombrus) Mince During Frozen Storage. J. Food Sci. Technol. Mysore. 2018, 55(1), 120–127. DOI: 10.1007/s13197-017-2847-6.
  • O’Sullivan, M. G. The Stability and Shelf Life of Meat and Poultry. Food and Beverage Stability and Shelf Life, Kilcast, D., Subramaniam, P.(eds.). Cambridge: Woodhead Publishing, 2011; p 793–816.
  • McMillin, K. W. Where is MAP Going? A Review and Future Potential of Modified Atmosphere Packaging for Meat. Meat Sci. 2008, 80(1), 43–65. DOI: 10.1016/j.meatsci.2008.05.028.
  • Suman, S. P.; Hunt, M. C.; Nair, M. N.; Rentfrow, G. Improving Beef Color Stability: Practical Strategies and Underlying Mechanisms. Meat Sci. 2014, 98(3), 490–504. DOI: 10.1016/j.meatsci.2014.06.032.
  • Jongberg, S.; Tørngren, M. A.; Skibsted, L. H. Dose-Dependent Effects of Green Tea or Maté Rxtracts on Lipid and Protein Oxidation in Brine-Injected Retail-Packed Pork Chops. Medicines. 2018, 5(1), 108849.
  • Jongberg, S.; Tørngren, M. A.; Skibsted, L. H. Protein Oxidation and Sensory Quality of Brine-Injected Pork Loins Added Ascorbate or Extracts of Green Tea or Maté During Chill-Storage in High-Oxygen Modified Atmosphere. Medicines. 2018, 5(1), 7.
  • Zainudin, M. A. M.; Jongberg, S.; Lund, M. N. Combination of Light and Oxygen Accelerates Formation of Covalent Protein-Polyphenol Bonding During Chill Storage of Meat Added 4-Methyl Catechol. Food Chem. 2021, 334, 127611. DOI: 10.1016/j.foodchem.2020.127611.
  • Rattaya, S.; Benjakul, S.; Prodpran, T. Properties of Fish Skin Gelatin Film Incorporated with Seaweed Extract. J. Food Eng. 2009, 95(1), 151–157. DOI: 10.1016/j.jfoodeng.2009.04.022.
  • Dai, H.; Chen, X.; Peng, L.; Ma, L.; Sun, Y.; Li, L.; Wang, Q.; Zhang, Y. The Mechanism of Improved Myosin Gel Properties by Low Dose Rosmarinic Acid Addition During Gel Formation. Food Hydrocolloids. 2020, 106, 105869. DOI: 10.1016/j.foodhyd.2020.105869.
  • Buamard, N.; Benjakul, S. Improvement of Gel Properties of Sardine (Sardinella albella) Surimi Using Coconut Husk Extracts. Food Hydrocolloids. 2015, 51, 146–155. DOI: 10.1016/j.foodhyd.2015.05.011.
  • Meshre, S. D.; Patange, S.; Shah, S.; Sawant, S.; Wasave, S. Effect of Groundnut Husk Extract on Functional Characteristics of Pink Perch (Nemipterus japonicus) Surimi. J. Entomol. Zool. Stud. 2019, 7(4), 665–668.
  • Soria, A. C.; Villamiel, M. Effect of Ultrasound on the Technological Properties and Bioactivity of Food: A Review. Trends Food Sci. Technol. 2010, 21(7), 323–331. DOI: 10.1016/j.tifs.2010.04.003.
  • Chen, J.; Zhang, X.; Chen, Y.; Zhao, X.; Anthony, B.; Xu, X. Effects of Different Ultrasound Frequencies on the Structure, Rheological and Functional Properties of Myosin: Significance of Quorum Sensing. Ultrason. Sonochem. 2020, 69, 105268. DOI: 10.1016/j.ultsonch.2020.105268.
  • Gülseren, İ.; Güzey, D.; Bruce, B. D.; Weiss, J. Structural and Functional Changes in Ultrasonicated Bovine Serum Albumin Solutions. Ultrason. Sonochem. 2007, 14(2), 173–183. DOI: 10.1016/j.ultsonch.2005.07.006.
  • Pan, J.; Lian, H.; Jia, H.; Li, S.; Hao, R.; Wang, Y.; Zhang, X.; Dong, X. Ultrasound Treatment Modified the Functional Mode of Gallic Acid on Properties of Fish Myofibrillar Protein. Food Chem. 2020, 320, 126637. DOI: 10.1016/j.foodchem.2020.126637.
