1,092
Views
1
CrossRef citations to date
0
Altmetric
Review

Advances in Multigrain Snack Bar Technology and Consumer Expectations: A Review

, , , , , , , , & show all

References

  • Johnson, G. H.; Anderson, G. H. Snacking Definitions: Impact on Interpretation of the Literature and Dietary Recommendations. Crit. Rev. Food Sci. Nutr. 2010, 50(9), 848–871. DOI: 10.1080/10408390903572479.
  • Internet 1: The State of the Healthy Snack Market in 2021. https://www.glanbianutritionals.com/en-mx/nutri-knowledge-center/insights/state-healthy-snack-market-2021, ©Glanbia plc 2021 (accessed Aug 30, 2021)
  • Perpetuini, G.; Chuenchomrat, P.; Pereyron, V.; Haure, M.; Lorn, D.; Quan, L. H.; Ho, P. H.; Nguyen, T. T.; Do, T. Y.; Phi, Q. T., et al. Microorganisms, the Ultimate Tool for Clean Label Foods? Inventions. 2021, 6(2), 31. DOI: 10.3390/inventions6020031.
  • Amrein, M. A.; Scholz, U.; Inauen, J. Compensatory Health Beliefs and Unhealthy Snack Consumption in Daily Life. Appetite. 2021, 157, 104996. DOI: 10.1016/j.appet.2020.104996.
  • Aranceta, J.; Pérez-Rodrigo, C. Recommended Dietary Reference Intakes, Nutritional Goals and Dietary Guidelines for Fat and Fatty Acids: A Systematic Review. Br. J. Nutr. 2012, 107(S2), S8–S22. DOI: 10.1017/S0007114512001444.
  • Jarosz, M.; Sajór, I.; Gugała-Mirosz, S., and Nagel, P. Do You Know How Many Carbohydrates You Need. In Copyright by Food and Nutrition Institute, Warsaw, 2019; Jarosz, M., Ed.; 2019. pp. 1-28. https://ncez.pzh.gov.pl/wp-content/uploads/2021/03/broszura_weglowodany-2.pdf
  • Binou, P.; Yanni, A. E.; Karathanos, V. T. Physical Properties, Sensory Acceptance, Postprandial Glycemic Response, and Satiety of Cereal Based Foods Enriched with Legume Flours: A Review. Crit. Rev. Food Sci. Nutr. 2020, 1–19. DOI: 10.1080/10408398.2020.1858020.
  • Floret, C.; Monnet, A. F.; Micard, V.; Walrand, S.; Michon, C. Replacement of Animal Proteins in Food: How to Take Advantage of Nutritional and Gelling Properties of Alternative Protein Sources. Crit. Rev. Food Sci. Nutr. 2021, 1–27. doi:10.1080/10408398.2021.1956426.
  • Aschemann-Witzel, J.; Gantriis, R. F.; Fraga, P.; Perez-Cueto, F. J. Plant-Based Food and Protein Trend from a Business Perspective: Markets, Consumers, and the Challenges and Opportunities in the Future. Crit. Rev. Food Sci. Nutr. 2021, 61(18), 3119–3128. DOI: 10.1080/10408398.2020.1793730.
  • Langston, F. M.; Nash, G. R.; Bows, J. R. The Retention and Bioavailability of Phytochemicals in the Manufacturing of Baked Snacks. Crit. Rev. Food Sci. Nutr. 2021, 1–37. DOI: 10.1080/10408398.2021.1971944.
  • Carcea, M. Nutritional Value of Grain-Based Foods. Foods. 2020, 9(4), 504. DOI: 10.3390/foods9040504.
  • Cui, S. W.; Wu, Y.; Ding, H. The Range of Dietary Fibre Ingredients and a Comparison of Their Technical Functionality. In Fibre Rich and Wholegrain Foods; Poutanen, K., Delcour, J.A., Eds.; Woodhead Publishing Limited: Canada, 2013; pp. 96–118.
  • Harris, S.; Monteagudo-Mera, A.; Kosik, O.; Charalampopoulos, D.; Shewry, P.; Lovegrove, A. Comparative Prebiotic Activity of Mixtures of Cereal Grain Polysaccharides. AMB Express. 2019, 9(1), 1–7. DOI: 10.1186/s13568-019-0925-z.
  • Talens, P.; Pérez-Masía, R.; Fabra, M. J.; Vargas, M.; Chiralt, A. Application of Edible Coatings to Partially Dehydrated Pineapple for Use in Fruit–cereal Products. J. Food Eng. 2012, 112(1–2), 86–93. DOI: 10.1016/j.jfoodeng.2012.03.022.
  • Kowalska, H.; Marzec, A.; Kowalska, J.; Trych, U.; Masiarz, E.; Lenart, A. The Use of a Hybrid Drying Method with Pre-Osmotic Treatment in Strawberry Bio-Snack Technology. Int. J. Food Eng. 2020, 16(1–2. DOI: 10.1515/ijfe-2018-0318.
  • Internet 2: https://bakalland.pl/ (accessed Sep 20, 2021).
  • Internet 3: https://frufi.pl/ (accessed Sep 20, 2021).
  • Bhagwat, S.; Haytowitz, D. B.; Holden, J. M. USDA Database for the Flavonoid Content of Selected Foods, Release 3.1; US Department of Agriculture: Beltsville, MD, USA, 2014.
  • Internet 4: https://polska.mintel.com/blog/rynek-zywnosci/czy-warzywa-przyczynia-sie-do-wzrostu-znaczenia-batonow-w-polsce (accessed Oct 10, 2021).
