408
Views
2
CrossRef citations to date
0
Altmetric
Review

Dielectric Heating: A Review of Liquid Foods Processing Applications

, ORCID Icon, ORCID Icon, , , & ORCID Icon show all

References

  • Marszałek, K.; Mitek, M.; Skąpska, S. Effect of Continuous Flow Microwave and Conventional Heating on the Bioactive Compounds, Colour, Enzymes Activity, Microbial and Sensory Quality of Strawberry Purée. Food Bioprocess Technol. 2015, 8(9), 1864–1876. DOI: 10.1007/s11947-015-1543-7.
  • Siguemoto, É. S.; Pereira, L. J.; Gut, J. A. W. Inactivation Kinetics of Pectin Methylesterase, Polyphenol Oxidase, and Peroxidase in Cloudy Apple Juice Under Microwave and Conventional Heating to Evaluate Non-Thermal Microwave Effects. Food Bioprocess Technol. 2018, 11(7), 1359–1369. DOI: 10.1007/s11947-018-2109-2.
  • Arjmandi, M.; Otón, M.; Artés, F.; Artés-Hernández, F.; Gómez, P. A.; Aguayo, E. Continuous Microwave Pasteurization of a Vegetable Smoothie Improves Its Physical Quality and Hinders Detrimental Enzyme Activity. Food Sci. Technol. Int. 2017, 23(1), 36–45. DOI: 10.1177/1082013216654414.
  • Salvi, D.; Ortego, J.; Arauz, C.; Sabliov, C. M.; Boldor, D. Experimental Study of the Effect of Dielectric and Physical Properties on Temperature Distribution in Fluids During Continuous Flow Microwave Heating. J. Food Eng. 2009, 93(2), 149–157. DOI: 10.1016/j.jfoodeng.2009.01.009.
  • Sabliov, C. M.; Boldor, D.; Coronel, P.; Sanders, T. H. Continuous Microwave Processing of Peanut Beverages. J. Food Process Preserv. 2008, 32(6), 935–945. DOI: 10.1111/j.1745-4549.2008.00223.x.
  • Cherbański, R. Calculation of Critical Efficiency Factors of Microwave Energy Conversion into Heat. Chem. Eng. Technol. 2011, 34(12), 2083–2090. DOI: 10.1002/ceat.201100405.
  • Liu, Y.; Tang, J.; Mao, Z. Analysis of Bread Loss Factor Using Modified Debye Equations. J. Food Eng. 2009, 93(4), 453–459. DOI: 10.1016/j.jfoodeng.2009.02.012.
  • Jiao, Y.; Tang, J.; Wang, Y.; Koral, T. L. Radio-Frequency Applications for Food Processing and Safety. Annu. Rev. Food Sci. Technol. 2018, 9(1), 105–127. DOI: 10.1146/annurev-food-041715-033038.
  • Marra, F.; Zhang, L.; Lyng, J. G. Radio Frequency Treatment of Foods: Review of Recent Advances. J. Food Eng. 2009, 91(4), 497–508. DOI: 10.1016/j.jfoodeng.2008.10.015.
  • Smith, J. S.; Hui, Y. H. Food Processing: Principles and Applications; John Wiley & Sons: Hoboken, NJ, 2008.
  • Kubo, M. T. K.; Curet, S.; Augusto, P. E. D.; Boillereaux, L. Multiphysics Modeling of Microwave Processing for Enzyme Inactivation in Fruit Juices. J. Food Eng. 2019, 263, 366–379. DOI: 10.1016/j.jfoodeng.2019.07.011.
  • Jain, D.; Tang, J.; Pedrow, P. D.; Tang, Z.; Sablani, S.; Hong, Y.-K. Effect of Changes in Salt Content and Food Thickness on Electromagnetic Heating of Rice, Mashed Potatoes and Peas in 915 MHz Single Mode Microwave Cavity. Food. Res. Int. 2019, 119, 584–595. DOI: 10.1016/j.foodres.2018.10.036.