  • Li, Y.; Li, Y.; Li, Q.; Lv, Y.; Yi, S. Effects of Gallic Acid by Ultrasound on Physicochemical Properties of Lateolabrax Japonicas Myofibrillar Protein. E3S Web of Conf. 2021, 251, 02043. DOI: 10.1051/e3sconf/202125102043.
  • Chen, J.; Zhang, X.; Fu, M.; Chen, X.; Pius, B. A.; Xu, X. Ultrasound-Assisted Covalent Reaction of Myofibrillar Protein: The Improvement of Functional Properties and Its Potential Mechanism. Ultrason. Sonochem. 2021, 76, 105652. DOI: 10.1016/j.ultsonch.2021.105652.
  • Hermund, D. B.; Plaza, M.; Turner, C.; Jónsdóttir, R.; Kristinsson, H. G.; Jacobsen, C.; Nielsen, K. F. Structure Dependent Antioxidant Capacity of Phlorotannins from Icelandic Fucus Vesiculosus by UHPLC-DAD-ECD-QTOFMS. Food Chem. 2018, 240, 904–909. DOI: 10.1016/j.foodchem.2017.08.032.
  • Jiang, D.; Shen, P.; Pu, Y.; Jin, M.; Yu, C.; Qi, H. Enhancement of Gel Properties of Scomberomorus Niphonius Myofibrillar Protein Using Phlorotannin Extracts Under UVA Irradiation. J. Food Sci. 2020, 85(7), 2050–2059. DOI: 10.1111/1750-3841.15311.
  • Liu, X.; Feng, D.; Ji, L.; Zhang, T.; Xue, Y.; Xue, C. Effects of Microwave Heating on the Gelation Properties of Heat-Induced Alaska Pollock (Theragra chalcogramma) Surimi. Food Sci. Technol. Int. 2018, 24(6), 497–506. DOI: 10.1177/1082013218768411.
  • Wang, C.; Jiang, D.; Sun, Y.; Gu, Y.; Ming, Y.; Zheng, J.; Yu, C.; Chen, X.; Qi, H. Synergistic Effects of UVA Irradiation and Phlorotannin Extracts of Laminaria Japonica on Properties of Grass Carp Myofibrillar Protein Gel. J. Sci. Food Agric. 2021, 101(7), 2659–2667. DOI: 10.1002/jsfa.10890.
  • Lu, C.; Wang, W.; Lin, W.; Han, Z.; Yao, S.; Lin, N. Generation and Photosensitization Properties of the Oxidized Radical of Riboflavin: A Laser Flash Photolysis Study. J. Photochem. Photobiol. B Biol. 1999, 52(1), 111–116. DOI: 10.1016/S1011-1344(99)00111-6.
  • He, B.; Ming, Y.; Pu, Y.; Sun, Y.; Jin, M.; Yu, C.; Qi, H. The Dual Effects of Riboflavin and Kelp Polyphenol Extracts on the Gel Properties of Myofibrillar Protein from Scomberomorus Niphonius Under UVA Irradiation. Food Chem. 2020, 332, 127373. DOI: 10.1016/j.foodchem.2020.127373.
  • Liu, F.; Ma, C.; Gao, Y.; McClements, D. J. Food‐grade Covalent Complexes and Their Application as Nutraceutical Delivery Systems: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16(1), 76–95. DOI: 10.1111/1541-4337.12229.
  • Rohn, S.; Rawel, H. M.; Kroll, J. Antioxidant Activity of Protein-Bound Quercetin. J. Agric. Food Chem. 2004, 52(15), 4725–4729. DOI: 10.1021/jf0496797.
  • Prodpran, T.; Benjakul, S.; Phatcharat, S. Effect of Phenolic Compounds on Protein Cross-Linking and Properties of Film from Fish Myofibrillar Protein. Int. J. Biol. Macromol. 2012, 51(5), 774–782. DOI: 10.1016/j.ijbiomac.2012.07.010.
  • Nie, X.; Gong, Y.; Wang, N.; Meng, X. Preparation and Characterization of Edible Myofibrillar Protein-Based Film Incorporated with Grape Seed Procyanidins and Green Tea Polyphenol. LWT - Food Sci. Technol. 2015, 64(2), 1042–1046. DOI: 10.1016/j.lwt.2015.07.006.