  • Agbaje, R.; Hassan, C. Z.; Arifin, N.; Rahman, A. A. Sensory Preference and Mineral Contents of Cereal Bars Made from Glutinous Rice Flakes and Sunnah Foods. IOSR J. Environ. Sci. Toxicol. Food Technol. 2014, 8(12), 26–31. DOI: 10.9790/2402-081222631.
  • Meethal, S. M.; Kaur, N.; Singh, J.; Gat, Y. Effect of Addition of Jackfruit Seed Flour on Nutrimental, Phytochemical and Sensory Properties of Snack Bar. Curr. Nutr. Food Sci. 2017, 5(2), 154–158. DOI: 10.12944/CRNFSJ.5.2.12.
  • Showkat, S.; Dar, A. H.; Khan, S.; Gani, M. Effect of Mung Bean and Rice on Physico-Chemical, Sensory and Microstructural Properties of Cereal Bars. Carpathian J. Food Sci. Technol. 2018, 10(4), 70–78.
  • Subiria-Cueto, R.; Coria-Oliveros, A. J.; Wall-Medrano, A.; Rodrigo-García, J.; González-Aguilar, G. A.; Martinez-Ruiz, N. D. R.; Alvarez-Parrilla, E. Antioxidant Dietary Fiber-Based Bakery Products: A New Alternative for Using Plant-By-Products. Food Sci. Technol. 2021, 1–16. DOI: 10.1590/fst.57520.
  • Kowalska, H.; Kowalska, J.; Ignaczak, A.; Masiarz, E.; Domian, E.; Galus, S.; Marzec, A. Development of a High-Fibre Multigrain Bar Technology with the Addition of Curly Kale. Molecules. 2021, 26(13), 3939. DOI: 10.3390/molecules26133939.
  • Ignaczak, A.; Kowalska, H. Nutritional Value of Edible Insects in Relation to Consumer Acceptance. Prog. Food Sci. Technol. 2021, 1(31/58), 130–141.
  • Kunicka-Styczyńska, A. Olejki Eteryczne Jako Alternatywa Dla Syntetycznych Konserwantów Żywności - Praca Przeglądowa. In: Innowacyjne Rozwiązania w Technologii Żywności i Żywieniu Człowieka, Ed. Tarko T., Drożdż I., Najgebauer-Lejko D., Duda-Chodak A. Copyright by Polskie Towarzystwo Technologów Żywności (Polish Society of Food Technologists), Krakow. 2016, 175–184.
  • Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary Fibre and Fibre-Rich By-Products of Food Processing: Characterisation, Technological Functionality and Commercial Applications: A Review. Food Chem. 2011, 124(2), 411–421. DOI: 10.1016/j.foodchem.2010.06.077.
  • Schmidt, M. Cereal Beta-Glucans: An Underutilized Health Endorsing Food Ingredient. Crit. Rev. Food Sci. Nutr. 2020, 1–20. DOI: 10.1080/10408398.2020.1864619.
  • Charalampopoulos, D.; Wang, R.; Pandiella, S. S.; Webb, C. Application of Cereals and Cereal Components in Functional Foods: A Review. Int. J. Food Microbiol. 2002, 79(1–2), 131–141. DOI: 10.1016/S0168-1605(02)00187-3.
  • Stephen, A. M.; Champ, M.-M.-J.; Cloran, S. J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V. J. Dietary Fibre in Europe: Current State of Knowledge on Definitions, Sources, Recommendations, Intakes and Relationships to Health. Nutr. Res. Rev. 2017, 30(2), 149–190. DOI: 10.1017/S095442241700004X.
  • WHO/FAO. 2003 Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation, Geneva, 28.01-01.02.2002. World Health Organization.
  • . EFSA. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA), Scientific Opinion on Dietary Reference Values for Carbohydrates and Dietary Fibre. EFSA J. 2010, 8(3), 1462. doi:10.2903/j.efsa.2010.1462.
  • Belanger, M.; Poirier, M.; Jbilou, J.; Scarborough, P. Modelling the Impact of Compliance with Dietary Recommendations on Cancer and Cardiovascular Disease Mortality in Canada. Public Health. 2014, 128(3), 222–230. DOI: 10.1016/j.puhe.2013.11.003.
  • Wojtasik, A.; Pietraś, E.; Kunachowicz, H. Błonnik Pokarmowy (Włókno Pokarmowe). In Normy Żywienia Dla Populacji Polski I Ich Zastosowanie; Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J., Eds.; National Institute of Public Health - National Institute of Hygiene: Warsaw, Poland, 2020; pp. 146–170.
  • US Department of Agriculture and US Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025. 9th ed. Washington, DC: US Government Publishing Office; 2020. https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf
  • Cosentino, F.; Grant, P. J.; Aboyans, V.; Bailey, C. J.; Ceriello, A.; Delgado, V.; … Wheeler, D. C. 2019 ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD: The Task Force for Diabetes, Pre-Diabetes, and Cardiovascular Diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2020, 41(2), 255–323. DOI: 10.1093/eurheartj/ehz486.
  • Barrea, L.; Vetrani, C.; Caprio, M.; El Ghoch, M.; Frias-Toral, E.; Mehta, R. J.; … Muscogiuri, G. Nutritional Management of Type 2 Diabetes in Subjects with Obesity: An International Guideline for Clinical Practice. Crit. Rev. Food Sci. Nutr. 2021, 1–13. DOI: 10.1080/10408398.2021.1980766.
