1,265
Views
12
CrossRef citations to date
0
Altmetric
Review

The Quest for Phenolic Compounds from Seaweed: Nutrition, Biological Activities and Applications

, , , & ORCID Icon

References

  • Sobuj, M. K. A.; Islam, M. A.; Haque, M. A.; Islam, M. M.; Alam, M. J.; Rafiquzzaman, S. Evaluation of Bioactive Chemical Composition, Phenolic, and Antioxidant Profiling of Different Crude Extracts of Sargassum Coriifolium and Hypnea Pannosa Seaweeds. J. Food Meas. Charact. 2021, 15(2), 1653.
  • Mac Monagail, M.; Cornish, L.; Morrison, L.; Araújo, R.; Critchley, A. Sustainable Harvesting of Wild Seaweed Resources. Eur. J. Phycol. 2017, 52(4), 371.
  • Mouritsen, O. G. Seaweeds: Edible, Available, and Sustainable; Chicago IL 60637: University of Chicago Press, 2013.
  • Titlyanov, E., and Titlyanova, T. Seaweed Cultivation: Methods and Problems. Russ. J. Mar. Biol. 2010, 36(4), 227.
  • Msuya, F. E.; Bolton, J.; Pascal, F.; Narrain, K.; Nyonje, B.; Cottier-Cook, E. J. Seaweed Farming in Africa: Current Status and Future Potential. J. Appl. Phycol. 2022, 34(2), 985–1005. DOI: 10.1007/s10811-021-02676-w.
  • Arias-Echeverri, J. P.; Zapata-Ramírez, P. A.; Ramírez-Carmona, M.; Rendón-Castrillón, L.; Ocampo-López, C. Present and Future of Seaweed Cultivation and Its Applications in Colombia. 2022, 10(2), 243.
  • Hasselström, L.; Visch, W.; Gröndahl, F.; Nylund, G. M.; Pavia, H. The Impact of Seaweed Cultivation on Ecosystem Services - a Case Study from the West Coast of Sweden. Mar. Pollut. Bull. 2018, 133, 53. DOI: 10.1016/j.marpolbul.2018.05.005.
  • Day, L.; Seymour, R. B.; Pitts, K. F.; Konczak, I.; Lundin, L. Incorporation of Functional Ingredients into Foods. Trends Food Sci. Technol. 2009, 20(9), 388. DOI: 10.1016/j.tifs.2008.05.002.
  • Peñalver, R.; Lorenzo, J. M.; Ros, G.; Amarowicz, R.; Pateiro, M.; Nieto, G. J. M. D. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar. Drugs 2020, 18(6), 301.
  • Getachew, A. T.; Jacobsen, C.; Holdt, S. L. Emerging Technologies for the Extraction of Marine Phenolics: Opportunities and Challenges. Mar. Drugs. 2020, 18(8), 389. DOI: 10.3390/md18080389.
  • Hardjani, D. K.; Suantika, G.; Aditiawati, P. Nutritional Profile of Red Seaweed Kappaphycus Alvarezii After Fermentation Using Saccharomyces Cerevisiae as a Feed Supplement for White Shrimp Litopenaeus Vannamei Nutritional Profile of Fermented Red Seaweed. J. Pure Appl. Microbiol. 2017, 11(4), 1637.
  • Siddique, M.; Khan, M.; Bhuiyan, M. Nutritional Composition and Amino Acid Profile of a Sub-Tropical Red Seaweed Gelidium Pusillum Collected from St. Martin’s Island, Bangladesh. Int. Food Res. J. 2013, 20(5), 2287.
  • Polat, S.; Trif, M.; Rusu, A.; Simat, V.; Cagalj, M.; Alak, G.; Meral, R.; Ozogul, Y.; Polat, A., and Ozogul, F. Recent Advances in Industrial Applications of Seaweeds. Crit. Rev. Food Sci. Nutr. 2021, 1, 1–30.
  • Gattuso, J.P., and Hansson, L. Ocean Acidification; United States Of America: Oxford university press, 2011.
  • Marinho-Soriano, E.; Fonseca, P.; Carneiro, M.; Moreira, W. J. B. T. Seasonal Variation in the Chemical Composition of Two Tropical Seaweeds. Bioresour. Technol. 2006, 97(18), 2402.
  • Garcia-Vaquero, M.; Rajauria, G.; Miranda, M.; Sweeney, T.; Lopez-Alonso, M., and O’-Doherty, J. Seasonal Variation of the Proximate Composition, Mineral Content, Fatty Acid Profiles and Other Phytochemical Constituents of Selected Brown Macroalgae. Mar. Drugs 2021, 19(4), 204.
  • Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Goncalves, A. M. M.; da Silva, G. J.; Pereira, L. Seaweed Phenolics: From Extraction to Applications. Mar. Drugs. 2020, 18(8), 384. DOI: 10.3390/md18080384.
  • Cotas, J.; Pacheco, D.; Gonçalves, A. M.; Silva, P.; Carvalho, L. G.; Pereira, L. Seaweeds’ Nutraceutical and Biomedical Potential in Cancer Therapy: A Concise Review. J. Cancer Metastasis and Treat. 2021, 7, 13.
  • Paiva, L.; Lima, E.; Neto, A. I.; Marcone, M.; Baptista, J. Nutritional and Functional Bioactivity Value of Selected Azorean Macroalgae: Ulva Compressa, Ulva Rigida, Gelidium Microdon, and Pterocladiella Capillacea. J. Food Sci. 2017, 82(7), 1757. DOI: 10.1111/1750-3841.13778.
  • Rioux, L.-E.; Beaulieu, L.; Turgeon, S. L. Seaweeds: A Traditional Ingredients for New Gastronomic Sensation. Food Hydrocolloids. 2017, 68, 255. DOI: 10.1016/j.foodhyd.2017.02.005.