  • Ahmed, J.; Ramaswamy, H. S.; Kasapis, S.; Boye, J. I. Novel Food Processing: Effects on Rheological and Functional Properties; CRC Press: Boca Raton, FL, 2016.
  • Franco, A. P.; Yamamoto, L. Y.; Tadini, C. C.; Gut, J. A. W. Dielectric Properties of Green Coconut Water Relevant to Microwave Processing: Effect of Temperature and Field Frequency. J. Food Eng. 2015, 155, 69–78. DOI: 10.1016/j.jfoodeng.2015.01.011.
  • Sosa-Morales, M. E.; Valerio-Junco, L.; López-Malo, A.; García, H. S. Dielectric Properties of Foods: Reported Data in the 21st Century and Their Potential Applications. LWT - Food Sci. Technol. 2010, 43(8), 1169–1179. DOI: 10.1016/j.lwt.2010.03.017.
  • Peng, J.; Tang, J.; Jiao, Y.; Bohnet, S. G.; Barrett, D. M. Dielectric Properties of Tomatoes Assisting in the Development of Microwave Pasteurization and Sterilization Processes. LWT - Food Sci. Technol. 2013, 54(2), 367–376. DOI: 10.1016/j.lwt.2013.07.006.
  • Risman, P. Microwave Dielectric Properties of Foods and Some Other Substances. In Development of Packaging and Products for Use in Microwave Ovens; Elsevier: 2009; pp. 153–175. doi:10.1533/9781845696573.1.153
  • Coronel, P.; Simunovic, J.; Sandeep, K. P.; Kumar, P. Dielectric Properties of Pumpable Food Materials at 915 Mhz. Int. J. Food. Prop. 2008, 11(3), 508–518. DOI: 10.1080/10942910701472755.
  • Tuta, S.; Palazoğlu, T. K. Finite Element Modeling of Continuous-Flow Microwave Heating of Fluid Foods and Experimental Validation. J. Food Eng. 2017, 192, 79–92. DOI: 10.1016/j.jfoodeng.2016.08.003.
  • Llave, Y.; Terada, Y.; Fukuoka, M.; Sakai, N. Dielectric Properties of Frozen Tuna and Analysis of Defrosting Using a Radio-Frequency System at Low Frequencies. J. Food Eng. 2014, 139, 1–9. DOI: 10.1016/j.jfoodeng.2014.04.012.
  • Feynman, R. P.; Leighton, R. B.; Sands, M. L. The Feynman Lectures on Physics, New millennium ed.; Basic Books: New York, 2011.
  • Tanaka, F.; Morita, K.; Mallikarjunan, P.; Hung, Y.-C.; Ezeike, G. O. I. Analysis of Dielectric Properties of Soy Sauce. J. Food Eng. 2005, 71(1), 92–97. DOI: 10.1016/j.jfoodeng.2004.10.023.
  • Schiffmann, R. F. Microwave and Dielectric Drying. In Handbook of Industrial Drying; Mujumdar, A.S., Ed.; CRC Press: Boca Raton, FL, 1995.
  • Altemimi, A.; Aziz, S. N.; Al-HiIphy, A. R. S.; Lakhssassi, N.; Watson, D. G.; Ibrahim, S. A. Critical Review of Radio-Frequency (RF) Heating Applications in Food Processing. Food Qual. Saf. 2019, 3(2), 81–91. DOI: 10.1093/fqsafe/fyz002.
  • Zhu, X.; Guo, W.; Wu, X. Frequency- and Temperature-Dependent Dielectric Properties of Fruit Juices Associated with Pasteurization by Dielectric Heating. J. Food Eng. 2012, 109(2), 258–266. DOI: 10.1016/j.jfoodeng.2011.10.005.
  • Zadeh, M. V.; Afrooz, K.; Shamsi, M.; Rostami, M. A. Measuring the Dielectric Properties of Date Palm Fruit, Date Palm Leaflet, and Dubas Bug at Radio and Microwave Frequency Using Two-Port Coaxial Transmission/reflection Line Technique. Biosyst. Eng. 2019, 181, 73–85. DOI: 10.1016/j.biosystemseng.2019.03.003.
