381
Views
3
CrossRef citations to date
0
Altmetric
Review

Ozonation as a Potential Approach for Pesticide and Microbial Detoxification of Food Grains with a Focus on Nutritional and Functional Quality

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ziuzina, D.; van Cleynenbreugel, R.; Tersaruolo, C., and Bourke, P. Cold Plasma for Insect Pest Control: Tribolium Castaneum Mortality and Defense Mechanisms in Response to Treatment. Plasma Processes Polym. 2021, 18(10), 1–12.
  • Kumar, D.; Kalita, P. Reducing Postharvest Losses During Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods. 2017, 6(1), 8. DOI: 10.3390/foods6010008.
  • Kitinoja, L.; Tokala, V.Y., and Brondy, A. Challenges and Opportunities for Improved Postharvest Loss Measurements in Plant-Based Food Crops. J. Postharvest Technol. 2018, 6(4), 16–34.
  • Nath, N.S.; Bhattacharya, I.; Tuck, A.G.; Schlipalius, D.I.; Ebert, P.R. Mechanisms of Phosphine Toxicity. J. Toxicol. 2011, 2011, 1–9. DOI: 10.1155/2011/494168.
  • Paul, A.; Radhakrishnan, M.; Anandakumar, S.; Shanmugasundaram, S.; Anandharamakrishnan, C. Disinfestation Techniques for Major Cereals: A Status Report. Compr. Rev. Food Sci. Food Saf. 2020, 19(3), 1125–1155. DOI: 10.1111/1541-4337.12555.
  • Collins, P.J.; Daglish, G.J.; Pavic, H.; Kopittke, R.A. Response of Mixed-Age Cultures of Phosphine-Resistant and Susceptible Strains of Lesser Grain Borer, Rhyzopertha Dominica, to Phosphine at a Range of Concentrations and Exposure Periods. J. Stored Prod. Res. 2005, 41(4), 373–385. DOI: 10.1016/j.jspr.2004.05.002.
  • Pimentel, M.A.G.; Faroni, L.R.D.; Batista, M.D.; da Silva, F.H. Resistance of Stored-Product Insects to Phosphine. Pesquisa Agropecuária Bras. 2008, 43(12), 1671–1676. DOI: 10.1590/S0100-204X2008001200005.
  • Remondino, M., and Valdenassi, L. Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study. Sustainability (Switzerland). 2018, 10(12), 1–8. DOI: 10.3390/su10124783.
  • Batakliev, T.; Georgiev, V.; Anachkov, M.; Rakovsky, S.; Zaikov, G.E. Ozone Decomposition. Interdiscip. Toxicol. 2014, 7(2), 47–59. DOI: 10.2478/intox-2014-0008.
  • de Ávila, M.B.R.; Faroni, L.R.A.; Heleno, F.F.; de Queiroz, M.E.L.R.; Costa, L.P. Ozone as Degradation Agent of Pesticide Residues in Stored Rice Grains. J. Food Sci. Technol. 2017, 54(12), 4092–4099. DOI: 10.1007/s13197-017-2884-1.
  • Savi, G.D.; Gomes, T.; Canever, S.B.; Feltrin, A.C.; Piacentini, K.C.; Scussel, R.; Oliveira, D.; Machado-de-Ávila, R. A.; Cargnin, M.; Angioletto, E., et al. Application of Ozone on Rice Storage: A Mathematical Modeling of the Ozone Spread, Effects in the Decontamination of Filamentous Fungi and Quality Attributes. J. Stored Prod. Res. 2020, 87, 101605. DOI: 10.1016/j.jspr.2020.101605.
  • Savi, G.D.; Piacentini, K.C.; Bittencourt, K.O.; Scussel, V.M. Ozone Treatment Efficiency on Fusarium Graminearum and Deoxynivalenol Degradation and Its Effects on Whole Wheat Grains (Triticum Aestivum L.) Quality and Germination. J. Stored Prod. Res. 2014, 59, 245–253. DOI: 10.1016/j.jspr.2014.03.008.
  • N, C.; Mohapatra, D.; Kar, A.; Giri, S.K.; Verma, U.S., and Sharma, Y. Delineating the Effect of Gaseous Ozone on Disinfestation Efficacy, Protein Quality, Dehulling Efficiency, Cooking Time and Surface Morphology of Chickpea Grains During Storage. J. Stored Prod. Res. 2021, 93, 101823. DOI: 10.1016/j.jspr.2021.101823.
  • Wu, J.; Doan, H.; Cuenca, A. Investigation of Gaseous Ozone as an Anti-Fungal Fumigant for Stored Wheat. J. Chem. Technol. Biotechnol. 2006, 81(7), 1288–1293. DOI: 10.1002/jctb.1550.
  • Sousa, A.H.; Faroni, L.R.A.; Silva, G.N.; Guedes, R.N.C. Ozone Toxicity and Walking Response of Populations of Sitophilus Zeamais (Coleoptera: Curculionidae). J. Econ. Entomol. 2012, 105(6), 2187–2195. DOI: 10.1603/EC12218.
  • Srivastava, S.; Mishra, G.; Mishra, H.N. Vulnerability of Different Life Stages of Sitophilus Oryzae Insects in Stored Rice Grain to Ozone Treatment and Its Effect on Physico-Chemical Properties in Rice Grain. Food Front. 2021, 2(4), 494–507. DOI: 10.1002/fft2.89.
  • de Oliveira, J.M.; de Alencar, E.R.; Blum, L.E.B.; de Souza Ferreira, W.F.; de Botelho, S. C.; Racanicci, A.M.C.; Santos Leandro, E. D.; Mendonça, M. A.; Moscon, E. S.; Bizerra, L. V. A. D. S., et al. Ozonation of Brazil Nuts: Decomposition Kinetics, Control of Aspergillus Flavus and the Effect on Color and on Raw Oil Quality. LWT - Food Sci. Technol. 2020, 123, 109106. DOI: 10.1016/j.lwt.2020.109106.
  • McDonough, M. X.; Mason, L.J.; Woloshuk, C. P. Susceptibility of Stored Product Insects to High Concentrations of Ozone at Different Exposure Intervals. J. Stored Prod. Res. 2011, 47(4), 306–310. DOI: 10.1016/j.jspr.2011.04.003.