  • Gupta, S.; Abu-Ghannam, N. Recent Developments in the Application of Seaweeds or Seaweed Extracts as a Means for Enhancing the Safety and Quality Attributes of Foods. Innov. Food Sci. Emerg. Technol. 2011, 12(4), 600. DOI: 10.1016/j.ifset.2011.07.004.
  • Bixler, H. J.; Porse, H. A Decade of Change in the Seaweed Hydrocolloids Industry. J. Appl. Phycol. 2011, 23(3), 321.
  • . Illera-Vives, M.; Seoane Labandeira, S.; Fernández-Labrada, M., and López-Mosquera, M. E. Chapter 19 - Agricultural Uses of Seaweed. In Sustainable Seaweed Technologies; Torres, M.D., Kraan, S., and Dominguez, H., Eds.; Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands: Elsevier, 2020; pp 591.
  • Rajapakse, N.; Kim, S. K. Nutritional and Digestive Health Benefits of Seaweed. Adv. Food Nutr. Res. 2011, 64, 17.
  • Fukuda, S.; Saito, H.; Nakaji, S.; Yamada, M.; Ebine, N.; Tsushima, E.; Oka, E.; Kumeta, K.; Tsukamoto, T.; Tokunaga, S. Pattern of Dietary Fiber Intake Among the Japanese General Population. Eur. J. Clin. Nutr. 2007, 61(1), 99.
  • Kumar, Y.; Tarafdar, A., and Badgujar, P. Seaweed as a Source of Natural Antioxidants: Therapeutic Activity and Food Applications. J. Food Qual. 2021, 2021, 1–17.
  • Pati, M. P.; Sharma, S.; Nayak, L.; Panda, C. R. Uses of Seaweed and Its Application to Human Welfare: A Review. Int. J. Pharm. Pharm. Sci. 2016, 8, 12.
  • Jang, S.-S.; Shirai, Y.; Uchida, M., and Wakisaka, M. Production of Mono Sugar from Acid Hydrolysis of Seaweed. African Journal of Biotechnology. 2012, 11(8), 1953–1963.
  • Stiger-Pouvreau, V.; Bourgougnon, N., and Deslandes, E. Carbohydrates from Seaweeds. In Seaweed in Health and Disease Prevention; Fleurence, Joel, Levine, Ira; Cambridge, Massachusetts: Elsevier, 2016; pp 223.
  • Jimenez-Escrig, A.; Goni Cambrodon, I. Nutritional Evaluation and Physiological Effects of Edible Seaweeds. Arch. Latinoam. Nutr. 1999, 49(2), 114.
  • García-Vaquero, M.; Rajauria, G.; O’-Doherty, J. V.; Sweeney, T. Polysaccharides from Macroalgae: Recent Advances, Innovative Technologies and Challenges in Extraction and Purification. Food Res. Int. 2017, 99, 1011.
  • Pereira, L. Biological and Therapeutic Properties of the Seaweed Polysaccharides. Int. Biol. Rev. 2018, 2(2),1–50.
  • Honya, M.; Mori, H.; Anzai, M.; Araki, Y., and Nisizawa, K., Monthly Changes in the Content of Fucans, Their Constituent Sugars and Sulphate in Cultured Laminaria Japonica. Sixteenth International Seaweed Symposium Cebu City, Philippines, Springer, 1999; pp 411.
  • Peinado, I.; Girón, J.; Koutsidis, G.; Ames, J. Chemical Composition, Antioxidant Activity and Sensory Evaluation of Five Different Species of Brown Edible Seaweeds. Food Res. Int. 2014, 66, 36.
  • Fleurence, J. Seaweed Proteins: Biochemical, Nutritional Aspects and Potential Uses. Trends Food Sci. Technol. 1999, 10(1), 25. DOI: 10.1016/S0924-2244(99)00015-1.
  • Fleurence, J.; Morançais, M., and Dumay, J. Seaweed Proteins. In Proteins in Food Processing Y. Yada, Rickey; Duxford, CB22 4QH, United Kingdom: Elsevier. 2018; pp 245.
  • Abdel-Fattah, A., and Sary, H. Selective Isolation of Glycoprotein Materials from the Green Seaweed Ulva Lactuca. Pak. J. Biochem. Mol. Biol. 1987, 20(2–Jan), 61.
  • Machado, M.; Machado, S.; Pimentel, F. B.; Freitas, V.; Alves, R. C.; Oliveira, M. J. F. Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System. Foods 2020, 9(10), 1382.
  • Dawczynski, C.; Schubert, R.; Jahreis, G. Amino Acids, Fatty Acids, and Dietary Fibre in Edible Seaweed Products. Food Chem. 2007, 103(3), 891.
  • Pangestuti, R.; Kim, S.-K. Chapter 6 - Seaweed Proteins, Peptides, and Amino Acids. In Seaweed Sustainability; Tiwari, B.K. and Troy, D.J., Eds.; Academic Press: San Diego, 2015; pp 125.
  • Shuuluka, D.; Bolton, J. J., and Anderson, R. J. J. Protein Content, Amino Acid Composition and Nitrogen-To-Protein Conversion Factors of Ulva Rigida and Ulva Capensis from Natural Populations and Ulva Lactuca from an Aquaculture System, in South Africa. J. Appl Phycol. 2013, 25(2), 677.
  • Cian, R. E.; Fajardo, M. A.; Alaiz, M.; Vioque, J.; González, R. J., and Drago, S. R. J. Nutrition, Chemical Composition, Nutritional and Antioxidant Properties of the Red Edible Seaweed Porphyra Columbina. Int. J. Food Sci. Nutr. 2014, 65(3), 299.
  • MacArtain, P.; Gill, C. I.; Brooks, M.; Campbell, R.; Rowland, I. R. Nutritional Value of Edible Seaweeds. Nutr. Rev. 2007, 65(12 Pt 1), 535. DOI: 10.1111/j.1753-4887.2007.tb00278.x.