  • Codex Alimentarius (2006). Codex Alimentarius Guidelines for the Use of Nutrition Claims. Draft Table of Conditions for Nutrient Contents (Parts) Provisions on Dietary Fiber at Step 7.; ALLINORM06/29/26, Appendix Iii, Draft September 2006.
  • Regulation. Commission Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Off. J. Eur. Union. 2006, L404, 9–25.
  • Han, M.; Wang, C.; Liu, P.; Li, D.; Li, Y.; Ma, X. Dietary Fiber Gap and Host Gut Microbiota. Protein Pept. Lett. 2017, 24(5), 388–396. DOI: 10.2174/0929866524666170220113312.
  • Marventano, S.; Vetrani, C.; Vitale, M.; Godos, J.; Riccardi, G.; Grosso, G. Whole Grain Intake and Glycaemic Control in Healthy Subjects: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2017, 9(7), 769. DOI: 10.3390/nu9070769.
  • Adamberg, K.; Jaagura, M.; Aaspõllu, A.; Nurk, E.; Adamberg, S. The Composition of Faecal Microbiota is Related to the Amount and Variety of Dietary Fibres. Int. J. Food Sci. Nutr. 2020, 71(7), 845–855. DOI: 10.1080/09637486.2020.1727864.
  • Cronin, P.; Joyce, S. A.; O’-Toole, P. W.; O’-Connor, E. M. Dietary Fibre Modulates the Gut Microbiota. Nutrients. 2021, 13(5), 1655. DOI: 10.3390/nu13051655.
  • van der Merwe, M. Gut Microbiome Changes Induced by a Diet Rich in Fruits and Vegetables. Int. J. Food Sci. Nutr. 2021, 72(5), 665–669. DOI: 10.1080/09637486.2020.1852537.
  • Brownlee, I.; Dettmar, P.; Strugala, V.; Pearson, J. The Interaction of Dietary Fibres with the Colon. Curr. Nutr. Food Sci. 2006, 2(3), 243–264. DOI: 10.2174/157340106778017896.
  • Koehler, P., and Wieser, H. Chemistry of Cereal Grains. In: Handbook on Sourdough Biotechnology; Gobbetti, M., Gänzle, M. Eds.; Springer: Boston, MA, 2013; pp. 11–45.
  • Piątkowska, E.; Kopeć, A.; Kidacka, A.; Leszczyńska, T.; Pisulewska, E. Content of Nutrients and Antioxidant Properties of Different Grain Fractions of Selected Oat Cultivars and Varieties. Food. Sci. Technol. Quality. 2013, 20(6), 91–105.
  • Saleh, A. S.; Wang, P.; Wang, N.; Yang, S.; Xiao, Z. Technologies for Enhancement of Bioactive Components and Potential Health Benefits of Cereal and Cereal-Based Foods: Research Advances and Application Challenges. Crit. Rev. Food Sci. Nutr. 2019, 59(2), 207–227. DOI: 10.1080/10408398.2017.1363711.
  • Kaur, J.; Whitson, A.; Ashton, J.; Katopo, L.; Kasapis, S. Effect of Ultra-High Temperature Processing and Storage Conditions on Phenolic Acid, Avenanthramide, Free Fatty Acid and Volatile Profiles from Australian Oat Grains. Bioact. Carbohydr. Diet. Fibre. 2018, 15, 21–29. DOI: 10.1016/j.bcdf.2016.09.002.
  • Ugural, A.; Akyol, A. Can Pseudocereals Modulate Microbiota by Functioning as Probiotics or Prebiotics? Crit. Rev. Food Sci. Nutr. 2020, 1–15. DOI: 10.1080/10408398.2020.1846493.
  • Starowicz, M.; Koutsidis, G.; Zieliński, H. Sensory Analysis and Aroma Compounds of Buckwheat Containing Products - a Review. Crit. Rev. Food Sci. Nutr. 2018, 58(11), 1767–1779. DOI: 10.1080/10408398.2017.1284742.
  • Singh, K. K.; Mridula, D.; Rehal, J.; Barnwal, P. Flaxseed: A Potential Source of Food, Feed and Fiber. Crit. Rev. Food Sci. Nutr. 2011, 51(3), 210–222. DOI: 10.1080/10408390903537241.
  • Biao, Y.; Jiannan, H.; Yaolan, C.; Shujie, C.; Dechun, H.; Mcclements, D. J.; Chongjiang, C. Identification and Characterization of Antioxidant and Immune-Stimulatory Polysaccharides in Flaxseed Hull. Food Chem. 2020, 315(126266), 1–6. DOI: 10.1016/j.foodchem.2020.126266.
  • Mercier, S.; Villeneuve, S.; Moresoli, C.; Mondor, M.; Marcos, B.; Power, K. A. Flaxseed‐enriched Cereal‐based Products: A Review of the Impact of Processing Conditions. Compr. Rev. Food Sci. Food Saf. 2014, 13(4), 400–412. DOI: 10.1111/1541-4337.12075.
  • Khouryieh, H.; Aramouni, F. Effect of Flaxseed Flour Incorporation on the Physical Properties and Consumer Acceptability of Cereal Bars. Food Sci. Technol. Int. 2013, 19(6), 549–556. DOI: 10.1177/1082013212462231.
  • Pal, D. Sunflower (Helianthus Annuus L.) Seeds in Health and Nutrition. In: Nuts and Seeds in Health and Disease Prevention; Academic Press, 2011; pp. 1097–1105. doi:10.1016/B978-0-12-375688-6.10130-6.