  • Kim, J. G.; Yousef, A. E.; Khadre, M. A. Ozone and Its Current and Future Application in the Food Industry. Advan in Food Nut. Res. 2003, 45, 167–218.
  • Vurma, M. Development of Ozone-Based Processing for Decontamination of Fresh Produce to Enhance Safety and Extend Shelflife. Ph.D. Dissertation, The Ohio State University, U.S.A., 2009.
  • Sarron, E.; Gadonna-Widehem, P.; Aussenac, T. Ozone Treatments for Preserving Fresh Vegetables Quality: A Critical Review. Foods. 2021, 10(3), 605. DOI: 10.3390/foods10030605.
  • Balawejder, M.; Antos, P.; Sadło, S. Potential of Ozone Utilization for Reduction of Pesticide Residue in Food of Plant Origin. A Review. Roczniki Państwowego Zakładu Higieny. 2013, 64(1), 13–18.
  • Rakovsky, S.; Anachkov, M.; Belitskii, M.; Zaikov, G. Kinetics and Mechanism of the Ozone Reaction with Alcohols, Ketones, Ethers and Hydroxybenzenes. Chemi. Chem. Technol. 2016, 10(4s), 531–551. DOI: 10.23939/chcht10.04si.531.
  • Tiwari, B.K.; Brennan, C.S.; Curran, T.; Gallagher, E.; Cullen, P.J.; O’ Donnell, C.P. Application of Ozone in Grain Processing. J. Cereal Sci. 2010, 51(3), 248–255. DOI: 10.1016/j.jcs.2010.01.007.
  • Zhang, X.; Lee, B.J.; Im, H.G.; Cha, M.S. Ozone Production with Dielectric Barrier Discharge: Effects of Power Source and Humidity. IEEE Trans. Plasma Sci. 2016, 44(10), 2288–2296. DOI: 10.1109/TPS.2016.2601246.
  • Wei, C.; Zhang, F.; Hu, Y.; Feng, C.; Wu, H. Ozonation in Water Treatment: The Generation, Basic Properties of Ozone and Its Practical Application. Rev. Chem. Eng. 2017, 33(1), 49–89. DOI: 10.1515/revce-2016-0008.
  • Basiriparsa, J.; Abbasi, M. High-Efficiency Ozone Generation via Electrochemical Oxidation of Water Using Ti Anode Coated with Ni–sb–sno2. J. Solid State Electrochem. 2012, 16(3), 1011–1018. DOI: 10.1007/s10008-011-1440-6.
  • Premjit, Y.; Sruthi, N.U.; Pandiselvam, R.; Kothakota, A. Aqueous Ozone: Chemistry, Physiochemical Properties, Microbial Inactivation, Factors Influencing Antimicrobial Effectiveness, and Application in Food. Compr. Rev. Food Sci. Food Saf. 2022, 21(2), 1054–1085. DOI: 10.1111/1541-4337.12886.
  • Okada, F., and Nay, K. Electrolysis for Ozone Water Production. In Electrolysis; Janis Kleperis, London, UK: IntechOpen, 2012; pp.243–272.
  • Hoigné, J.; Bader, H. The Role of Hydroxyl Radical Reactions in Ozonation Processes in Aqueous Solutions. Water Res. 1976, 10(5), 377–386. DOI: 10.1016/0043-1354(76)90055-5.
  • Radhakrishnan, R. Structure and Ozone Decomposition Reactivity of Supported Manganese Oxide Catalysts; Virginia Polytechnic Institute and State University: Blacksburg, Virginia, 2001.
  • Souza, S. R.; Pagliuso, J. D. Design and Assembly of an Experimental Laboratory for the Study of Atmosphere–plant Interactions in the System of Fumigation Chambers. Environ. Monit. Assess. 2009, 158(1–4), 243–249. DOI: 10.1007/s10661-008-0578-x.
  • Bonjour, E. L.; Opit, G. P.; Hardin, J.; Jones, C. L.; Payton, M. E.; Beeby, R. L. Efficacy of Ozone Fumigation Against the Major Grain Pests in Stored Wheat. J. Econ. Entomol. 2011, 104(1), 308–316. DOI: 10.1603/EC10200.
  • Gad, H.A.; Abo Laban, G.F.; Metwaly, K.H.; Al-Anany, F.S.; Abdelgaleil, S.A.M. Efficacy of Ozone for Callosobruchus Maculatus and Callosobruchus Chinensis Control in Cowpea Seeds and Its Impact on Seed Quality. J. Stored Prod. Res. 2021, 92, e101786. DOI: 10.1016/j.jspr.2021.101786.
  • Abdelghaffar, M.; Mohamed, A.; Ibrahim, H.; Gad, H. Effect of Ozone on a Serious Wheat Pest, Sitotroga Cerealella (Olivier) and Its Progeny. Egypt. Acad. J. Biol. Sci. 2016, 99, 1–13.
  • Proctor, A.D.; Ahmedna, M.; Kumar, J. V.; Goktepe, I. Degradation of Aflatoxins in Peanut Kernels/flour by Gaseous Ozonation and Mild Heat Treatment. Food Add. Contam. 2004, 21(8), 786–793. DOI: 10.1080/02652030410001713898.
  • Throne, J.; Baker, J.; Messina, F.; Kramer, K., and Howard, J. Varietal Resistance. In Alternatives to Pesticides in Stored-Product IPM; Subramanyam, B., Hagstrum, D.W., Eds.; Boston, MA. Springer. 165–192. 2000.
  • Sousa, A.; Faroni, L.; De, A.; Pereira, M.; Da, F.; Cardoso, S., and Heberle, E. Influence of Grain Mass Temperature on Ozone Toxicity to Sitophilus Zeamais (Coleoptera: Curculionidae). 9th International Working Conference on Stored Product Protection. Campinas, São Paulo, Brazil, 2006.
  • Weavers, L.; Wickramanayake, G.B. Disinfection and sterilization using ozone; Disinfection, Sterilization and Preservation.Lipincott Williams and Willikons: Philladelphis, P.A., U.S.A., 2001.