  • Mabeau, S.; Fleurence, J. Seaweed in Food Products: Biochemical and Nutritional Aspects. Trends Food Sci. Technol. 1993, 4(4), 103.
  • Schmid, M.; Kraft, L. G. K.; van der Loos, L. M.; Kraft, G. T.; Virtue, P.; Nichols, P. D.; Hurd, C. L. Southern Australian Seaweeds: A Promising Resource for Omega-3 Fatty Acids. Food Chem. 2018, 265, 70. DOI: 10.1016/j.foodchem.2018.05.060.
  • Susanto, E.; Fahmi, A. S.; Abe, M.; Hosokawa, M.; Miyashita, K. Lipids, Fatty Acids, and Fucoxanthin Content from Temperate and Tropical Brown Seaweeds. Aquat. Procedia 2016, 7, 66.
  • Chua, M. E.; Sio, M. C.; Sorongon, M. C.; Dy, J. S. Relationship of Dietary Intake of Omega-3 and Omega-6 Fatty Acids with Risk of Prostate Cancer Development: A Meta-Analysis of Prospective Studies and Review of Literature. Prostate Cancer. 2012, 2012, 826254. DOI: 10.1155/2012/826254.
  • Gosch, B. J.; Magnusson, M.; Paul, N. A.; De Nys, R. Total Lipid and Fatty Acid Composition of Seaweeds for the Selection of Species for Oil‐based Biofuel and Bioproducts. GCB Bioenergy 2012, 4(6), 919.
  • Kendel, M.; Wielgosz-Collin, G.; Bertrand, S.; Roussakis, C.; Bourgougnon, N., and Bedoux, G. Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva Armoricana, and Solieria Chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives. Mar. Drugs 2015, 13(9), 5606.
  • Mišurcová, L.; Ambrožová, J., and Samek, D. Chapter 27 - Seaweed Lipids as Nutraceuticals. In Advances in Food and Nutrition Research; Kim, S.-K., Ed.; Waltham, MA02451, USA: Academic Press: 2011; Vol. 64, pp 339.
  • Miyashita, K.; Nishikawa, S.; Beppu, F.; Tsukui, T.; Abe, M.; Hosokawa, M. The Allenic Carotenoid Fucoxanthin, a Novel Marine Nutraceutical from Brown Seaweeds. J. Sci. Food Agric. 2011, 91(7), 1166. DOI: 10.1002/jsfa.4353.
  • Sánchez-Machado, D.; López-Cervantes, J.; Lopez-Hernandez, J.; Paseiro-Losada, P. Fatty Acids, Total Lipid, Protein and Ash Contents of Processed Edible Seaweeds. Food Chem. 2004, 85(3), 439.
  • Cherry, P.; O’-Hara, C.; Magee, P. J.; McSorley, E. M., and Allsopp, P. J. Risks and Benefits of Consuming Edible Seaweeds. Nut. Rev. 2019, 77(5), 307.
  • Watanabe, F.; Yabuta, Y.; Bito, T.; Teng, F. Vitamin B₁₂-Containing Plant Food Sources for Vegetarians. Nutrients. 2014, 6(5), 1861. DOI: 10.3390/nu6051861.
  • Ito, K.; Hori, K. Seaweed: Chemical Composition and Potential Food Uses. Food Revi Int. 1989, 5(1), 101.
  • Mišurcová, L.; Machů, L., and Orsavová, J. Seaweed Minerals as Nutraceuticals. Advances in Food and Nutrition Research. 2011, 64, 371.
  • Fleurence, J.; Morançais, M.; Dumay, J.; Decottignies, P.; Turpin, V.; Munier, M.; Garcia-Bueno, N.; Jaouen, P. What are the Prospects for Using Seaweed in Human Nutrition and for Marine Animals Raised Through Aquaculture? Trends Food Sci. Technol. 2012, 27(1), 57. DOI: 10.1016/j.tifs.2012.03.004.
  • Saranraj, P.; Behera, S. S., and Ray, R. C. Traditional Foods from Tropical Root and Tuber Crops: Innovations and Challenges. In Innovations in Traditional Foods. M. Galanakis, Charis; Duxford, CB22 4QH, United Kingdom: Elsevier, 2019; pp 159.
  • Cotas, J.; Leandro, A.; Pacheco, D.; Goncalves, A. M. M.; Pereira, L. A Comprehensive Review of the Nutraceutical and Therapeutic Applications of Red Seaweeds (Rhodophyta). Life (Basel). 2020, 10(3), 19.
  • Padmanabhan, P.; Correa-Betanzo, J., and Paliyath, G. Berries and Related Fruits. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., and Toldrá, F., Eds.; Academic Press: Oxford, 2016; pp 364.
  • Pietta, P.; Minoggio, M.; Bramati, L. Plant Polyphenols: Structure, Occurrence and Bioactivity. Stud. Nat. Prod. Chem. 2003, 28, 257. Elsevier.
  • Lomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19(5), 245.
  • Agregán, R.; Munekata, P. E. S.; Franco, D.; Dominguez, R.; Carballo, J.; Lorenzo, J. M. Phenolic Compounds from Three Brown Seaweed Species Using LC-DAD–ESI-MS/MS. Food Res. Int. 2017, 99, 979. DOI: 10.1016/j.foodres.2017.03.043.
  • Rajauria, G.; Foley, B.; Abu-Ghannam, N. Identification and Characterization of Phenolic Antioxidant Compounds from Brown Irish Seaweed Himanthalia Elongata Using LC-DAD–ESI-MS/MS. Innov. Food Sci. Emerg. Technol. 2016, 37, 261. DOI: 10.1016/j.ifset.2016.02.005.
  • Rajauria, G. Optimization and Validation of Reverse Phase HPLC Method for Qualitative and Quantitative Assessment of Polyphenols in Seaweed. J. Pharm. Biomed. Anal. 2018, 148, 230. DOI: 10.1016/j.jpba.2017.10.002.