  • Muñoz, I.; Gou, P.; Picouet, P. A.; Barlabé, A.; Felipe, X. Dielectric Properties of Milk During Ultra-Heat Treatment. J. Food Eng. 2018, 219, 137–146. DOI: 10.1016/j.jfoodeng.2017.09.025.
  • Zhu, X.; Guo, W.; Jia, Y.; Kang, F. Dielectric Properties of Raw Milk as Functions of Protein Content and Temperature. Food Bioprocess Technol. 2015, 8(3), 670–680. DOI: 10.1007/s11947-014-1440-5.
  • Inokuchi, R.; Kawai, K.; Hagura, Y. Effect of Dispersion Air Bubbles in Yogurt on Dielectric Properties. Jpn. J. Food Eng. 2012, 13(1), 13–20. DOI: 10.11301/jsfe.13.13.
  • Guo, W.; Liu, Y.; Zhu, X.; Wang, S. Dielectric Properties of Honey Adulterated with Sucrose Syrup. J. Food Eng. 2011, 107(1), 1–7. DOI: 10.1016/j.jfoodeng.2011.06.013.
  • Guo, W.; Zhu, X.; Liu, H.; Yue, R.; Wang, S. Effects of Milk Concentration and Freshness on Microwave Dielectric Properties. J. Food Eng. 2010, 99(3), 344–350. DOI: 10.1016/j.jfoodeng.2010.03.015.
  • Garcı́a, A.; Torres, J. L.; De Blas, M.; De Francisco, A.; Illanes, R. Dielectric Characteristics of Grape Juice and Wine. Biosyst. Eng. 2004, 88(3), 343–349. DOI: 10.1016/j.biosystemseng.2004.04.008.
  • Guo, C.; Mujumdar, A. S.; Zhang, M. New Development in Radio Frequency Heating for Fresh Food Processing: A Review. Food Eng. Rev. 2019, 11(1), 29–43. DOI: 10.1007/s12393-018-9184-z.
  • Franco, A. P.; Tadini, C. C.; Wilhelms Gut, J. A. Predicting the Dielectric Behavior of Orange and Other Citrus Fruit Juices at 915 and 2450 Mhz. Int. J. Food. Prop. 2017, 1–21. doi:10.1080/10942912.2017.1347674.
  • Mendes-Oliveira, G.; Deering, A. J.; San Martin-Gonzalez, M. F.; Campanella, O. H. Microwave Pasteurization of Apple Juice: Modeling the Inactivation of Escherichia Coli O157:H7 and Salmonella Typhimurium at 80–90 °C. Food Microbiol. 2020, 87, 103382. DOI: 10.1016/j.fm.2019.103382.
  • Siguemoto, É. S.; Purgatto, E.; Hassimotto, N. M. A.; Gut, J. A. W. Comparative Evaluation of Flavour and Nutritional Quality After Conventional and Microwave-Assisted Pasteurization of Cloudy Apple Juice. Lwt. 2019, 111, 853–860. DOI: 10.1016/j.lwt.2019.05.111.
  • Zhu, X.; Guo, W.; Jia, Y. Temperature-Dependent Dielectric Properties of Raw Cow’s and Goat’s Milk from 10 to 4,500 MHz Relevant to Radio-Frequency and Microwave Pasteurization Process. Food Bioprocess Technol. 2014, 7(6), 1830–1839. DOI: 10.1007/s11947-014-1255-4.
  • Pina-Pérez, M. C.; Benlloch-Tinoco, M.; Rodrigo, D.; Martinez, A. Cronobacter Sakazakii Inactivation by Microwave Processing. Food Bioprocess Technol. 2014, 7(3), 821–828. DOI: 10.1007/s11947-013-1063-2.
  • Benlloch-Tinoco, M.; Pina-Pérez, M. C.; Martínez-Navarrete, N.; Rodrigo, D. Listeria Monocytogenes Inactivation Kinetics Under Microwave and Conventional Thermal Processing in a Kiwifruit Puree. Innov. Food Sci. Emerg. Technol. 2014, 22, 131–136. DOI: 10.1016/j.ifset.2014.01.005.