  • Nie, X.; Zhao, L.; Wang, N.; Meng, X. Phenolics-Protein Interaction Involved in Silver Carp Myofibrilliar Protein Films with Hydrolysable and Condensed Tannins. LWT - Food Sci. Technol. 2017, 81, 258–264. DOI: 10.1016/j.lwt.2017.04.011.
  • Chen, K.; Chen, X.; Liang, L.; Xu, X. Gallic Acid-Aided Cross-Linking of Myofibrillar Protein Fabricated Soluble Aggregates for Enhanced Thermal Stability and a Tunable Colloidal State. J. Agric. Food Chem. 2020, 68(41), 11535–11544. DOI: 10.1021/acs.jafc.0c02059.
  • Zhou, F.; Jongberg, S.; Zhao, M.; Sun, W.; Skibsted, L. H. Antioxidant Efficiency and Mechanisms of Green Tea, Rosemary or Mate Extracts in Porcine Longissimus Dorsi Subjected to Iron-Induced Oxidative Stress. Food Chem. 2019, 298, 125030. DOI: 10.1016/j.foodchem.2019.125030.
  • Comporti, M.; Signorini, C.; Buonocore, G.; Ciccoli, L. Iron Release, Oxidative Stress and Erythrocyte Ageing. Free Radical Biol. Med. 2002, 32(7), 568–576. DOI: 10.1016/S0891-5849(02)00759-1.
  • Lund, M. N.; Heinonen, M.; Baron, C. P.; Estévez, M. Protein Oxidation in Muscle Foods: A Review. Mol. Nutr. Food Res. 2011, 55(1), 83–95. DOI: 10.1002/mnfr.201000453.
  • Rysman, T.; Van Hecke, T.; De Smet, S.; Van Royen, G. Ascorbate and Apple Phenolics Affect Protein Oxidation in Rmulsion-Type Sausages During Storage and in vitro Digestion. J. Agric. Food Chem. 2016, 64(20), 4131–4138. DOI: 10.1021/acs.jafc.6b00437.
  • Xiong, Y. L.; Blanchard, S. P.; Ooizumi, T.; Ma, Y. Hydroxyl Radical and Ferryl‐generating Systems Promote Gel Network Formation of Myofibrillar Protein. J. Food Sci. 2010, 75(2), 215–221. DOI: 10.1111/j.1750-3841.2009.01511.x.
  • Li, X.; Liu, C.; Wang, J.; Li, W.; Lin, B.; Zhu, W.; Xu, Y.; Yi, S.; Mi, H.; Li, J. Tea Polyphenols Affect Oxidative Modification and Solution Stability of Myofibrillar Protein from Grass Carp (Ctenopharyngodon idellus). Food Biophys. 2020, 15(4), 397–408. DOI: 10.1007/s11483-020-09635-x.
  • Guo, X.; Qiu, H.; Deng, X.; Mao, X.; Guo, X.; Xu, C.; Zhang, J. Effect of Chlorogenic Acid on the Physicochemical and Functional Properties of Coregonus Peled Myofibrillar Protein Through Hydroxyl Radical Oxidation. Molecules. 2019, 24(17), 3205. DOI: 10.3390/molecules24173205.
  • Chen, L.; Lei, N.; Wang, S.; Xu, X.; Zhou, G.; Li, Z.; Feng, X. Emulsifying Properties of Oxidatively Stressed Myofibrillar Protein Emulsion Gels Prepared with (-)-Epigallocatechin-3-Gallate and NaCi. J. Agric. Food Chem. 2017, 65(13), 2816–2826. DOI: 10.1021/acs.jafc.6b05517.
  • Wang, S.; Zhang, Y.; Chen, L.; Xu, X.; Zhou, G.; Li, Z.; Feng, X. Dose-Dependent Effects of Rosmarinic Acid on Formation of Oxidatively Stressed Myofibrillar Protein Emulsion Gel at Different NaCl Concentrations. Food Chem. 2018, 243, 50–57. DOI: 10.1016/j.foodchem.2017.09.114.
  • Xu, M.; Sun, M.; Lu, C.; Han, Y.; Yao, X.; Niu, X.; Xu, M.; Zhu, Q. Influence of Epicatechin on Oxidation-Induced Physicochemical and Digestibility Changes in Porcine Myofibrillar Proteins During Refrigerated Storage. J. Sci. Food Agric. 2021, 101(2), 746–753.