  • Pangestuti, R.; Getachew, A. T.; Siahaan, E. A.; Chun, B.-S. Characterization of Functional Materials Derived from Tropical Red Seaweed Hypnea Musciformis Produced by Subcritical Water Extraction Systems. J. Appl. Phycol. 2019, 31(4), 2517. DOI: 10.1007/s10811-019-1754-9.
  • Novoa, A. V.; Andrade-Wartha, E. R.; Linares, A. F.; Silva, A. M. D. O.; Genovese, M. I.; González, A. E. B.; Vuorela, P.; Costa, A., and Mancini-Filho, J. Antioxidant Activity and Possible Bioactive Components in Hydrophilic and Lipophilic Fractions from the Seaweed Halimeda Incrassata. Brazilian Journal of Pharmacognosy. 2011, 21, 53.
  • Hernández, I.; Alegre, L.; Van Breusegem, F.; Munné-Bosch, S. How Relevant are Flavonoids as Antioxidants in Plants? Trends Plant Sci. 2009, 14(3), 125.
  • Pelegrin, Y.; Freile, A., and Robledo, D. Bioactive Phenolic Compounds from Algae. In Bioactive Compounds from Marine Foods: Plants and Animal Sources. Hernandez-Ledesma, Blanca; 525 W. Van Buren st. Suite 1000, Chicago IL 60607: John Wiley & sons, Ltd, 2013; pp 113–129.
  • Tanna, B.; Choudhary, B.; Mishra, A. Metabolite Profiling, Antioxidant, Scavenging and Anti-Proliferative Activities of Selected Tropical Green Seaweeds Reveal the Nutraceutical Potential of Caulerpa Spp. Algal Res. 2018, 36, 96.
  • Mohy El-Din, S. M.; El-Ahwany, A. M. D. Bioactivity and Phytochemical Constituents of Marine Red Seaweeds (Jania Rubens, Corallina Mediterranea and Pterocladia Capillacea). J. Taibah Univ. Sci. 2016, 10(4), 471. DOI: 10.1016/j.jtusci.2015.06.004.
  • Santos, S. A. O.; Felix, R.; Pais, A. C. S.; Rocha, S. M.; Silvestre, A. J. D. The Quest for Phenolic Compounds from Macroalgae: A Review of Extraction and Identification Methodologies. Biomolecules. 2019, 9(12), 847. DOI: 10.3390/biom9120847.
  • Rajeshkumar, R., and Jeyaprakash, K.HPLC Analysis of Flavonoids in Acanthophora Specifera (Red Seaweed) Collected from Gulf of Mannar.International Journal of Science and Research (IJSR). 2015. 6(9), 69–72.
  • Tanna, B.; Brahmbhatt, H. R.; Mishra, A. Phenolic, Flavonoid, and Amino Acid Compositions Reveal That Selected Tropical Seaweeds Have the Potential to Be Functional Food Ingredients. J. Food Process. Preserv. 2019, 43(12), e14266.
  • Yoshie-Stark, Y.; Hsieh, Y.-P., and Suzuki, T. Distribution of Flavonoids and Related Compounds from Seaweeds in Japan. Journal of Tokyo University of Fisheries . 2003, 89, 1.
  • Rajan, D. K.; Mohan, K.; Zhang, S.; Ganesan, A. R. Dieckol: A Brown Algal Phlorotannin with Biological Potential. Biomed. Pharmacother. 2021, 142, 111988. DOI: 10.1016/j.biopha.2021.111988.
  • Gómez, I.; Huovinen, P. Brown Algal Phlorotannins: An Overview of Their Functional Roles. In Antarctic Seaweeds: Diversity, Adaptation and Ecosystem Services; Gómez, I. and Huovinen, P., Eds.; Springer International Publishing: Cham, 2020; pp 365.
  • Targett, N. M.; Arnold, T. M. Minireview—predicting the Effects of Brown Algal Phlorotannins on Marine Herbivores in Tropical and Temperate Oceans. 1998, 34(2), 195.
  • Imbs, T.; Zvyagintseva, T. Phlorotannins are Polyphenolic Metabolites of Brown Algae. Russ J. Mar. Biol. 2018, 44(4), 263.
  • Marinho, G. S.; Sørensen, A.-D.-M.; Safafar, H.; Pedersen, A. H.; Holdt, S. L. Antioxidant Content and Activity of the Seaweed Saccharina Latissima: A Seasonal Perspective. J. Appl. Phycol. 2019, 31(2), 1343. DOI: 10.1007/s10811-018-1650-8.
  • Rengasamy, K. R. R.; Mahomoodally, M. F.; Aumeeruddy, M. Z.; Zengin, G.; Xiao, J.; Kim, D. H. Bioactive Compounds in Seaweeds: An Overview of Their Biological Properties and Safety. Food Chem. Toxicol. 2020, 135, 111013. DOI: 10.1016/j.fct.2019.111013.
  • Negara, B.; Sohn, J. H.; Kim, J. S.; Choi, J. S. Effects of Phlorotannins on Organisms: Focus on the Safety, Toxicity, and Availability of Phlorotannins. Foods. 2021, 10(2), 452. DOI: 10.3390/foods10020452.
  • Mateos, R.; Perez-Correa, J. R.; Dominguez, H. Bioactive Properties of Marine Phenolics. Mar. Drugs. 2020, 18(10), 501. DOI: 10.3390/md18100501.
  • Rajasulochana, P.; Krishnamoorthy, P.; Dhamotharan, R. Isolation, Identification of Bromophenol Compound and Antibacterial Activity of Kappaphycus Sp. Int. J. Pharm. Biol. 2012, 3, 173.
  • Cabrita, M. T.; Vale, C.; Rauter, A. P. Halogenated Compounds from Marine Algae. Mar. Drugs. 2010, 8(8), 2301. DOI: 10.3390/md8082301.
  • Liu, M.; Hansen, P. E.; Lin, X. Bromophenols in Marine Algae and Their Bioactivities. Mar. Drugs 2011, 9(7), 1273.