  • Amin, M. Z.; Islam, T.; Uddin, M. R.; Uddin, M. J.; Rahman, M. M.; Satter, M. A. Comparative Study on Nutrient Contents in the Different Parts of Indigenous and Hybrid Varieties of Pumpkin (Cucurbita Maxima Linn.). Heliyon. 2019, 5(9), e02462. DOI: 10.1016/j.heliyon.2019.e02462.
  • Dotto, J. M.; Chacha, J. S. The Potential of Pumpkin Seeds as a Functional Food Ingredient: A Review. Sci. Afr. 2020, 10, e00575. DOI: 10.1016/j.sciaf.2020.e00575.
  • Guindani, C.; Podestá, R.; Block, J. M.; Rossi, M. J.; Mezzomo, N.; Ferreira, S. R. Valorization of Chia (Salvia Hispanica) Seed Cake by Means of Supercritical Fluid Extraction. J. Supercrit. Fluids. 2016, 112, 67–75. DOI: 10.1016/j.supflu.2016.02.010.
  • Kobus-Cisowska, J.; Kmiecik, D.; Flaczyk, E.; Przeor, M., and Kulczyński, B. Projekt Nowego Produktu z Dodatkiem Nasion Chia (Salvia Hispanica L.) jako Składnika Żywności Bioaktywnej (Design of a New Product with the Addition of Chia Seeds (Salvia hispanica L.) as an Ingredient of Bioactive Food). In: Innowacyjne Rozwiązania w Technologii Żywności i Żywieniu Człowieka, Ed. Tarko T., Drożdż I., Najgebauer-Lejko D., Duda-Chodak A. Copyright by Polskie Towarzystwo Technologów Żywności (Polish Society of Food Technologists), Krakow. 2016, pp. 23-32.
  • Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L. T.; Keum, N.; Norat, T.; … Tonstad, S. Fruit and Vegetable Intake and the Risk of Cardiovascular Disease, Total Cancer and All-Cause Mortality - a Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Int. J. Epidemiol. 2017, 46(3), 1029–1056. DOI: 10.1093/ije/dyw319.
  • Konopacka, D.; Rutkowski, K. P.; Płocharski, W. J. 2014. Owoce i Warzywa jako Składnik Zdrowej Diety Człowieka (Fruits and Vegetables as a Component of a Healthy Human Diet). In: Składniki Bioaktywne Surowców i Produktów Roślinnych. Ed. Tarko T., Drożdż I., Najgebauer-Lejko D., Duda-Chodak A. Copyright by Polskie Towarzystwo Technologów Żywności (Polish Society of Food Technologists), Krakow 2016, pp. 46-56
  • Orrego, C. E.; Salgado, N.; Botero, C. A. Developments and Trends in Fruit Bar Production and Characterization. Crit. Rev. Food Sci. Nutr. 2014, 54(1), 84–97. DOI: 10.1080/10408398.2011.571798.
  • Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects–a Review. J. Funct. Foods. 2015, 18, 820–897. DOI: 10.1016/j.jff.2015.06.018.
  • Liszka, K.; Najgebauer-Lejko, D., and Tabaszewska, M. Owoce Czarnego Bzu (Sambucus Nigra L.)–Charakterystyka i Możliwości Wykorzystania w Przemyśle Spożywczym (Elderberry Fruits (Sambucus Nigra L.) - Characteristics and Possible Uses in the Food Industry). In: Innowacyjne Rozwiązania w Technologii Żywności i Żywieniu Człowieka, Ed. Tarko T., Drożdż I., Najgebauer-Lejko D., Duda-Chodak A. Copyright by Polskie Towarzystwo Technologów Żywności (Polish Society of Food Technologists), Krakow. 2016, pp. 102-111.
  • Fardet, A.; Richonnet, C. Nutrient Density and Bioaccessibility, and the Antioxidant, Satiety, Glycemic, and Alkalinizing Potentials of Fruit-Based Foods According to the Degree of Processing: A Narrative Review. Crit. Rev. Food Sci. Nutr. 2020, 60(19), 3233–3258. DOI: 10.1080/10408398.2019.1682512.
  • Olas, B. Berry Phenolic Antioxidants–implications for Human Health? Front Pharmacol. 2018, 9, 78. DOI: 10.3389/fphar.2018.00078.
  • Nile, S. H.; Park, S. W. Edible Berries: Bioactive Components and Their Effect on Human Health. Nutrition. 2014, 30(2), 134–144. DOI: 10.1016/j.nut.2013.04.007.
  • Ahmed, M.; Eun, J. B. Flavonoids in Fruits and Vegetables After Thermal and Nonthermal Processing: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58(18), 3159–3188. DOI: 10.1080/10408398.2017.1353480.
  • Egert, S.; Wolffram, S.; Schulze, B.; Langguth, P.; Hubbermann, E. M.; Schwarz, K.; … Müller, M. J. Enriched Cereal Bars are More Effective in Increasing Plasma Quercetin Compared with Quercetin from Powder-Filled Hard Capsules. Br. J. Nutr. 2012, 107(4), 539–546. DOI: 10.1017/S0007114511003242.
  • Roshanravan, N.; Askari, S. F.; Fazelian, S.; Ayati, M. H.; Namazi, N. The Roles of Quercetin in Diabetes Mellitus and Related Metabolic Disorders; Special Focus on the Modulation of Gut Microbiota: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2021, 1–14. doi:10.1080/10408398.2021.1983765.
  • Olszowy-Tomczyk, M. Synergistic, Antagonistic and Additive Antioxidant Effects in the Binary Mixtures. Phytochem. Rev. 2020, 19(1), 63–103. DOI: 10.1007/s11101-019-09658-4.