  • Brinley, T. A.; Dock, C. N.; Truong, V.-D.; Coronel, P.; Kumar, P.; Simunovic, J.; Sandeep, K. P.; Cartwright, G. D.; Swartzel, K. R.; Jaykus, L.-A. Feasibility of Utilizing Bioindicators for Testing Microbial Inactivation in Sweetpotato Purees Processed with a Continuous-Flow Microwave System. J. Food Sci. 2007, 72(5), E235–E242. DOI: 10.1111/j.1750-3841.2007.00371.x.
  • Kim, W.-J.; Park, S.-H.; Kang, D.-H. Inactivation of Foodborne Pathogens Influenced by Dielectric Properties, Relevant to Sugar Contents, in Chili Sauce by 915 MHz Microwaves. Lwt. 2018, 96, 111–118. DOI: 10.1016/j.lwt.2018.04.089.
  • Alvi, T.; Khan, M. K. I.; Maan, A. A.; Nazir, A.; Ahmad, M. H.; Khan, M. I.; Sharif, M.; Khan, A. U.; Afzal, M. I.; Umer, M., et al. Modelling and Kinetic Study of Novel and Sustainable Microwave-Assisted Dehydration of Sugarcane Juice. Processes. 2019, 7(10), 712.
  • Bento, L.; Rein, P.; Sabliov, C.; Boldor, D., and Coronel, P. C Massecuite Re-heating Using Microwaves. J. Am. Soc. Sugar Cane Technol. 2006, 26, 1–13.
  • Giuliani, R.; Bevilacqua, A.; Corbo, M. R.; Severini, C. Use of Microwave Processing to Reduce the Initial Contamination by Alicyclobacillus Acidoterrestris in a Cream of Asparagus and Effect of the Treatment on the Lipid Fraction. Innov. Food Sci. Emerg. Technol. 2010, 11(2), 328–334. DOI: 10.1016/j.ifset.2009.09.003.
  • Awuah, G. B.; Ramaswamy, H. S.; Economides, A.; Mallikarjunan, K. Inactivation of Escherichia Coli K-12 and Listeria Innocua in Milk Using Radio Frequency (RF) Heating. Innov. Food Sci. Emerg. Technol. 2005, 6(4), 396–402. DOI: 10.1016/j.ifset.2005.06.002.
  • Lyu, X.; Peng, X.; Wang, S.; Yang, B.; Wang, X.; Yang, H.; Xiao, Y.; Baloch, A. B.; Xia, X. Quality and Consumer Acceptance of Radio Frequency and Traditional Heat Pasteurised Kiwi Puree During Storage. Int. J. Food Sci. Technol. 2018, 53(1), 209–218. DOI: 10.1111/ijfs.13575.
  • Siefarth, C.; Tran, T.; Mittermaier, P.; Pfeiffer, T.; Buettner, A. Effect of Radio Frequency Heating on Yoghurt, I: Technological Applicability, Shelf-Life and Sensorial Quality. Foods. 2014, 3(2), 318–335. DOI: 10.3390/foods3020318.
  • Muñoz, I.; de Sousa, D. A. B.; Guardia, M. D.; Rodriguez, C. J.; Nunes, M. L.; Oliveira, H.; Cunha, S. C.; Casal, S.; Marques, A.; Cabado, A. G. Comparison of Different Technologies (Conventional Thermal Processing, Radiofrequency Heating and High-Pressure Processing) in Combination with Thermal Solar Energy for High Quality and Sustainable Fish Soup Pasteurization. Food Bioprocess Technol. 2022, 15(4), 795–805. DOI: https://doi.org/10.1007/s11947-022-02782-8.
  • Zhu, J.; Zhang, D.; Zhou, X.; Cui, Y.; Jiao, S.; Shi, X. Development of a Pasteurization Method Based on Radio Frequency Heating to Ensure Microbiological Safety of Liquid Egg. Food Control. 2021, 123, 107035. DOI: 10.1016/j.foodcont.2019.107035.