  • Bidleman, T. F.; Andersson, A.; Brugel, S.; Ericson, L.; Haglund, P.; Kupryianchyk, D.; Lau, D. C.; Liljelind, P.; Lundin, L.; Tysklind, A. J. E. S. P. Impacts, Bromoanisoles and Methoxylated Bromodiphenyl Ethers in Macroalgae from Nordic Coastal Regions. Environ. Sci. Processes Impacts 2019, 21(5), 881.
  • Mandrekar, V. K.; Gawas, U. B., and Majik, M. S. Chapter 13 - Brominated Molecules from Marine Algae and Their Pharmacological Importance. In Studies in Natural Products Chemistry; Attaur, R., Ed.; Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands: Elsevier, 2019; Vol. 61, pp 461.
  • Machado, L.; Magnusson, M.; Paul, N. A.; Kinley, R.; de Nys, R.; Tomkins, N. Identification of Bioactives from the Red Seaweed Asparagopsis Taxiformis That Promote Antimethanogenic Activity in vitro. Journal Appl. Phycol. 2016, 28(5), 3117.
  • Hussain, E.; Wang, L.; Jiang, B.; Riaz, S.; Butt, G.; Shi, D. Components of Brown Seaweeds are Potential Candidate for Cancer Therapy-A Review. R. Soc. Chem. 2016, 10, C5RA23995H.
  • Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L., and Napolitano, A. Bioactive Phenolic Compounds from Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front. Nutr. 2020, 7, 60.
  • Senthilkumar, K.; Manivasagan, P.; Venkatesan, J.; Kim, S.-K. Brown Seaweed Fucoidan: Biological Activity and Apoptosis, Growth Signaling Mechanism in Cancer. Int. J. Biol. Macromol. 2013, 60, 366. DOI: 10.1016/j.ijbiomac.2013.06.030.
  • Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68(6), 394. DOI: 10.3322/caac.21492.
  • Wang, L.-J.; Guo, C.-L.; Li, X.-Q.; Wang, S.-Y.; Jiang, B.; Zhao, Y.; Luo, J.; Xu, K.; Liu, H.; Guo, S.-J., et al. Discovery of Novel Bromophenol Hybrids as Potential Anticancer Agents Through the Ros-Mediated Apoptotic Pathway: Design. Synth. Biol. Eval. 2017, 15(11), 343.
  • Guo, C. L.; Wang, L. J.; Zhao, Y.; Liu, H.; Li, X. Q.; Jiang, B.; Luo, J.; Guo, S. J.; Wu, N.; Shi, D. Y. A Novel Bromophenol Derivative BOS-102 Induces Cell Cycle Arrest and Apoptosis in Human A549 Lung Cancer Cells via ROS-Mediated Pi3k/akt and the MAPK Signaling Pathway. Mar. Drugs. 2018, 16(2), 43. DOI: 10.3390/md16020043.
  • Guo, C.; Wang, L.; Zhao, Y.; Jiang, B.; Luo, J.; Shi, D. J. E.; Medicine, T. BOS‑93, a Novel Bromophenol Derivative, Induces Apoptosis and Autophagy in Human A549 Lung Cancer Cells via Pi3k/akt/mtor and MAPK Signaling Pathway. Exp. Ther. Med. 2019, 17(5), 3848.
  • Qi, X.; Liu, G.; Qiu, L.; Lin, X.; Liu, M. Marine Bromophenol Bis(2,3-Dibromo-4,5-Dihydroxybenzyl) Ether, Represses Angiogenesis in HUVEC Cells and in Zebrafish Embryos via Inhibiting the VEGF Signal Systems. Biomed. Pharmacother. 2015, 75, 58. DOI: 10.1016/j.biopha.2015.08.033.
  • He, Z.; Chen, Y.; Chen, Y.; Liu, H.; Yuan, G.; Fan, Y.; Chen, K. Optimization of the Microwave-Assisted Extraction of Phlorotannins from Saccharina Japonica Aresch and Evaluation of the Inhibitory Effects of Phlorotannin-Containing Extracts on HepG2 Cancer Cells. Chin. J. Oceanol. Limnol. 2013, 31(5), 1045.
  • Nwosu, F.; Morris, J.; Lund, V. A.; Stewart, D.; Ross, H. A.; McDougall, G. J. Anti-Proliferative and Potential Anti-Diabetic Effects of Phenolic-Rich Extracts from Edible Marine Algae. Food Chem. 2011, 126(3), 1006. DOI: 10.1016/j.foodchem.2010.11.111.
  • Henry, M.; Wilson, M.; Martin, O.; Ntevheleni, T.; Wilfred, T. Phlorotannins and a Sterol Isolated from a Brown Alga Ecklonia Maxima, and Their Cytotoxic Activity Against Selected Cancer Cell Lines HeLa, H157 and MCF7. Interdiscip. 2017, 2, 1.
  • Thomas, N. V.; Kim, S. K. Potential Pharmacological Applications of Polyphenolic Derivatives from Marine Brown Algae. Environ. Toxicol. Pharmacol. 2011, 32(3), 325. DOI: 10.1016/j.etap.2011.09.004.
  • Matulja, D.; Vranješević, F.; Kolympadi Markovic, M.; Pavelić, S. K.; Marković, D. Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives. 2022, 27(4), 1449.
  • Gunathilaka, T.; Keertihirathna, L. R.; Peiris, D. Advanced Pharmacological Uses of Marine Algae as an Anti-Diabetic Therapy. 2021.
  • Sharifuddin, Y.; Chin, Y.-X.; Lim, P.-E.; Phang, S.-M. Potential Bioactive Compounds from Seaweed for Diabetes Management. Mar. Drugs 2015, 13(8), 5447.
  • Murugan, A. C.; Karim, M. R.; Yusoff, M. B. M.; Tan, S. H.; Asras, M. F. B. F.; Rashid, S. S. New Insights into Seaweed Polyphenols on Glucose Homeostasis. Pharm. Biol. 2015, 53(8), 1087.