  • Khurana, A. Ozone Treatment for Prevention of Microbial Growth in Air Conditioning Systems. M.E. Thesis, University of Florida, U.S.A., 2003.
  • Fatima, A.; Singh, A.; Mukherjee, A.; Agrawal, M., and Agrawal, S. Variability in Defence Mechanism Operating in Three Wheat Cultivars Having Different Levels of Sensitivity Against Elevated Ozone. Environ. & Experiment. Bot. 2018, 155.
  • Alugoju, P.; Jestadi, D.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2014, 30(1), 11–26. DOI: 10.1007/s12291-014-0446-0.
  • Khadre, M.A.; Yousef, A.E.; Kim, J.G. Microbiological Aspects of Ozone Applications in Food: A Review. J. Food Sci. 2001, 66(9), 1242–1252. DOI: 10.1111/j.1365-2621.2001.tb15196.x.
  • Pereira, A.; Faroni, L.; Júnior, A.G.; Sousa, A.; Paes, J. Viabilidade Econômica Do Gás Ozônio Como Fumigante Em Grãos de Milho Armazenados. Revista Engenharia na Agricultura – REVENG. 2008, 16(2), 144–154. DOI: 10.13083/1414-3984.v16n02a02.
  • Hardin, J.; Jones, C.; Bonjour, E.; Noyes, R.T.; Beeby, R.L.; Eltiste, D.A., Decker, S.; et al. Ozone Fumigation of Stored Grain; Closed-Loop Recirculation and Rate of Ozone Consumption. J. Stored Prod. Res. 2010, 46(3), 149–154.
  • Moore, M. J., and Maier, D. Half-Life Time of Ozone as a Function of Air Conditions and Movement. Julius-Kühn-Archiv2010. 377–380, DOI: 10.5073/jka.2010.425.167.326.
  • de Alencar, E.R.; Faroni, L.R.D.; Martins, M.A.; da Costa, A.R.; Cecon, P.R. Decomposition Kinetics of Gaseous Ozone in Peanuts. Eng. Agric. 2011, 31(5), 930–939.
  • Silva, M.; Faroni, L.; Sousa, A.; Abreu, A., Abreu, A. O. Kinetics of the Ozone Gas Reaction in Popcorn Kernels. J. Stored Prod. Res. 2019, 83, 168–175. DOI: 10.1016/j.jspr.2019.06.014.
  • Mahroof, R.M.; Amoah, B.A.; Wrighton, J. Efficacy of Ozone Against the Life Stages of Oryzaephilus Mercator (Coleoptera: Silvanidae). J. Econ. Entomol. 2018, 111(1), 470–481. DOI: 10.1093/jee/tox293.
  • Isikber, A.A.; Athanassiou, C.G. The Use of Ozone Gas for the Control of Insects and Micro-Organisms in Stored Products. J. Stored Prod. Res. 2015, 64, 139–145. DOI: 10.1016/j.jspr.2014.06.006.
  • Shah, N.N.A.K.; Rahman, R.A.; Hashim, D.M. Changes in Physicochemical Characteristics of Ozone-Treated Raw White Rice. J. Food Sci. Technol. 2015, 52(3), 1525–1533. DOI: 10.1007/s13197-013-1111-y.
  • Ikeura, H.; Kobayashi, F.; Tamaki, M. Ozone Microbubble Treatment at Various Water Temperatures for the Removal of Residual Pesticides with Negligible Effects on the Physical Properties of Lettuce and Cherry Tomatoes. J. Food Sci. Technol. 2013, 78(2), 350–355.
  • Takahashi, M.; Ishikawa, H.; Asano, T.; Horibe, H. Effect of Microbubbles on Ozonized Water for Photoresist Removal. J. Phys. Chem. C. 2012, 116(23), 12578–12583. DOI: 10.1021/jp301746g.
  • Lin, L.; Xie, M.; Liang, Y.; He, Y.; Sing Chan, G.Y.; Luan, T. Degradation of Cypermethrin, Malathion and Dichlorovos in Water and on Tea Leaves with O3/uv/tio2 Treatment. Food Cont. 2012, 28(2), 374–379. DOI: 10.1016/j.foodcont.2012.05.009.
  • Luo, X.; Wang, R.; Wang, L.; Li, Y.; Bian, Y.; Chen, Z. Effect of Ozone Treatment on Aflatoxin B1 and Safety Evaluation of Ozonized Corn. Food Cont. 2014, 37, 171–176. DOI: 10.1016/j.foodcont.2013.09.043.
  • Sunisha, K. Ozone Fumigation in Stored Paddy : Changes in Moisture Content Upon Storage. J. Entomol. Zool. Stud. 2019, 7(3), 1137–1140.
  • Qi, L.; Li, Y.; Luo, X.; Wang, R.; Zheng, R.; Wang, L.; Li, Y.; Yang, D.; Fang, W.; Chen, Z. Detoxification of Zearalenone and Ochratoxin a by Ozone and Quality Evaluation of Ozonised Corn. Food Addit. Contam Part a Chem. Anal. Control Expo. Risk Assess. 2016, 33(11), 1700–1710. DOI: 10.1080/19440049.2016.1232863.
  • Pandiselvam, R.; Thirupathi, V.; Chandrasekar, V.; Kothakota, A.; Anandakumar, S. Numerical Simulation and Validation of Mass Transfer Process of Ozone Gas in Rice Grain Bulks. Ozone Sci. Eng. 2018, 40(3), 191–197. DOI: 10.1080/01919512.2017.1404902.
  • Briggs, D. E.; Boulton, C. A.; Brookes, P. A.; Stevens, R. Brewing Science and Practice; Woodhead Publishing Limited: Abington Hall, Abington Cambridge, 1998.
  • Laca, A.; Mousia, Z.; Dı́az, M.; Webb, C.; Pandiella, S.S. Distribution of Microbial Contamination Within Cereal Grains. J. Food Eng. 2006, 72(4), 332–338. DOI: 10.1016/j.jfoodeng.2004.12.012.
  • van Nierop, S. N. E.; Rautenbach, M.; Axcell, B. C.; Cantrell, I. C. The Impact of Microorganisms on Barley and Malt Quality—a Review. J. Am. Soc. Brew. Chem. 2006, 64(2), 69–78. DOI: 10.1094/ASBCJ-64-0069.