  • Kozempel, M. F.; Annous, B. A.; Cook, R. D.; Scullen, O. J.; Whiting, R. C. Inactivation of Microorganisms with Microwaves at Reduced Temperatures. J. Food Prot. 1997, 61, 4.
  • Kou, X.; Li, R.; Hou, L.; Zhang, L.; Wang, S. Identifying Possible Non-Thermal Effects of Radio Frequency Energy on Inactivating Food Microorganisms. Int. J. Food Microbiol. 2018, 269, 89–97. DOI: 10.1016/j.ijfoodmicro.2018.01.025.
  • Math, R.; Nagender, A.; Sameera Nayani, A.; Satyanarayana, A. Continuous Microwave Processing and Preservation of Acidic and Non Acidic Juice Blends. Int. J. Agric. Food Sci. Technol. 2014, 5(2), 81–90.
  • Cheng, C.; Jia, M.; Gui, Y.; Ma, Y. Comparison of the Effects of Novel Processing Technologies and Conventional Thermal Pasteurisation on the Nutritional Quality and Aroma of Mandarin (Citrus Unshiu) Juice. Innov. Food Sci. Emerg. Technol. 2020, 64, 102425. DOI: 10.1016/j.ifset.2020.102425.
  • Martins, C. P. C.; Cavalcanti, R. N.; Cardozo, T. S. F.; Couto, S. M.; Guimarães, J. T.; Balthazar, C. F.; Rocha, R. S.; Pimentel, T. C.; Freitas, M. Q.; Raices, R. S. L., et al. Effects of Microwave Heating on the Chemical Composition and Bioactivity of Orange Juice-Milk Beverages. Food Chem. 2021, 345, 128746. DOI: 10.1016/j.foodchem.2020.128746.
  • Yu, J.; Gleize, B.; Zhang, L.; Caris-Veyrat, C.; Renard, C. M. G. C. Microwave Heating of Tomato Puree in the Presence of Onion and EVOO: The Effect on Lycopene Isomerization and Transfer into Oil. Lwt. 2019, 113, 108284. DOI: 10.1016/j.lwt.2019.108284.
  • Arjmandi, M.; Otón, M.; Artés, F.; Artés-Hernández, F.; Gómez, P. A.; Aguayo, E. Semi-Industrial Microwave Treatments Positively Affect the Quality of Orange-Colored Smoothies. J. Food Sci. Technol. 2016, 53(10), 3695–3703. DOI: 10.1007/s13197-016-2342-5.
  • Stratakos, A. C.; Delgado-Pando, G.; Linton, M.; Patterson, M. F.; Koidis, A. Industrial Scale Microwave Processing of Tomato Juice Using a Novel Continuous Microwave System. Food Chem. 2016, 190, 622–628. DOI: 10.1016/j.foodchem.2015.06.015.
  • Klug, T. V.; Collado, E.; Martínez-Sánchez, A.; Gómez, P. A.; Aguayo, E.; Otón, M.; Artés, F.; Artés-Hernandez, F. Innovative Quality Improvement by Continuous Microwave Processing of a Faba Beans Pesto Sauce. Food Bioprocess Technol. 2018, 11(3), 561–571. DOI: 10.1007/s11947-017-2024-y.
  • González-Monroy, A. D.; Ozuna, C.; Rodríguez-Hernández, G.; Sosa-Morales, M. E. Microwave Pasteurization for Natural Tamarind Beverage. Proceedings of the CSBE/SCGAB 2017 Annual Conference, Winnipeg, MB, 6-10 August 2017; p 9.
  • Garnacho, G.; Kaszab, T.; Horváth, M., and Géczi, G. Comparative Study of Heat-Treated Orange Juice. J. Microbiol. Biotechnol. Food Sci. 2012, 12, 446–457.
  • Clare, D. A.; Bang, W. S.; Cartwright, G.; Drake, M. A.; Coronel, P.; Simunovic, J. Comparison of Sensory, Microbiological, and Biochemical Parameters of Microwave versus Indirect UHT Fluid Skim Milk During Storage. Am. Dairy Sci. Assoc. 2005, 88(12), 11.