  • Lin, X.; Liu, M. Bromophenols from Marine Algae with Potential Anti-Diabetic Activities. J. Ocean Univ. China. 2012, 11(4), 533. DOI: 10.1007/s11802-012-2109-1.
  • Mateos, R.; Pérez-Correa, J. R.; Domínguez, H. J. M. D. Bioactive Properties of Marine Phenolics. Mar. Drugs 2020, 18(10), 501.
  • Xu, Q.; Luo, J.; Wu, N.; Zhang, R.; Shi, D. BPN, a Marine-Derived PTP1B Inhibitor, Activates Insulin Signaling and Improves Insulin Resistance in C2C12 Myotubes. Int. J. Biol. Macromol. 2018, 106, 379. DOI: 10.1016/j.ijbiomac.2017.08.042.
  • Gunathilaka, T. L.; Samarakoon, K. W.; Ranasinghe, P.; Peiris, L. D. C. In-Vitro Antioxidant, Hypoglycemic Activity, and Identification of Bioactive Compounds in Phenol-Rich Extract from the Marine Red Algae Gracilaria Edulis (Gmelin) Silva. Molecules. 2019, 24(20), 3708. DOI: 10.3390/molecules24203708.
  • Lee, S. H.; Karadeniz, F.; Kim, M. M.; Kim, S. K. α‐Glucosidase and α‐amylase Inhibitory Activities of Phloroglucinal Derivatives from Edible Marine Brown Alga, Ecklonia Cava. J. Sci. Food Agric. 2009, 89(9), 1552.
  • Lee, S.-H.; Park, M.-H.; Heo, S.-J.; Kang, S.-M.; Ko, S.-C.; Han, J.-S.; Jeon, Y.-J.-J.-F. Dieckol Isolated from Ecklonia Cava Inhibits α-Glucosidase and α-Amylase in vitro and Alleviates Postprandial Hyperglycemia in Streptozotocin-Induced Diabetic Mice. Food Chem. Toxicol. 2010, 48(10), 2633.
  • Lee, H. A.; Lee, J. H.; Han, J. S. A Phlorotannin Constituent of Ecklonia Cava Alleviates Postprandial Hyperglycemia in Diabetic Mice. Pharm. Biol. 2017, 55(1), 1149. DOI: 10.1080/13880209.2017.1291693.
  • Lee, S.-H.; Jeon, Y.-J. Anti-Diabetic Effects of Brown Algae Derived Phlorotannins, Marine Polyphenols Through Diverse Mechanisms. Fitoterapia. 2013, 86, 129. DOI: 10.1016/j.fitote.2013.02.013.
  • Moon, H. E.; Islam, M. N.; Ahn, B. R.; Chowdhury, S. S.; Sohn, H. S.; Jung, H. A., and Choi, J. S. Protein Tyrosine Phosphatase 1B and α-Glucosidase Inhibitory Phlorotannins from Edible Brown Algae, Ecklonia Stolonifera Eisenia Bicyclis. Biosci. Biotechnol Biochem. 2011, 75 (8), 1472.
  • Yan, X.; Yang, C.; Lin, G.; Chen, Y.; Miao, S.; Liu, B.; Zhao, C. Antidiabetic Potential of Green Seaweed Enteromorpha Prolifera Flavonoids Regulating Insulin Signaling Pathway and Gut Microbiota in Type 2 Diabetic Mice. J. Food Sci. 2019, 84(1), 165. DOI: 10.1111/1750-3841.14415.
  • Pereira, L.; Valado, A. The Seaweed Diet in Prevention and Treatment of the Neurodegenerative Diseases. Mar. Drugs 2021, 19(3), 128.
  • Lomartire, S.; Goncalves, A. M. M. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar. Drugs. 2022, 20(2), 141. DOI: 10.3390/md20020141.
  • Myung, C. S.; Shin, H. C.; Bao, H. Y.; Yeo, S. J.; Lee, B. H.; Kang, J. S. Improvement of Memory by Dieckol and Phlorofucofuroeckol in Ethanol-Treated Mice: Possible Involvement of the Inhibition of Acetylcholinesterase. Arch. Pharm. Res. 2005, 28(6), 691. DOI: 10.1007/BF02969360.
  • Nho, J. A.; Shin, Y. S.; Jeong, H. R.; Cho, S.; Heo, H. J.; Kim, G. H.; Kim, D. O. Neuroprotective Effects of Phlorotannin-Rich Extract from Brown Seaweed Ecklonia Cava on Neuronal PC-12 and SH-SY5Y Cells with Oxidative Stress. J. Microbiol. Biotechnol. 2020, 30(3), 359. DOI: 10.4014/jmb.1910.10068.
  • Adhami, H.-R., and Sharafi, P. Can Marine Products Improve Alzheimer’s Disease. Journal of Sciences, Islamic Republic of Iran. 2020, 31(4), 321.
  • Kim, A.-R.; Shin, T.-S.; Lee, M.-S.; Park, J.-Y.; Park, K.-E.; Yoon, N.-Y.; Kim, J.-S.; Choi, J.-S.; Jang, B.-C., and Byun, D., et al. Isolation and Identification of Phlorotannins from Ecklonia Stolonifera with Antioxidant and Anti-Inflammatory Properties. J. Agric. Food Chem. 2009, 57(9), 3483.
  • Shibata, T.; Ishimaru, K.; Kawaguchi, S.; Yoshikawa, H., and Hama, Y. Antioxidant Activities of Phlorotannins Isolated from Japanese Laminariaceae. Nineteenth International Seaweed Symposium; Kobe, Japan. Springer, 2007; pp 255.