  • Afsah-Hejri, L.; Hajeb, P.; Ehsani, R. J. Application of Ozone for Degradation of Mycotoxins in Food: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19(4), 1777–1808. DOI: 10.1111/1541-4337.12594.
  • Santos, R. R.; Faroni, L. R. D.; Cecon, P. R.; Ferreira, A. P. S.; Pereira, O. L. Ozone as Fungicide in Rice Grains. Rev. Bras. de Engenharia Agrícola E Ambiental. 2016, 20(3), 230–235. DOI: 10.1590/1807-1929/agriambi.v20n3p230-235.
  • Wang, L.; Shao, H.; Luo, X.; Wang, R.; Li, Y.; Li, Y.; Luo, Y.; Chen, Z. Effect of Ozone Treatment on Deoxynivalenol and Wheat Quality. PLoS One. 2016, 11(1), 1–13.
  • Kells, S. A.; Mason, L.; Maier, D. E.; Woloshuk, C. P. Efficacy and Fumigation Characteristics of Ozone in Stored Maize. J. Stored Prod. Res. 2001, 37(4), 371–382. DOI: 10.1016/S0022-474X(00)00040-0.
  • Allen, B.; Wu, J.; Doan, H. Inactivation of Fungi Associated with Barley Grain by Gaseous Ozone. J. Environ. Sci. Health B. 2003, 38(5), 617–630. DOI: 10.1081/PFC-120023519.
  • Aslam, R.; Alam, M. S.; Saeed, P. A. Sanitization Potential of Ozone and Its Role in Postharvest Quality Management of Fruits and Vegetables. Food Eng. Rev. 2020, 12(1), 48–67. DOI: 10.1007/s12393-019-09204-0.
  • İ̇banoǧlu, Ş. Influence of Tempering with Ozonated Water on the Selected Properties of Wheat Flour. J. Food Eng. 2001, 48(4), 345–350. DOI: 10.1016/S0260-8774(00)00177-1.
  • Restaino, L.; Frampton, E. W.; Hemphill, J. B.; Palnikar, P. Efficacy of Ozonated Water Against Various Food-Related Microorganisms. Appl. Environ. Microbiol. 1995, 61(9), 3471–3475. DOI: 10.1128/aem.61.9.3471-3475.1995.
  • Wani, S.; Maker, J. K.; Thompson, J. R.; Barnes, J.; Singleton, I. Effect of Ozone Treatment on Inactivation of Escherichia Coli and Listeria Sp. On Spinach. Agriculture (Switzerland). 2015, 5(2), 155–169.
  • Chappell, M. A.; Rogowitz, G. L. Mass, Temperature and Metabolic Effects on Discontinuous Gas Exchange Cycles in Eucalyptus-Boring Beetles (Coleoptera: Cerambycidae). J. Exp. Biol. 2000, 203(24), 3809–3820. DOI: 10.1242/jeb.203.24.3809.
  • Gibbs, A. G.; Johnson, R. A. The Role of Discontinuous Gas Exchange in Insects: The Chthonic Hypothesis Does Not Hold Water. J. Exp. Biol. 2004, 207(20), 3477–3482. DOI: 10.1242/jeb.01168.
  • Harrison, J. F. Chapter 256 - Tracheal System. In Resh VH, Cardé RTBTE of I, Second, E. Ed.; Academic Press: San Diego, 2009; pp 1011–1015.
  • Hollingsworth, R. G.; Armstrong, J. W. Potential of Temperature, Controlled Atmospheres, and Ozone Fumigation to Control Thrips and Mealybugs on Ornamental Plants for Export. J. Econ. Entomol. 2005, 98(2), 289–298. DOI: 10.1093/jee/98.2.289.
  • Keivanloo, E.; Namaghi, H. S.; Khodaparast, M. H. H. Effects of Low Ozone Concentrations and Short Exposure Times on the Mortality of Immature Stages of the Indian Meal Moth, Plodia Interpunctella (Lepidoptera: Pyralidae). J. Plant Prot. Res. 2014, 54(3), 267–271. DOI: 10.2478/jppr-2014-0040.
  • Sousa, A. H.; Faroni, L. R. D. A.; Guedes, R. N. C.; Tótola, M. R.; Urruchi, W. I. Ozone as a Management Alternative Against Phosphine-Resistant Insect Pests of Stored Products. J. Stored Prod. Res. 2008, 44(4), 379–385. DOI: 10.1016/j.jspr.2008.06.003.
  • González-Rodríguez, R.; Rial-Otero, R.; Cancho-Grande, B.; Gonzalez-Barreiro, C.; Simal-Gandara, J. A Review on the Fate of Pesticides During the Processes Within the Food-Production Chain. Crit. Rev. Food Sci. Nutr. 2011, 51(2), 99–114. DOI: 10.1080/10408390903432625.
  • Petersen, B. J. Pesticide Residues in Food: Problems and Data Needs. Regul. Toxicol. Pharmacol. 2000, 31(3), 297–299. DOI: 10.1006/rtph.2000.1395.
  • Wang, S.; Wang, J.; Wang, T.; Li, C.; Wu, Z. Effects of Ozone Treatment on Pesticide Residues in Food: A Review. Int. J. Food Sci. Technol. 2019, 54(2), 301–312. DOI: 10.1111/ijfs.13938.
  • Sharma, R.; Singh, A.; Sharma, S. Influence of Ozonation on Cereal Flour Functionality and Dough Characteristics: A Review. Ozone: Sci. Eng. 2021, 43(6), 613–636. DOI: 10.1080/01919512.2021.1898337.
  • Sudhakar, N.; D, N.P.; Mohan, N. A Preliminary Study on the Effects of Ozone Exposure on Growth of the Tomato Seedlings. Aust. J. Crop Sci. 2008, 2(1), 33–39.
  • Mendez, F.; Maier, D.E.; Mason, L.J.; Woloshuk, C.P. Penetration of Ozone into Columns of Stored Grains and Effects on Chemical Composition and Processing Performance. J. Stored Prod. Res. 2003, 39(1), 33–44. DOI: 10.1016/S0022-474X(02)00015-2.