  • Jakobek, L.; Matić, P. Non-Covalent Dietary Fiber-Polyphenol Interactions and Their Influence on Polyphenol Bioaccessibility. Trends Food Sci. Technol. 2019, 83, 235–247. DOI: 10.1016/j.tifs.2018.11.024.
  • Williamson, G.; Kay, C. D.; Crozier, A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17(5), 1054–1112. DOI: 10.1111/1541-4337.12351.
  • Tassoni, A.; Tedeschi, T.; Zurlini, C.; Cigognini, I. M.; Petrusan, J. I.; Rodríguez, Ó.; … Corvini, P. F. State-Of-The-Art Production Chains for Peas, Beans and Chickpeas-Valorization of Agro-Industrial Residues and Applications of Derived Extracts. Molecules. 2020, 25(6), 1383. DOI: 10.3390/molecules25061383.
  • Ktenioudaki, A.; Gallagher, E. Recent Advances in the Development of High-Fibre Baked Products. Trends Food Sci. Technol. 2012, 28(1), 4–14. DOI: 10.1016/j.tifs.2012.06.004.
  • Alves, E.; Simoes, A.; Domingues, M. R. Fruit Seeds and Their Oils as Promising Sources of Value-Added Lipids from Agro-Industrial Byproducts: Oil Content, Lipid Composition, Lipid Analysis, Biological Activity and Potential Biotechnological Applications. Crit. Rev. Food Sci. Nutr. 2021, 61(8), 1305–1339. DOI: 10.1080/10408398.2020.1757617.
  • Sun-Waterhouse, D.; Teoh, A.; Massarotto, C.; Wibisono, R.; Wadhwa, S. Comparative Analysis of Fruit-Based Functional Snack Bars. Food Chem. 2010, 119(4), 1369–1379. DOI: 10.1016/j.foodchem.2009.09.016.
  • Ferreira, M. S.; Santos, M. C.; Moro, T. M.; Basto, G. J.; Andrade, R. M.; Gonçalves, É. C. Formulation and Characterization of Functional Foods Based on Fruit and Vegetable Residue Flour. J. Food Sci. Technol. 2015, 52(2), 822–830. DOI: 10.1007/s13197-013-1061-4.
  • Bchir, B.; Jean-François, T.; Rabetafika, H. N.; Blecker, C. Effect of Pear Apple and Date Fibres Incorporation on the Physico-Chemical, Sensory, Nutritional Characteristics and the Acceptability of Cereal Bars. Food Sci. Technol. Int. 2018, 24(3), 198–208. DOI: 10.1177/1082013217742752.
  • Damasceno, A. K.; Gonçalves, C. A.; Dos Santos, P. G.; Lacerda, C. L.; Bastianello, C. P. C. ;.; Arantes‐pereira, L. Development of Cereal Bars Containing Pineapple Peel Flour (Ananas Comosus L. Merril). J. Food Qual. 2016, 39(5), 417–424. DOI: 10.1111/jfq.12222.
  • Grasso, S. Extruded Snacks from Industrial By-Products: A Review. Trends Food Sci. Technol. 2020, 99, 284–294. DOI: 10.1016/j.tifs.2020.03.012.
  • Dar, B. N.; Sharma, S.; Nayik, G. A. Effect of Storage Period on Physiochemical, Total Phenolic Content and Antioxidant Properties of Bran Enriched Snacks. J. Food Meas. Charact. 2016, 10(4), 755–761. DOI: 10.1007/s11694-016-9360-x.
  • Mussatto, S. I.; Dragone, G.; Roberto, I. C. Brewers’ Spent Grain: Generation, Characteristics and Potential Applications. J. Cereal Sci. 2006, 43(1), 1–14. DOI: 10.1016/j.jcs.2005.06.001.
  • Gupta, M.; Abu‐ghannam, N.; Gallaghar, E. Barley for Brewing: Characteristic Changes During Malting, Brewing and Applications of Its By‐products. Compr. Rev. Food Sci. Food Saf. 2010, 9(3), 318–328. DOI: 10.1111/j.1541-4337.2010.00112.x.
  • Santos, M.; Jiménez, J. J.; Bartolomé, B.; Gómez-Cordovés, C.; Del Nozal, M. J. Variability of Brewer’s Spent Grain Within a Brewery. Food Chem. 2003, 80(1), 17–21. DOI: 10.1016/S0308-8146(02)00229-7.
  • Robertson, J. A.; I’-Anson, K. J.; Treimo, J.; Faulds, C. B.; Brocklehurst, T. F.; Eijsink, V. G.; Waldron, K. W. Profiling Brewers’ Spent Grain for Composition and Microbial Ecology at the Site of Production. LWT- Food Sci. Technol. 2010, 43(6), 890–896. DOI: 10.1016/j.lwt.2010.01.019.
  • Kaur, P.; Sharma, P.; Kumar, V.; Panghal, A.; Kaur, J.; Gat, Y. Effect of Addition of Flaxseed Flour on Phytochemical, Physicochemical, Nutritional, and Textural Properties of Cookies. J. Saudi Soc. Agric. Sci. 2019, 18(4), 372–377. DOI: 10.1016/j.jssas.2017.12.004.
  • Jessa, J.; Hozyasz, K. K. Wartość Zdrowotna produktów Kokosowych. (The Health Value of Coconut Products). Pediatria Polska. 2015, 90(5), 415–423. DOI: 10.1016/j.pepo.2015.03.001.