  • Paudel, P.; Park, S. E.; Seong, S. H.; Jung, H. A.; Choi, J. S. Bromophenols from Symphyocladia Latiuscula Target Human Monoamine Oxidase and Dopaminergic Receptors for the Management of Neurodegenerative Diseases. J. Agric. Food Chem. 2020, 68(8), 2426. DOI: 10.1021/acs.jafc.0c00007.
  • Barbosa, M.; Lopes, G.; Andrade, P. B.; Valentão, P. Bioprospecting of Brown Seaweeds for Biotechnological Applications: Phlorotannin Actions in Inflammation and Allergy Network. Trends Food Sci. Technol. 2019, 86, 153. DOI: 10.1016/j.tifs.2019.02.037.
  • Lagunoff, D.; Martin, T., and Read, G. Agents That Release Histamine from Mast Cells. Annu. Rev. Pharmacol. Toxicol. 1983, 23(1), 331.
  • Vo, T.-S.; Ngo, D.-H.; Kim, S.-K. Marine Algae as a Potential Pharmaceutical Source for Anti-Allergic Therapeutics. Process Biochem. 2012, 47(3), 386.
  • Shim, S.-Y.; Choi, J.-S.; Byun, D.-S. Inhibitory Effects of Phloroglucinol Derivatives Isolated from Ecklonia Stolonifera on FcεRI Expression. Bioorg. Med. Chem. 2009, 17(13), 4734.
  • Li, Y.; Lee, S.-H.; Le, Q.-T.; Kim, M.-M.; Kim, S.-K. Anti-Allergic Effects of Phlorotannins on Histamine Release via Binding Inhibition Between IgE and FcεRI. J. Agric. Food. Chem. 2008, 56(24), 12073.
  • Matsui, T.; Ito, C.; Itoigawa, M.; Shibata, T. Three Phlorotannins from Sargassum Carpophyllum are Effective Against the Secretion of Allergic Mediators from Antigen-Stimulated Rat Basophilic Leukemia Cells. Food Chem. 2022, 377, 131992. DOI: 10.1016/j.foodchem.2021.131992.
  • Venkatesan, J.; Keekan, K. K.; Anil, S.; Bhatnagar, I., and Kim, S.-K. Phlorotannins. In Encyclopedia of Food Chemistry; Melton, Laurence, Shahidi, Fereidoon; Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands: Elsevier, 2019; pp 515.
  • Lee, D. S.; Eom, S. H.; Jeong, S. Y.; Shin, H. J.; Je, J. Y.; Lee, E. W.; Chung, Y. H.; Kim, Y. M.; Kang, C. K.; Lee, M. S. Anti-Methicillin-Resistant Staphylococcus Aureus (MRSA) Substance from the Marine Bacterium Pseudomonas Sp. UJ-6. Environ. Toxicol. Pharmacol. 2013, 35(2), 171. DOI: 10.1016/j.etap.2012.11.011.
  • Lee, D.-S.; Kang, M.-S.; Hwang, H.-J.; Eom, S.-H.; Yang, J.-Y.; Lee, M.-S.; Lee, W.-J.; Jeon, Y.-J.; Choi, J.-S.; Kim, Y.-M. Synergistic Effect Between Dieckol from Ecklonia Stolonifera and β-Lactams Against Methicillin-Resistant Staphylococcus Aureus. Biotechnol. Bioprocess Eng. 2008, 13(6), 758.
  • Eom, S. H.; Kim, D. H.; Lee, S. H.; Yoon, N. Y.; Kim, J. H.; Kim, T. H.; Chung, Y. H.; Kim, S. B.; Kim, Y. M.; Kim, H. W., et al. In vitro Antibacterial Activity and Synergistic Antibiotic Effects of Phlorotannins Isolated from Eisenia Bicyclis Against Methicillin-Resistant Staphylococcus Aureus. Phytother. Res. 2013, 27(8), 1260. DOI: 10.1002/ptr.4851.
  • Lee, J.-H.; Eom, S.-H.; Lee, E.-H.; Jung, Y.-J.; Kim, H.-J.; Jo, M.-R.; Son, K.-T.; Lee, H.-J.; Kim, J. H.; Lee, M.-S. In vitro Antibacterial and Synergistic Effect of Phlorotannins Isolated from Edible Brown Seaweed Eisenia Bicyclis Against Acne-Related Bacteria. Algae 2014, 29(1), 47.
  • Oh, K.-B.; Lee, J. H.; Chung, S.-C.; Shin, J.; Shin, H. J.; Kim, H.-K.; Lee, H.-S.-J.-B., and Letters, M. C. Antimicrobial Activities of the Bromophenols from the Red Alga Odonthalia Corymbifera and Some Synthetic Derivatives. Bioorganic & Medicinal Chemistry Letters. 2008, 18(1), 104.
  • Gunaseelan, S.; Arunkumar, M.; Aravind, M. K.; Gayathri, S.; Rajkeerthana, S.; Mohankumar, V.; Ashokkumar, B., and Varalakshmi, P. Probing Marine Brown Macroalgal Phlorotannins as Antiviral Candidate Against SARS-CoV-2: Molecular Docking and Dynamics Simulation Approach. Molecular Diversity. 2022, 1.
  • Kumar, A.; Singh, R. P.; Kumar, I.; Yadav, P.; Singh, S. K.; Kaushalendra; Singh, P. K.; Gupta, R. K.; Singh, S. M.; Kesawat, M. S., et al. Algal Metabolites Can Be an Immune Booster Against COVID-19 Pandemic. Antioxidants 2022, 11(3), 452.
  • Ahn, M.-J.; Yoon, K.-D.; Min, S.-Y.; Lee, J. S.; Kim, J. H.; Kim, T. G.; Kim, S. H.; Kim, N.-G.; Huh, H.; Kim, J. Inhibition of HIV-1 Reverse Transcriptase and Protease by Phlorotannins from the Brown Alga Ecklonia Cava. Biol. Pharm. Bull. 2004, 27(4), 544. DOI: 10.1248/bpb.27.544.