  • Santos, J.; Martins, M.; Andrade, M.; Carvalho, M. Ozonization Process: Saturation Time, Decomposition Kinetics and Quality of Maize Grains (Zea Mays L.). Proceeding in IOA Conference and Exhibition Valencia, Spain, Oct 29–31, 2007.
  • Rozado, A. F.; Faroni, L. R. A.; Urruchi, W. M. I.; Guedes, R. N. C.; Paes, J. L. Ozone Application Against Sitophilus Zeamais and Tribolium Castaneum on Stored Maize. Rev. Bras. de Eng. Agricola E Ambient. 2008, 12(3), 282–285. DOI: 10.1590/S1415-43662008000300009.
  • Kottapalli, B.; Wolf-Hall, C.E.; Schwarz, P. Evaluation of Gaseous Ozone and Hydrogen Peroxide Treatments for Reducing Fusarium Survival in Malting Barley. J. Food Prot. 2005, 68(6), 1236–1240. DOI: 10.4315/0362-028X-68.6.1236.
  • Violleau, F.; Hadjeba, K.; Albet, J.; Cazalis, R.; Surel, O. Effect of Oxidative Treatment on Corn Seed Germination Kinetics. Ozone: Sci. Eng. 2008, 30(6), 418–422. DOI: 10.1080/01919510802474631.
  • Trombete, F.; Minguita, A.; Porto, Y.; Freitas-Silva, O.; Freitas-Sá, D.; Freitas, S., Carvalho, C., Saldanha, T., Fraga, M.; et al. Chemical, Technological, and Sensory Properties of Wheat Grains (Triticum Aestivum L) as Affected by Gaseous Ozonation. Int. J. Food. Prop. 2016, 19(12), 2739–2749.
  • Desvignes, C.; Chaurand, M.; Dubois, M.; Sadoudi, A.; Abecassis, J.; Lullien-Pellerin, V. Changes in Common Wheat Grain Milling Behavior and Tissue Mechanical Properties Following Ozone Treatment. J. Cereal Sci. 2008, 47(2), 245–251. DOI: 10.1016/j.jcs.2007.04.004.
  • Chittrakorn, S.; Earls, D.; MacRitchie, F. Ozonation as an Alternative to Chlorination for Soft Wheat Flours. J. Cereal Sci. 2014, 60(1), 217–221. DOI: 10.1016/j.jcs.2014.02.013.
  • Sandhu, H. P. S.; Manthey, F. A.; Simsek, S. Ozone Gas Affects Physical and Chemical Properties of Wheat (Triticum Aestivum L.) Starch. Carbohydr. Polym. 2012, 87(2), 1261–1268. DOI: 10.1016/j.carbpol.2011.09.003.
  • Srikaeo, K.; Furst, J. E.; Hosken, R. W.; Ashton, J. F. Physical Properties of Cooked Wheat Grains as Affected by Cooking Temperature and Duration. Int. J. Food. Prop. 2005, 8(3), 469–479. DOI: 10.1080/10942910500267547.
  • Gujral, H.; Kumar, V. Effect of Accelerated Aging on the Physicochemical and Textural Properties of Brown and Milled Rice. J. Food Engg. 2003, 59(2–3), 117–121. DOI: 10.1016/S0260-8774(02)00438-7.
  • Sirisoontaralak, P.; Noomhorm, A. Changes to Physicochemical Properties and Aroma of Irradiated Rice. J. Stored Prod. Res. 2005, 42(3), 264–276. DOI: 10.1016/j.jspr.2005.04.001.
  • Çatal, H.; İ̇banoğlu, Ş. Effect of Aqueous Ozonation on the Pasting, Flow and Gelatinization Properties of Wheat Starch. Lwt. 2014, 59(1), 577–582. DOI: 10.1016/j.lwt.2014.04.025.
  • Çatal, H.; Ibanoǧlu, Ş. Ozonation of Corn and Potato Starch in Aqueous Solution: Effects on the Thermal, Pasting and Structural Properties. Int. J. Food Sci. Technol. 2012, 47(9), 1958–1963. DOI: 10.1111/j.1365-2621.2012.03056.x.
  • Chan, H. T.; Leh, C.; Bhat, R.; Senan, C.; Williams, P.; Karim, A. Molecular Structure, Rheological and Thermal Characteristics of Ozone-Oxidized Starch. Food Chem. 2011, 126(3), 1019–1024. DOI: 10.1016/j.foodchem.2010.11.113.
  • Ding, W.; Wang, Y.; Zhang, W.; Shi, Y.; Wang, D. Effect of Ozone Treatment on Physicochemical Properties of Waxy Rice Flour and Waxy Rice Starch. Int. J. Food Sci and Technol. 2015, 50(3), 744–749. DOI: 10.1111/ijfs.12691.
  • Li, M.; Peng, J.; Zhu, K.X.; Guo, X.N.; Zhang, M.; Peng, W., Zhou, H.-M.; et al. Delineating the Microbial and Physical–chemical Changes During Storage of Ozone Treated Wheat Flour. Innov. Food Sci.E & Emerg. Technol. 2013, 20, 223–229. DOI: 10.1016/j.ifset.2013.06.004.
  • Pandiselvam, R.; Manikantan, M. R.; Divya, V.; Ashokkumar, C.; Kaavya, R.; Kothakota, A., Ramesh, S. V.; et al. Ozone: An Advanced Oxidation Technology for Starch Modification. Ozone: Sci. Eng. 2019, 41(6), 491–507. DOI: https://doi.org/10.1080/01919512.2019.1577128.
  • Castanha, N.; da Matta Junior, M. D.; Augusto, P. E. D. Potato Starch Modification Using the Ozone Technology. Food Hydrocolloids. 2017, 66, 343–356. DOI: 10.1016/j.foodhyd.2016.12.001.
  • Castanha, N.; Lima, D.; Matta Junior, M. D.; Campanella, O. H.; Augusto, P. E. D. Combining Ozone and Ultrasound Technologies to Modify Maize Starch. Int. J. Biol. Macromol. 2019, 139, 63–74. DOI: 10.1016/j.ijbiomac.2019.07.161.