  • Igual, M.; García-Martínez, E.; Camacho, M. M., and Martínez-Navarrete, N. Effect of Thermal Treatment and Storage on the Stability of Organic Acids and the Functional Value of Grapefruit Juice. Food Chem. 2010, 9, 291–299.
  • Zhou, L.; Tey, C. Y.; Bingol, G.; Bi, J. Effect of Microwave Treatment on Enzyme Inactivation and Quality Change of Defatted Avocado Puree During Storage. Innov. Food Sci. Emerg. Technol. 2016, 37, 61–67. DOI: 10.1016/j.ifset.2016.08.002.
  • Lin, M.; Ramaswamy, H. S. Evaluation of Phosphatase Inactivation Kinetics in Milk Under Continuous Flow Microwave and Conventional Heating Conditions. Int. J. Food. Prop. 2011, 14(1), 110–123. DOI: 10.1080/10942910903147841.
  • Kermasha, S.; Bisakowski, B.; Ramaswamy, H.; Van de Voort, F. R. Thermal and Microwave Inactivation of Soybean Lipoxygenase. LWT - Food Sci. Technol. 1993, 26(3), 215–219. DOI: 10.1006/fstl.1993.1047.
  • Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave Food Processing—a Review. Food. Res. Int. 2013, 52(1), 243–261. DOI: 10.1016/j.foodres.2013.02.033.
  • Ratanadecho, P.; Aoki, K.; Akahori, M. A Numerical and Experimental Investigation of the Modeling of Microwave Heating for Liquid Layers Using a Rectangular Wave Guide (Effects of Natural Convection and Dielectric Properties). Appl. Math. Model. 2002, 26(3), 449–472. DOI: 10.1016/S0307-904X(01)00046-4.
  • Zhu, J.; Kuznetsov, A. V.; Sandeep, K. P. Numerical Simulation of Forced Convection in a Duct Subjected to Microwave Heating. Heat Mass Transf. 2006, 43(3), 255–264. DOI: 10.1007/s00231-006-0105-y.
  • Zhu, J.; Kuznetsov, A. V.; Sandeep, K. P. Mathematical Modeling of Continuous Flow Microwave Heating of Liquids (Effects of Dielectric Properties and Design Parameters). Int. J. Therm. Sci. 2007, 46(4), 328–341. DOI: 10.1016/j.ijthermalsci.2006.06.005.
  • Cha-Um, W.; Rattanadecho, P., and Pakdee, W. Experimental and Numerical Analysis of Microwave Heating of Water and Oil Using a Rectangular Wave Guide : Influence of Sample Sizes, Positions, and Microwave Power. Food Bioprocess Technol. 2011, 16, 544–558.
  • Salvi, D.; Boldor, D.; Aita, G. M.; Sabliov, C. M. COMSOL Multiphysics Model for Continuous Flow Microwave Heating of Liquids. J. Food Eng. 2011, 104(3), 422–429. DOI: 10.1016/j.jfoodeng.2011.01.005.
  • Zhang, Y.; Yang, H.; Yan, B.; Zhu, H.; Gao, W.; Zhao, J.; Zhang, H.; Chen, W.; Fan, D. Continuous Flow Microwave System with Helical Tubes for Liquid Food Heating. J. Food Eng. 2021, 294, 110409. DOI: 10.1016/j.jfoodeng.2020.110409.
  • Rayman, A.; Baysal, T. Yield and Quality Effects of Electroplasmolysis and Microwave Applications on Carrot Juice Production and Storage. J. Food Sci. 2011, 76(4), C598–C605. DOI: 10.1111/j.1750-3841.2011.02156.x.
  • Zhang, J. B.; Gao, Z. P.; Liu, X. H.; Yue, T. L.; Yuan, Y. H. The Effect of RF Treatment Combined with Nisin Against Alicyclobacillus Spores in Kiwi Fruit Juice. Food Bioprocess Technol. 2017, 10(2), 340–348. DOI: 10.1007/s11947-016-1822-y.