  • Arivalagan, M.; Manikantan, M. R.; Yasmeen, A. M.; Sreejith, S.; Balasubramanian, D.; Hebbar, K. B.; Kanade, S. R. Physiochemical and Nutritional Characterization of Coconut (Cocos Nucifera L.) Haustorium Based Extrudates. Lwt. 2018, 89, 171–178. DOI: 10.1016/j.lwt.2017.10.049.
  • Timm, T. G.; deLima, G. G.; Matos, M.; Magalhães, W. L. E.; Tavares, L. B. B.; Helm, C. V. Nanosuspension of Pinhão Seed Coat Development for a New High‐functional Cereal Bar. J. Food Process Preserv. 2020, 44(6), e14464. DOI: 10.1111/jfpp.14464.
  • Mirpoor, S. F.; Giosafatto, C. V. L.; Porta, R. Biorefining of Seed Oil Cakes as Industrial Co-Streams for Production of Innovative Bioplastics. A Review. Trends Food Sci. Technol. 2021, 109, 259–270. DOI: 10.1016/j.tifs.2021.01.014.
  • Laricheva, K.; Mikhailova, O. Development of Scientifically-Based Recipe and Technology for the Production of Natural Honey-Based Muesli Bar. Environ. Earth Sci. 2020, 613(1), 012067. DOI: 10.1088/1755-1315/613/1/012067.
  • McClements, D. J. Food Hydrocolloids: Application as Functional Ingredients to Control Lipid Digestion and Bioavailability. Food Hydrocoll. 2021, 111, 106404. DOI: 10.1016/j.foodhyd.2020.106404.
  • Waghmare, R.; Moses, J. A.; Anandharamakrishnan, C. Mucilages: Sources, Extraction Methods, and Characteristics for Their Use as Encapsulation Agents. Crit. Rev. Food Sci. Nutr. 2021, 1–22. DOI: 10.1080/10408398.2021.1873730.
  • Walkowiak-Tomczak, D. The Effect of Freezing Process on Quality of Restructured Strawberries. Food. Sci. Technol. Quality. 2007, 14(2), 126–133.
  • Estévez, A. M.; Escobar, B.; Vasquez, M.; Castillo, E.; Araya, E.; Zacarias, I. Cereal and Nut Bars, Nutritional Quality and Storage Stability. Plant Foods Hum. Nutr. 1995, 47(4), 309–317. DOI: 10.1007/BF01088268.
  • Dutcosky, S. D.; Grossmann, M. V. E.; Silva, R. S. S.; Welsch, A. K. Combined Sensory Optimization of a Prebiotic Cereal Product Using Multicomponent Mixture Experiments. Food Chem. 2006, 98(4), 630–638. DOI: 10.1016/j.foodchem.2005.06.029.
  • Kim, E. J.; Corrigan, V. K.; Hedderley, D. I.; Motoi, L.; Wilson, A. J.; Morgenstern, M. P. Predicting the Sensory Texture of Cereal Snack Bars Using Instrumental Measurements. J. Texture Stud. 2009, 40(4), 457–481. DOI: 10.1111/j.1745-4603.2009.00192.x.
  • Aigster, A.; Duncan, S. E.; Conforti, F. D.; Barbeau, W. E. Physicochemical Properties and Sensory Attributes of Resistant Starch-Supplemented Granola Bars and Cereals. LWT- Food Sci. Technol. 2011, 44(10), 2159–2165. DOI: 10.1016/j.lwt.2011.07.018.
  • Farinazzi-Machado, F. M. V.; Barbalho, S. M.; Oshiiwa, M.; Goulart, R.; Pessan Junior, O. Use of Cereal Bars with Quinoa (Chenopodium Quinoa W.) to Reduce Risk Factors Related to Cardiovascular Diseases. Food Sci. Technol. 2012, 32(2), 239–244. DOI: 10.1590/S0101-20612012005000040.
  • García, M. C.; Lobato, L. P.; Benassi, M. D. T.; Soares Júnior, M. S. Application of Roasted Rice Bran in Cereal Bars. Food Sci. Technol. 2012, 32(4), 718–724. DOI: 10.1590/S0101-20612012005000096.
  • Sung, Y. Y.; Kim, S. H.; Kim, D. S.; Park, S. H.; Yoo, B. W.; Kim, H. K. Nutritional Composition and Anti-Obesity Effects of Cereal Bar Containing Allium Fistulosum (Welsh Onion) Extract. J. Funct. Foods. 2014, 6, 428–437. DOI: 10.1016/j.jff.2013.11.009.
  • da Silva, E. P.; Siqueira, H. H.; Do Lago, R. C.; Rosell, C. M.; Vilas Boas, E. V. D. B. Developing Fruit‐based Nutritious Snack Bars. J. Sci. Food Agric. 2014, 94(1), 52–56. DOI: 10.1002/jsfa.6282.
  • Yadav, L.; Bhatnagar, U. Optimization of Ingredients in Cereal Bar. Food Sci. Technol. Res. 2015, 6, 273–278.
  • Carvalho, V. S.; Conti‐silva, A. C. Cereal Bars Produced with Banana Peel Flour: Evaluation of Acceptability and Sensory Profile. J. Sci. Food Agric. 2018, 98(1), 134–139. DOI: 10.1002/jsfa.8447.
  • Benjakul, S.; Pisuchpen, S.; O’-Brien, N.; Karnjanapratum, S. Effect of Antioxidants, and Packing Conditions on Storage Stability of Cereal Bar Fortified with Hydrolyzed Collagen from Seabass Skin. Ital. J. Food Sci. 2019, 31(2), 347–366. DOI: 10.14674/IJFS-1211.