  • Kuakpetoon, D.; Wang, Y. J. Structural Characteristics Physicochemical Properties of Oxidized Corn Starches Varying in Amylose Content. Carbohydr. Res. 2006, 341(11), 1896–1915. DOI: 10.1016/j.carres.2006.04.013.
  • Kelly, F. J.; Mudway, I. S. Protein Oxidation at the Air-Lung Interface. Amino Acids. 2003, 25(3– 4), 375–396. DOI: 10.1007/s00726-003-0024-x.
  • Lee, M. J.; Kim, M. J.; Kwak, H. S.; Lim, S. T.; Kim, S. S. Effects of Ozone Treatment on Physicochemical Properties of Korean Wheat Flour. Food Sci. Biotechnol. 2017, 26(2), 435–440. DOI: 10.1007/s10068-017-0059-5.
  • Gozé, P.; Rhazi, L.; Lakhal, L.; Jacolot, P.; Pauss, A.; Aussenac, T. Effects of Ozone Treatment on the Molecular Properties of Wheat Grain Proteins. J. Cereal Sci. 2017, 75, 243–251. DOI: 10.1016/j.jcs.2017.04.016.
  • Li, M.; Zhu, K. X.; Wang, B. W.; Guo, X. N.; Peng, W.; Zhou, H. M. Evaluation the Quality Characteristics of Wheat Flour and Shelf-Life of Fresh Noodles as Affected by Ozone Treatment. Food Chem. 2012, 135(4), 2163–2169. DOI: 10.1016/j.foodchem.2012.06.103.
  • Obadi, M.; Zhu, K. X.; Peng, W.; Sulieman, A. A.; Mohammed, K.; Zhou, H. M. Effects of Ozone Treatment on the Physicochemical and Functional Properties of Whole Grain Flour. J. Cereal Sci. 2018, 81, 127–132. DOI: 10.1016/j.jcs.2018.04.008.
  • Segat, A.; Misra, N. N.; Fabbro, A.; Buchini, F.; Lippe, G.; Cullen, P.J., Innocente, N.; et al. Effects of Ozone Processing on Chemical, Structural and Functional Properties of Whey Protein Isolate. Food. Res. Int. 2014, 66, 365–372. DOI: 10.1016/j.foodres.2014.10.002.
  • Iriti, M.; Faoro, F. Oxidative Stress, the Paradigm of Ozone Toxicity in Plants and Animals. Water Air Soil Pollut. 2008, 187(1–4), 285–301. DOI: 10.1007/s11270-007-9517-7.
  • Uzun, H.; Ibanoglu, E.; Catal, H.; Ibanoglu, S. Effects of Ozone on Functional Properties of Proteins. Food Chem. 2012, 134(2), 647–654. DOI: 10.1016/j.foodchem.2012.02.146.
  • John, J.; Bhattacharya, M.; Raynor, P. C. Emulsions Containing Vegetable Oils for Cutting Fluid Application. Colloids Surf. A Physicochem. Eng. 2004, 237(1–3), 141–150. DOI: 10.1016/j.colsurfa.2003.12.029.
  • Sadowska, J.; Johansson, B.; Johannessen, E.; Friman, R.; Broniarz-Press, L.; Rosenholm, J.B. Characterization of Ozonated Vegetable Oils by Spectroscopic and Chromatographic Methods. Chem. Phys. Lipids. 2008, 151(2), 85–91. DOI: 10.1016/j.chemphyslip.2007.10.004.
  • Chen, R.; Ma, F.; Li, P. W.; Zhang, W.; Ding, X. X.; Zhang, Q.; Li, M.; Wang, Y. R.; Xu, B. C. Effect of Ozone on Aflatoxins Detoxification and Nutritional Quality of Peanuts. Food Chem. 2014, 146, 284–288. DOI: 10.1016/j.foodchem.2013.09.059.
  • Nykter, M.; Kymäläinen, H. R.; Gates, F.; Sjöberg, A. M. Quality Characteristics of Edible Linseed Oil. Agric. Food Sci. 2006, 15(4), 402–413. DOI: 10.2137/145960606780061443.
  • Kasote, D. M.; Badhe, Y. S.; Hegde, M. V. Effect of Mechanical Press Oil Extraction Processing on Quality of Linseed Oil. Ind. Crops Prod. 2013, 42, 10–13. DOI: 10.1016/j.indcrop.2012.05.015.
  • Bechlin, T. R.; Granella, S. J.; Christ, D.; Coelho, S. R.; Viecelli, C. A. Evaluation of Grain and Oil Quality of Packaged and Ozonized Flaxseed. J. Stored Prod. Res. 2019, 83, 311–316. DOI: 10.1016/j.jspr.2019.07.014.
  • Li, M. M.; Guan, E. Q.; Bian, K. Effect of Ozone Treatment on Deoxynivalenol and Quality Evaluation of Ozonised Wheat. Food Addit. Contam. - Chem. Anal. Control Expo. Risk Assess. 2015, 32(4), 544–553. DOI: 10.1080/19440049.2014.976596.
  • Porto, Y. D., Tromebete, F. M., Frietas-Silva, O., de Castro , I.M., Direito, G. M., Ascheri, J.L.R 2019 Gaseous Ozonation to Reduce Aflatoxins Levels and Microbial Contamination in Corn Grits. Microorganisms 7 8 e220 DOI: 10.3390/microorganisms7080220
  • Laureth, J.; Christ, D.; Ganascini, D.; Coelho, S. Effect of Ozone Application on the Fungal Count and Lipid Quality of Peanut Grains. J. Agric. Sci. 2019, 11, 271.
  • Scussel, V. M.; Giordano, B. N. E.; Beber, M.; Savi, G. D.; Kreibich, H.; Christ, D. Field and Storage Fungi Inactivation and Mycotoxins Degradation by Ozone Gas in Grains and Nuts. In Navarro, S., Jayas, D., Alagusundaram, K., (Eds.) Proceedings of the 10th International Conference on Controlled Atmosphere and Fumigation in Stored Products (CAF2016). CAF Permanent Committee Secretariat, Winnipeg, Canada, 2016; pp 225–228.