  • Das, M. J.; Das, A. J.; Chakraborty, S.; Baishya, P.; Ramteke, A.; Deka, S. C. Effects of Microwave Combined with Ultrasound Treatment on the Pasteurization and Nutritional Properties of Bottle Gourd (Lagenaria Siceraria) Juice. J. Food Process Preserv. 2020, 44(12), 12. DOI: https://doi.org/10.1111/jfpp.14904.
  • Graf, B.; Kohler, E.; Rosenberger, M.; Schäfer, J.; Hinrichs, J. Shelf-Stable Milk Produced by Microfiltration and Microwave Heating: Effects of Processing and Storage. J. Food Eng. 2021, 311, 110734. DOI: 10.1016/j.jfoodeng.2021.110734.
  • Chua, L. S.; Leong, C. Y. Effects of Microwave Heating on Quality Attributes of Pineapple Juice. J. Food Process Preserv. 2020, 44(10), 10. DOI: https://doi.org/10.1111/jfpp.14786.
  • Yu, Y.; Cheng, X.; Zhang, C.; Zhang, J.; Zhang, S.; Xu, J. Ultrasonic and Microwave Treatment Improved Jujube Juice Yield. Food Sci. Nutr. 2020, 8(8), 4196–4204. DOI: 10.1002/fsn3.1713.
  • Bozkir, H.; Tekgül, Y. Production of Orange Juice Concentrate Using Conventional and Microwave Vacuum Evaporation: Thermal Degradation Kinetics of Bioactive Compounds and Color Values. J. Food Process Preserv. 2021, 46, e15902. doi:10.1111/jfpp.15902.
  • Kumar, P.; Coronel, P.; Simunovic, J.; Sandeep, K. P. Thermophysical and Dielectric Properties of Salsa Con Queso and Its Vegetable Ingredients at Sterilization Temperatures. Int. J. Food. Prop. 2008, 11(1), 112–126. DOI: 10.1080/10942910701272312.
  • Tanaka, F.; Uchino, T.; Hamanaka, D.; Atungulu, G. G.; Hung, Y.-C. Dielectric Properties of Mirin in the Microwave Frequency Range. J. Food Eng. 2008, 89(4), 435–440. DOI: 10.1016/j.jfoodeng.2008.05.029.
  • Bohigas, X.; Tejada, J. Dielectric Properties of Acetic Acid and Vinegar in the Microwave Frequencies Range 1–20ghz. J. Food Eng. 2009, 94(1), 46–51. DOI: 10.1016/j.jfoodeng.2009.02.029.
  • Guo, W.; Zhu, X.; Liu, Y.; Zhuang, H. Sugar and Water Contents of Honey with Dielectric Property Sensing. J. Food Eng. 2010, 97(2), 275–281. DOI: 10.1016/j.jfoodeng.2009.10.024.
  • Kubo, M. T. K.; Curet, S.; Augusto, P. E. D.; Boillereaux, L. Artificial Neural Network for Prediction of Dielectric Properties Relevant to Microwave Processing of Fruit Juice. J. Food Process. Eng. 2018, 41(6), e12815. DOI: 10.1111/jfpe.12815.
  • Kataria, T. K.; Corona-Chávez, A.; Olvera-Cervantes, J. L.; Rojas-Laguna, R.; Sosa-Morales, M. E. Dielectric Characterization of Raw and Packed Soy Milks from 0.5 to 20 GHz at Temperatures from 20 to 70 °C. J. Food Sci. Technol. 2018, 55(8), 3119–3126. DOI: 10.1007/s13197-018-3238-3.
  • Abea, A.; Gou, P.; Guardia, M. D.; Bañon, S.; Muñoz, I. Combined Effect of Temperature and Oil and Salt Contents on the Variation of Dielectric Properties of a Tomato-Based Homogenate. Foods. 2021, 10(12), 3124. DOI: 10.3390/foods10123124.
  • Valderrama, Á. M. V.; Arenas, R. L. S. Utilización de Microondas En el Tratamiento de Jugo de Mango. Rev Lasallista Investig. 2008, 5(2), 13–19.