  • Tang, C.; Zhang, W.; Zou, Y.; Xing, L.; Zheng, H.; Xu, X.; Zhou, G. Influence of RosA-Protein Adducts Formation on Myofibrillar Protein Gelation Properties Under Oxidative Stress. Food Hydrocolloids. 2017, 67, 197–205. DOI: 10.1016/j.foodhyd.2017.01.006.
  • Cao, Y.; True, A. D.; Chen, J.; Xiong, Y. L. Dual Role (Anti- and Pro-Oxidant) of Gallic Acid in Mediating Myofibrillar Protein Gelation and Gel in vitro Digestion. J. Agric. Food Chem. 2016, 64(15), 3054–3061. DOI: 10.1021/acs.jafc.6b00314.
  • Vandemoortele, A.; De Meulenaer, B. Behavior of Malondialdehyde in Oil-In-Water Emulsions. J. Agric. Food Chem. 2015, 63(23), 5694–5701. DOI: 10.1021/acs.jafc.5b01780.
  • Wang, L.; Zhang, M.; Fang, Z.; Bhandari, B. Gelation Properties of Myofibrillar Protein Under Malondialdehyde-Induced Oxidative Stress. J. Sci. Food Agric. 2017, 97(1), 50–57. DOI: 10.1002/jsfa.7680.
  • Wang, L.; Zhang, M.; Bhandari, B.; Gao, Z. Effects of Malondialdehyde-Induced Protein Modification on Water Functionality and Physicochemical State of Fish Myofibrillar Protein Gel. Food Res. Int. 2016, 86, 131–139. DOI: 10.1016/j.foodres.2016.06.007.
  • Lv, Y.; Feng, X.; Wang, Y.; Guan, Q.; Qian, S.; Xu, X.; Zhou, G.; Ullah, N.; Chen, L. The Gelation Properties of Myofibrillar Proteins Prepared with Malondialdehyde and (−)-Epigallocatechin-3-Gallate. Food Chem. 2021, 340, 127817. DOI: 10.1016/j.foodchem.2020.127817.
  • Cheng, J.; Tang, D.; Yang, H.; Wang, X.; Zhu, M.; Liu, X. The Dose-Dependent Effects of Polyphenols and Malondialdehyde on the Emulsifying and Gel Properties of Myofibrillar Protein-Mulberry Polyphenol Complex. Food Chem. 2021, 360, 130005. DOI: 10.1016/j.foodchem.2021.130005.
  • Jongberg, S.; Racanicci, A. M.; Skibsted, L. H. Mate Extract is Superior to Green Tea Extract in the Protection Against Chicken Meat Protein Thiol Oxidation. Food Chem. 2019, 300, 125134. DOI: 10.1016/j.foodchem.2019.125134.
  • Martinez, L.; Jongberg, S.; Ros, G.; Skibsted, L. H.; Nieto, G. Plant Derived Ingredients Rich in Nitrates or Phenolics for Protection of Pork Against Protein Oxidation. Food Res. Int. 2020, 129, 108789. DOI: 10.1016/j.foodres.2019.108789.
  • Selinheimo, E.; Lampila, P.; Mattinen, M.-L.; Buchert, J. Formation of Protein−oligosaccharide Conjugates by Laccase and Tyrosinase. J. Agric. Food Chem. 2008, 56(9), 3118–3128. DOI: 10.1021/jf0730791.
  • Vate, N. K.; Benjakul, S. Combined Effect of Squid Ink Tyrosinase and Tannic Acid on Heat Induced Aggregation of Natural Actomyosin from Sardine. Food Hydrocolloids. 2016, 56, 62–70. DOI: 10.1016/j.foodhyd.2015.12.009.
  • Guo, A.; Xiong, Y. Glucose Oxidase Promotes Gallic Acid-Myofibrillar Protein Interaction and Thermal Gelation. Food Chem. 2019, 293, 529–536. DOI: 10.1016/j.foodchem.2019.05.018.
  • Toldrá, F.; Reig, M.; Mora, L. Management of Meat By- and Co-Products for an Improved Meat Processing Sustainability. Meat Sci. 2021, 181, 108608. DOI: 10.1016/j.meatsci.2021.108608.
  • Baldi, G.; Soglia, F.; Petracci, M. Food Waste Recovery, Second ed.; Academic Press: San Diego, 2021; p 419–443.
  • Chen, X.; Liang, L.; Xu, X. Advances in Converting of Meat Protein into Functional Ingredient via Engineering Modification of High Pressure Homogenization. Trends Food Sci. Technol. 2020, 106, 12–29. DOI: 10.1016/j.tifs.2020.09.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.