  • Vildan, E.; İ̇smail, T.; Selman, T. The Effect of Edible Coatings on Physical and Chemical Characteristics of Fruit Bars. J. Food Meas. Charact. 2020, 14(3), 1775–1783. DOI: 10.1007/s11694-020-00425-0.
  • Silva, S. B. D.; Formigoni, M. A.; Zorzenon, M. R.; Milani, P. G.; Dacome, A. S.; Seixas, F. A. V.; Costa, S. C. D. Development of Diet Cereal Bar Sweetened with Stevia Leaves Pre-Treated with Ethanol. Food Sci. Technol. 2020, 40(4), 894–901. DOI: 10.1590/fst.19319.
  • Melati, J.; Lucchetta, L.; Prado, N. V. D.; Oliveira, D. F. D.; Tonial, I. B. Physical and Sensory Characteristics of Salty Cereal Bar with Different Binding Agents. Ahead. 2021, 41, supl.1. DOI: 10.1590/fst.07820.
  • Los, A.; Ziuzina, D.; Bourke, P. Current and Future Technologies for Microbiological Decontamination of Cereal Grains. J. Food Sci. 2018, 83(6), 1484–1493. DOI: 10.1111/1750-3841.14181.
  • Erkmen, O., and Bozoglu, F. T. Spoilage of Cereals and Cereal Products. In: Food Microbiology: Principles into Practice, 1st ed.; Erkmen O., Bozoglu Eds.; John Willey & Sons Ltd, 2016; pp. 364–375.
  • Libudzisz, Z.; Kowal, K.; Żakowska, Z. Technical Microbiology. Microorganisms in Biotechnology, Environmental Protection and Food Production; Scientific Publisher PWN: Warsaw, 2008; 242–243, 289–303. Vol. 2.
  • Wójcik-Stopczyńska, B. Ocena Stanu Mikrobiologicznego Mieszanek Musli Pochodzących Z Sieci Handlowej. Roczniki PZH. 2003, 54(3), 269–274.
  • Dusza, M.; Hara, P. Evaluation of Selected Quality Traits of Dried Kiwi Fruit Preosmotically Dehydrated. Polish J. Food Eng. 2018, 27(3/4), 20–26.
  • Beales, N. Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH, and Osmotic Stress: A Review. Compr. Rev. Food Sci. Food Saf. 2003, 3, 1–20. DOI: 10.1111/j.1541-4337.2004.tb00057.x.
  • Sagar, V. R.; Kumar, P. S. Recent Advances in Drying and Dehydration of Fruits and Vegetables: A Review. J. Food Sci. Technol. 2010, 47(1), 15–26. DOI: 10.1007/s13197-010-0010-8.
  • Rehman, S.; Nadeem, M.; Ahmad, M. H.; Awan, J. A. Development and Physico-Chemical Characterization of Apricot-Date Bars. Pak. J. Agric. Sci. 2012, 50(3), 409–421.
  • Van Impe, J.; Smet, C.; Tiwari, B.; Greiner, R.; Ojha, S.; Stulić, V.; Vukušić, T.; Režek Jambrak, A. State of the Art. Of Nonthermal and Thermal Processing for Inactivation of Microorganisms. J. Appl. Microbiol. 2018, 125, 16–35. DOI: 10.1111/jam.13751.
  • Gu, S. Y.; Shin, H. C.; Kim, D. J.; Park, S. U.; Kim, Y. K. The Content and Health Risk Assessment of Micro and Toxic Elements in Cereals (Oat and Quinoa), Legumes (Lentil and Chick Pea), and Seeds (Chia, Hemp, and Flax). J. Food Compost. Anal. 2021, 99, 103881. DOI: 10.1016/j.jfca.2021.103881.
  • Muhialdin, B. J.; Saari, N.; Meor Hussin, A. S. Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply. Molecules. 2020, 25(11), 2655. DOI: 10.3390/molecules25112655.
  • Białek, M.; Rutkowska, J.; Radomska, J. Nutritional Value and Consumer Acceptance of New Cereal Bars Offered to Children. Polish J. Food Nutr. Sci. 2016, 66(3), 211. DOI: 10.1515/pjfns-2015-0033.
  • Mridula, D.; Singh, K.K.; Barnwal, P. Development of Omega-3 Rich Energy Bar with Flaxseed. J. Food Sci. Technol. 2013, 50, 950–957. DOI: 10.1007/s13197-011-0425-x.
  • Marzec, A.; Kowalska, H.; Zadrożna, M. Analysis of Instrumental and Sensory Texture Attributes of Microwave-Convective Dried Apples. J. Texture Stud. 2010, 41(4), 417–439. DOI: 10.1016/j.foodchem.2016.07.173.
  • Kowalska, H.; Marzec, A.; Domian, E.; Masiarz, E.; Ciurzyńska, A.; Kowalska, J. Physical, and Sensory Properties of Japanese Quince Chips Obtained by Osmotic Dehydration in Fruit Juice Concentrates, and Hybrid Drying. Molecules. 2020, 25, 5504. DOI: 10.3390/molecules25235504.
  • Ciurzyńska, A., and Lenart, A. Freeze-Drying-Application in Food Processing and Biotechnology-A Review. Polish J. Food Nutr. Sci. 2011, 61(3), 165-171.
  • Song, H.; Bi, J.; Chen, Q.; Zhou, M.; Wu, X.; Song, J. Structural and Health Functionality of Dried Goji Berries as Affected by Coupled Dewaxing Pre-Treatment and Hybrid Drying Methods. Int. J. Food. Prop. 2018, 21(1), 2527–2538. DOI: 10.1080/10942912.2018.1536148.