  • Picouet, P. A.; Landl, A.; Abadias, M.; Castellari, M.; Viñas, I. Minimal Processing of a Granny Smith Apple Puree by Microwave Heating. Innov. Food Sci. Emerg. Technol. 2009, 10(4), 545–550. DOI: 10.1016/j.ifset.2009.05.007.
  • Sung, H.-J.; Kang, D.-H. Effect of a 915 MHz Microwave System on Inactivation of Escherichia Coli O157:H7, Salmonella Typhimurium, and Listeria Monocytogenes in Salsa. LWT - Food Sci. Technol. 2014, 59(2), 754–759. DOI: 10.1016/j.lwt.2014.05.058.
  • Pérez-Tejeda, G.; Vergara-Balderas, F. T.; López-Malo, A.; Rojas-Laguna, R.; Abraham-Juárez, M. D. R.; Sosa-Morales, M. E. Pasteurization Treatments for Tomato Puree Using Conventional or Microwave Processes. J. Microw. Power Electromagn. Energy. 2016, 50(1), 35–42. DOI: 10.1080/08327823.2016.1157315.
  • Siguemoto, É. S.; Gut, J. A. W.; Martinez, A.; Rodrigo, D. Inactivation Kinetics of Escherichia Coli O157:H7 and Listeria Monocytogenes in Apple Juice by Microwave and Conventional Thermal Processing. Innov. Food Sci. Emerg. Technol. 2018, 45, 84–91. DOI: 10.1016/j.ifset.2017.09.021.
  • Hashemi, S. M. B.; Gholamhosseinpour, A.; Niakousari, M. Application of Microwave and Ohmic Heating for Pasteurization of Cantaloupe Juice: Microbial Inactivation and Chemical Properties. J. Sci. Food Agric. 2019, 99(9), 4276–4286. DOI: 10.1002/jsfa.9660.
  • Arjmandi, M.; Otón, M.; Artés, F.; Artés-Hernández, F.; Gómez, P. A.; Aguayo, E. Microwave Flow and Conventional Heating Effects on the Physicochemical Properties, Bioactive Compounds and Enzymatic Activity of Tomato Puree: Microwave Flow and Conventional Heating Effects on Tomato Puree. J. Sci. Food Agric. 2017, 97(3), 984–990. DOI: 10.1002/jsfa.7824.
  • Kumar, S.; Khadka, M.; Mishra, S.; Kohli, D.; Upadhaya, S. Effects of Conventional and Microwave Heating Pasteurization on Physiochemical Properties of Pomelo (Citrus Maxima) Juice. J. Food Process. Technol. 2017, 08, 07. DOI: 10.4172/2157-7110.1000683.
  • Souza Comapa, S.; Carvalho, L. M. S.; Lamarão, C. V.; Souza, F. D. C. D. A.; Aguiar, J. P. L.; Silva, L. S.; Mar, J. M.; Sanches, E. A.; Santos, F. F.; Araújo Bezerra, J., et al. Microwave Processing of Camu‐Camu Juices: Physicochemical and Microbiological Parameters. J. Food Process Preserv. 2019, 43, 7. DOI: 10.1111/jfpp.13989.
  • Benlloch-Tinoco, M.; Igual, M.; Salvador, A.; Rodrigo, D.; Martínez-Navarrete, N. Quality and Acceptability of Microwave and Conventionally Pasteurised Kiwifruit Puree. Food Bioprocess Technol. 2014, 7(11), 3282–3292. DOI: 10.1007/s11947-014-1315-9.
  • Brugos, A. F. O. Inactivation Kinetics of Pectin Methyl Esterase in the Microwave-Assisted Pasteurization of Orange Juice. Food Sci. Technol. 2018, 7, 603–609.
  • Siguemoto, É. S.; Funcia, E. D. S.; Pires, M. N.; Gut, J. A. W. Modeling of Time-Temperature History and Enzymatic Inactivation of Cloudy Apple Juice in Continuous Flow Microwave Assisted Pasteurization. Food Bioprod. Process. 2018, 111, 45–53. DOI: 10.1016/j.fbp.2018.06.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.