  • Dubois, M.; Coste, C.; Despres, A.G.; Efstathiou, T.; Nio, C.; Dumont, E., et al. Safety of Oxygreen®, an Ozone Treatment on Wheat Grains. Part 2. Is There a Substantial Equivalence Between Oxygreen-Treated Wheat Grains and Untreated Wheat Grains? Food Addit. Contam. - Chem. Anal. Control Expo. Risk Assess. 2006, 23(1), 1–15.
  • Kince, T.; Zagorska, J.; Zvezdina, E. Gassy Ozone Effect on Quality Parameters of Flaxes Made from Biologically Activated Whole Wheat Grains. Int. Scholarly Sci. Res. Innov. 2014, 8, 392–395.
  • Yabo, W.; Siyu, W.; Yue, S.; Wei, M.; Tingting, D.; Weiqin, Y.; Wang, S.; Wang, X. Elevated Ozone Level Affects Micronutrients Bioavailability in Soil and Their Concentrations in Wheat Tissues. Plant Soil Environ. 2017, 63(No. 8), 381–387. DOI: 10.17221/323/2017-PSE.
  • Mishra, G.; Palle, A. A.; Srivastava, S.; Mishra, H. N. Disinfestation of Stored Wheat Grain Infested with Rhyzopertha Dominica by Ozone Treatment: Process Optimization and Impact on Grain Properties. J. Sci. Food Agric. 2019, 99(11), 5008–5018. DOI: 10.1002/jsfa.9742.
  • Alvares, A. B. C.; Diaper, C.; Parsons, S. A. Partial Oxidation by Ozone to Remove Recalcitrance from Wastewaters - a Review. Environ. Technol. 2001, 22(4), 409–427. DOI: 10.1080/09593332208618273.
  • Miller, F.; Silva, C.; Brandão, T. A Review on Ozone-Based Treatments for Fruit and Vegetables Preservation. Food Enging. Rev. 2013, 5(2), 77–106. DOI: 10.1007/s12393-013-9064-5.
  • Malaiyandi, M.; Natarajan, M. Impact of Ozone on Morphological, Physiological, and Biochemical Changes in Cow Pea (Vigna Unguiculata [L.] Walp.). Ozone: Sci. Engng. 2014, 36(1), 36–42. DOI: 10.1080/01919512.2013.824817.
  • Jackowska, I.; Bojanowska, M.; Staszowska-Karkut, M.; Sachadyn-Król, M. Low Concentration Short Time Ozonation of Rapeseed Seeds Reduces the Stability of the Oil and Content of Some Antioxidant Components. Int. J. Food Sci. 2019, 54(12), 3175–3184. DOI: 10.1111/ijfs.14251.
  • Sarooei, S.J.; Abbasi, A.; Shaghaghian, S.; Berizi, E. Effect of Ozone as a Disinfectant on Microbial Load and Chemical Quality of Raw Wheat Germ. Ozone Sci. Eng. 2019, 41(6), 562–570. DOI: 10.1080/01919512.2019.1642181.
  • Alexandre, A. P. S.; Castanha, N.; Calori-Domingues, M. A.; Augusto, P. E. D. Ozonation of Whole Wheat Flour and Wet Milling Effluent: Degradation of Deoxynivalenol (DON) and Rheological Properties. J. Environ. Sci. Health B. 2017, 52(7), 516–524. DOI: 10.1080/03601234.2017.1303325.
  • Raila, A.; Lugauskas, A.; Steponavičius, D.; Railienė, M.; Steponavičienė, A.; Zvicevičius, E., Jones, M., Culp, K. Agricultural Health in the Gambia I: Agricultural Practices and Developments. Ann. Agric. Environ. Med. 2006, 13(1), 1–17.
  • Steponavičius, D.; Steponaviciene, A.; Raila, A.; Zvicevicius, E.; Kemzuraite, A. Investigation on Ozone Penetration Along Grain Mound Height. J. Food Agric Environ. 2012, 10, 742–747.
  • Gomes, T.; Betta Canever, S.; Savi, G.; Piacentini, K.; Cargnin, M.; Furtado, B., Feltrin, A. C., Quadri, M. B., Angioletto, E.; et al. Modeling and Experimental of Mould Disinfestation of Soybean Silos with Ozone. Ozone Sci. Eng. 2019, 42(2), 1–11.
  • Baba, S.; Satoh, S.; Yamabe, C. Development of Measurement Equipment of Half-Life of Ozone. Vacuum. 2002, 65(3–4), 489–495. DOI: 10.1016/S0042-207X(01)00461-4.
  • McClurkin, J. D.; Maier, D. E.; Ileleji, K. E. Half-Life Time of Ozone as a Function of Air Movement and Conditions in a Sealed Container. J. Stored Prod. Res. 2013, 55, 41–47. DOI: 10.1016/j.jspr.2013.07.006.
  • Pandiselvam, R.; Chandrasekar, V.; Thirupathi, V. Numerical Simulation of Ozone Concentration Profile and Flow Characteristics in Paddy Bulks. Pest Manag. Sci. 2017, 73(8), 1698–1702. DOI: 10.1002/ps.4516.
  • Paes, J. L.; Faroni, L. R. A.; Martins, M. A.; Cecon, P. R.; Heleno, F. F. Reaction Kinetics of Ozone Gas in Wheat Flour. Eng. Agricola. 2017, 37(3), 520–528. DOI: 10.1590/1809-4430-eng.agric.v37n3p520-528/2017.
  • Pandiselvam, R.; Thirupathi, V.; Anandakumar, S. Reaction Kinetics of Ozone Gas in Paddy Grains. J. Food Process. Eng. 2015, 38(6), 594–600. DOI: 10.1111/jfpe.12189.
  • Qin ZhangGui, Q.Z.; Wu Xia, W.X.; Deng Gang, D.G.; Yan XiaoPing, Y.X.; He XueChao, H.X.; Xi DeKe, X.D., et al. Investigation of the Use of Ozone Fumigation to Control Several Species of Stored Grain Insects. In Advances in stored product protection. Proceedings of the 8th International Working Conference on Stored Product Protection, York, UK, Jul 22–26, 2002; Vol. 2003, pp 846–851.