  • Chen, J.; Zhang, M.; Xu, B.; Sun, J.; Mujumdar, A. S. Artificial Intelligence Assisted Technologies for Controlling the Drying of Fruits and Vegetables Using Physical Fields: A Review. Trends Food Sci. Technol. 2020, 105, 251–260. DOI: 10.1016/j.tifs.2020.08.015.
  • Musielak, G.; Mierzwa, D.; Kroehnke, J. Food Drying Enhancement by Ultrasound–a Review. Trends Food Sci. Technol. 2016, 56, 126–141. DOI: 10.1016/j.tifs.2016.08.003.
  • Derossi, A.; Caporozzi, R.; Oral, M. O.; Severini, C. Analyzing the Effects of 3D Printing Process per Se on the Microstructure and Mechanical Properties of Cereal Food Products. Innov. Food Sci. Emerg. Technol. 2020, 66, 2020. DOI: 10.1016/j.ifset.2020.102531.
  • Kewuyemi, Y. O.; Kesa, H.; Adebo, O. A. Trends in Functional Food Development with Three-Dimensional (3D) Food Printing Technology: Prospects for Value-Added Traditionally Processed Food Products. Crit. Rev. Food Sci. Nutr. 2021, 1–38. doi:10.1080/10408398.2021.1920569.
  • Kowalska, J.; Marzec, A.; Domian, E.; Galus, S.; Ciurzyńska, A.; Brzezińska, R.; Kowalska, H. Influence of Tea Brewing Parameters on the Antioxidant Potential of Infusions and Extracts Depending on the Degree of Processing of the Leaves of Camellia Sinensis. Molecules. 2021, 26(16), 4773. DOI: 10.3390/molecules26164773.
  • Dias, M. G.; Camões, M. F. G.; Oliveira, L. Carotenoid Stability in Fruits, Vegetables and Working Standards–effect of Storage Temperature and Time. Food Chem. 2014, 156, 37–41. DOI: 10.1016/j.foodchem.2014.01.050.
  • Boileau, T. W. M.; Boileau, A. C.; Erdman, J. W., Jr. Bioavailability of All-Trans and Cis–isomers of Lycopene. Exp. Biol. Med. 2002, 227(10), 914–919. DOI: 10.1177/153537020222701012.
  • Shahidi, F.; Pan, Y. Influence of Food Matrix and Food Processing on the Chemical Interaction and Bioaccessibility of Dietary Phytochemicals: A Review. Crit. Rev. Food Sci. Nutr. 2021, 1–25. doi:10.1080/10408398.2021.1901650.
  • Traka, M. H.; Saha, S.; Huseby, S.; Kopriva, S.; Walley, P. G.; Barker, G. C.; Moore, J.; Mero, G.; van den Bosch, F.; Constant, H.; et al. Genetic Regulation of Glucoraphanin Accumulation in Beneforté® Broccoli. New Phytol. 2013, 198(4), 1085–1095. DOI: 10.1111/nph.12232.
  • Blando, F.; Berland, H.; Maiorano, G.; Durante, M.; Mazzucato, A.; Picarella, M. E.; … Andersen, Ø. M. Nutraceutical Characterization of Anthocyanin-Rich Fruits Produced by “Sun Black” Tomato Line. Front Nutr. 2019, 6, 133. DOI: 10.3389/fnut.2019.00133.
  • Ajandouz, E. H.; Desseaux, V.; Tazi, S.; Puigserver, A. Effects of Temperature and pH on the Kinetics of Caramelisation, Protein Cross-Linking and Maillard Reactions in Aqueous Model Systems. Food Chem. 2008, 107(3), 1244–1252. DOI: 10.1016/j.foodchem.2007.09.062.
  • Michalska, A.; Łysiak, G. Usefulness for Drying Plum Fruits Cultivated in Poland in Terms of the Transformation of Bioactive Compounds and the Formed Products of the Maillard Reaction. Food. Sci. Technol. Quality. 2014, 6(97), 29–38. DOI: 10.15193/ZNTJ/2014/97/029-038.
  • Internet 5. https://monographs.iarc.who.int/wp-content/uploads/2019/10/IARCMono-graphs-AGReport-Priorities_2020-2024.pdf (accessed Oct 12, 2021).
  • Batool, Z.; Xu, D.; Zhang, X.; Li, X.; Li, Y.; Chen, Z.; Li, B.; Li, L. A Review on Furan: Formation, Analysis, Occurrence, Carcinogenicity, Genotoxicity and Reduction Methods. Crit. Rev. Food Sci. Nutr. 2021, 61(3), 395–406. DOI: 10.1080/10408398.2020.1734532.
  • Khanum, F.; Swamy, M. S.; Krishna, K. S.; Santhanam, K.; Viswanathan, K. R. Dietary Fiber Content of Commonly Fresh and Cooked Vegetables Consumed in India. Plant Foods Hum. Nutr. 2000, 55(3), 207–218. DOI: 10.1023/A:1008155732404.
  • Nayak, B.; Liu, R. H.; Tang, J. Effect of Processing on Phenolic Antioxidants of Fruits, Vegetables, and Grains - a Review. Crit. Rev. Food Sci. Nutr. 2015, 55(7), 887–918. DOI: 10.1080/10408398.2011.654142.
  • Samaras, T. S.; Gordon, M. H.; Ames, J. M. Antioxidant Properties of Malt Model Systems. J. Agric. Food Chem. 2005, 53(12), 4938–4945. DOI: 10.1021/jf0501600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.