  • Işıkber, A.; Öztekin, S. Comparison of Susceptibility of Two Stored-Product Insects, Ephestia Kuehniella Zeller and Tribolium Confusum du Val to Gaseous Ozone. J. Stored Prod. Res. 2009, 45(3), 159–164. DOI: 10.1016/j.jspr.2008.12.003.
  • Xinyi, E.; Subramanyam, B.; Li, B. Efficacy of Ozone Against Phosphine Susceptible and Resistant Strains of Four Stored-Product Insect Species. Insects. 2017, 8(2), 42. DOI: 10.3390/insects8020042.
  • Lemic, D.; Jembrek, D.; Bažok, R., and Pajač Živković, I. Ozone Effectiveness on Wheat Weevil Suppression: Preliminary Research. Insects. 2019, 10(10), e357. DOI: 10.3390/insects10100357.
  • Amoah, B.A.; Mahroof, R.M. Disinfestation of Wheat Infested with Sitophilus Oryzae Using Ozone Gas. J. Agric. Urban Entomol. 2020, 36(1), 35–46. DOI: 10.3954/1523-5475-36.1.35.
  • Savi, G D.; Piacentini, K C.; Bortolotto, T., and Scussel, V M. Degradation of bifenthrin and pirimiphos-methyl residues in stored wheat grains (Triticum aestivum L.) by zonation. Food Chem, 2016, 203:246–251. DOI: 10.1016/j.foodchem.2016.02.069.
  • Freitas, R.S.; Faroni, L.R.D.A.; Queiroz, M.E.L.R.; Heleno, F.F.; Prates, L.H.F. Degradation Kinetics of Pirimiphos-Methyl Residues in Maize Grains Exposed to Ozone Gas. J. Stored Prod. Res. 2017, 74, 1–5. DOI: 10.1016/j.jspr.2017.08.008.
  • Avdeeva, V.; Zorina, E.; Bezgina, J., and Kolosova, O. Influence of Ozone on Germination and Germinating Energy of Winter Wheat Seeds. Eng. Rural Dev. 2018, 543–546. DOI: 10.22616/ERDev2018.17.N128.
  • Lazukin, A.; Serdukov, Y.; Pinchuk, M.; Stepanova, O.; Krivov, S.; Lyubushkina, I. Treatment of Spring Wheat Seeds by Ozone Generated from Humid Air and Dry Oxygen. Res. Agric. Eng. 2018, 64(1), 34–40. DOI: 10.17221/106/2016-RAE.
  • Monteiro, N. O. C.; de Alencar, E. R.; Souza, N. O. S.; Leão, T. P. Ozonized Water in the Preconditioning of Corn Seeds: Physiological Quality and Field Performance. Ozone Sci. Eng. 2021, 43(5), 436–450. DOI: 10.1080/01919512.2020.1836472.
  • Rodrigues, V. O.; Penido, A. C.; Pereira, D. S.; Oliveira, A. M. S.; Mendes, A. E. S.; Oliveira, J. A. Sanitary and Physiological Quality of Soybean Seeds Treated with Ozone. J. Agric. Sci. 2019, 11(4), 183.
  • Rosa, C. C.; de Alencar, E. R.; Souza, N. O. S.; Bastos, C. S.; Suinaga, F. A.; Ferreira, W. F. D. S. Physiological Quality of Corn Seeds Treated with Gaseous Ozone. Ozone Sci. Eng. 2022, 44(1), 117–126. DOI: 10.1080/01919512.2021.1940836.
  • Maximiano, C. V.; Carmona, R.; Souza, N. O. S.; de Alencar, E. R.; Blum, L. E. B. Physiological and Sanitary Quality of Maize Seeds Preconditioned in Ozonated Water. Rev. Bras. Eng. Agric. Ambient. Ambient. 2018, 22(5), 360–365. DOI: 10.1590/1807-1929/agriambi.v22n5p360-365.
  • Trombete, F.; Porto, Y.; Freitas-Silva, O.; Pereira, R. V.; Direito, G., and Saldanha, T., et al. Efficacy of Ozone Treatment on Mycotoxins and Fungal Reduction in Artificially Contaminated Soft Wheat Grains. J. Food Process. Preserv. 2016, 41, e12927. DOI: 10.1111/jfpp.12927.
  • Sunisha, E.; Engg, A. Studies on the Effect of Ozone on Mortality of Insects in Stored Paddy. J. Entomol. Zool. Stud. 2020, 8(2), 736–741.
  • Piemontese, L.; Messia, M. C.; Marconi, E.; Falasca, L.; Zivoli, R.; Gambacorta, L.; Michael, S., Solfrizzo, M. Effect of Gaseous Ozone Treatments on DON, Microbial Contaminants and Technological Parameters of Wheat and Semolina. Food Addit. Contam.: Part A. 2018, 35(4), 761–772. DOI: https://doi.org/10.1080/19440049.2017.1419285.
  • Sui, Z.; Yao, T.; Zhong, J.; Li, Y.; Kong, X.; Ai, L. Ozonation Treatment Improves Properties of Wheat Flour and the Baking Quality of Cake. Philipp. Agric. Sci. 2016, 99(1), 50–57.
  • Mei, J.; Liu, G.; Huang, X.; Ding, W. Effects of Ozone Treatment on Medium Hard Wheat (Triticum Aestivum L.) Flour Quality and Performance in Steamed Bread Making. CYTA J. Food. 2016, 14(3), 449–456.
  • da Luz, S. R.; Almeida Villanova, F.; Tuchtenhagen Rockembach, C.; Dietrich Ferreira, C.; José Dallagnol, L.; Luis Fernandes Monks, J.; de Oliveira, M. Reduced of Mycotoxin Levels in Parboiled Rice by Using Ozone and Its Effects on Technological and Chemical Properties. Food Chem. , 2022, 372, 131174. DOI: 10.1016/j.foodchem.2021.131174.
  • Yan, S.; Wu, S.; Faubion, J.; Bean, S.; Cai, L.; Shi, Y. C.; Sun, X. S.; Wang, D. Ethanol-Production Performance of Ozone-Treated Tannin Grain Sorghum Flour 1. Cereal Chem. 2012, 89(1), 30–37. DOI: 10.1094/CCHEM-06-11-0075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.