  • Arioli, T.; Mattner, S. W.; Winberg, P. C. Applications of Seaweed Extracts in Australian Agriculture: Past, Present and Future. J. Appl. Phycol. 2015, 27(5), 2007. DOI: 10.1007/s10811-015-0574-9.
  • Nabti, E. Biotechnological Applications of Seaweeds; Nova Science Publishers: Hauppauge, New York, 2017.
  • Verkleij, F. Seaweed Extracts in Agriculture and Horticulture: A Review. Biol. Agric. Hortic. 1992, 8(4), 309.
  • Crouch, I.; Beckett, R.; Van Staden, J. Effect of Seaweed Concentrate on the Growth and Mineral Nutrition of Nutrient-Stressed Lettuce. J. Appl. Phycol. 1990, 2(3), 269.
  • Lola-Luz, T.; Hennequart, F.; Gaffney, M. Effect on Yield, Total Phenolic, Total Flavonoid and Total Isothiocyanate Content of Two Broccoli Cultivars (Brassica Oleraceae Var Italica) Following the Application of a Commercial Brown Seaweed Extract (Ascophyllum Nodosum). Agric. Food Sci. 2014, 23(1), 28.
  • Carvalho, M.; Castro, P. D. C.; Novembre, A., and Chamma, H. Seaweed Extract Improves the Vigor and Provides the Rapid Emergence of Dry Bean Seeds. American-Eurasian J. Agric. & Environ. Sci.,. 2013, 13(8), 1104.
  • Aziz, N. G. A.; Mahgoub, M., and Siam, H. Growth, Flowering and Chemical Constituents Performance of Amaranthus Tricolor Plants as Influenced by Seaweed (Ascophyllum Nodosum) Extract Application Under Salt Stress Conditions. Journal of Applied Sciences Research. 2011, 7, 1472.
  • Machado, L. P.; Matsumoto, S. T.; Jamal, C. M.; da Silva, M. B.; Centeno Dda, C.; Colepicolo Neto, P.; de Carvalho, L. R.; Yokoya, N. S. Chemical Analysis and Toxicity of Seaweed Extracts with Inhibitory Activity Against Tropical Fruit Anthracnose Fungi. J. Sci. Food Agric. 2014, 94(9), 1739. DOI: 10.1002/jsfa.6483.
  • Petropoulos, S. A.; Sami, R.; Benajiba, N.; Zewail, R. M. Y., and Mohamed, M. H. M. The Response of Globe Artichoke Plants to Potassium Fertilization Combined with the Foliar Spraying of Seaweed Extract. Agronomy. 2022, 12(2), 490.
  • Morais, T.; Inácio, A.; Coutinho, T.; Ministro, M.; Cotas, J.; Pereira, L., and Bahcevandziev, K. Seaweed Potential in the Animal Feed: A Review. Journal of Marine Science and Engineering. 2020, 8(8), 559.
  • Holdt, S. L., and Kraan, S. Bioactive Compounds in Seaweed: Functional Food Applications and Legislation. Journal of Applied Phycology. 2011, 23(3), 543.
  • Bikker, P.; van Krimpen, M. M.; van Wikselaar, P.; Houweling-Tan, B.; Scaccia, N.; van Hal, J. W.; Huijgen, W. J. J.; Cone, J. W.; López-Contreras, A. M. Biorefinery of the Green Seaweed Ulva Lactuca to Produce Animal Feed, Chemicals and Biofuels. J. Appl. Phycol. 2016, 28(6), 3511. DOI: 10.1007/s10811-016-0842-3.
  • Singh, B. K.; Chopra, R. C.; Rai, S. N.; Verma, M. P., and Mohanta, R. K. Nutritional Evaluation of Seaweed on Nutrient Digestibility, Nitrogen Balance, Milk Production and Composition in Sahiwal Cows. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2017, 87(2), 437.
  • Caroprese, M.; Ciliberti, M. G.; Marino, R.; Santillo, A.; Sevi, A.; Albenzio, M. Polyunsaturated Fatty Acid Supplementation: Effects of Seaweed Ascophyllum Nodosum and Flaxseed on Milk Production and Fatty Acid Profile of Lactating Ewes During Summer. J. Dairy Res. 2016, 83(3), 289. DOI: 10.1017/S0022029916000431.
  • Atiwesh, G.; Mikhael, A.; Parrish, C. C.; Banoub, J.; Le, T.-A.-T. Environmental Impact of Bioplastic Use: A Review. Heliyon. 2021, 7(9), e07918. DOI: 10.1016/j.heliyon.2021.e07918.
  • Muizniece-Brasava, S.; Dukalska, L., and Kantike, I., Consumer’s Knowledge and Attitude to Traditional and Environmentally Friendly Food Packaging Materials in Market of Latvia. The 6th Baltic Conference on Food Science and Technology “FoodBalt-2011, Jelgava, Latvia, 2011; pp 5.
  • Jayakody, M. M.; Vanniarachchy, M. P. G., and Wijesekara, I. Seaweed Derived Alginate, Agar, and Carrageenan Based Edible Coatings and Films for the Food Industry: A Review. Journal of Food Measurement and Characterization. 2022, 16, 1.
  • Abdullah, N. A.; Mohamad, Z.; Khan, Z. I.; Jusoh, M.; Zakaria, Z. Y., and Ngadi, N. Alginate Based Sustainable Films and Composites for Packaging: A Review. Chemical Engineering Transactions. 2021, 83, 271–276.
  • Phan, T. D.; Debeaufort, F.; Luu, D.; Voilley, A. Functional Properties of Edible Agar-Based and Starch-Based Films for Food Quality Preservation. J. Agric. Food Chem. 2005, 53(4), 973. DOI: 10.1021/jf040309s.
  • Han, J. H. 2014. Edible Films and Coatings: A Review. In Innovations in Food Packaging. H. Han, Jung;London NW1 7BY, UK: Academic Press, pp 213.
  • Huq, T.; Salmieri, S.; Khan, A.; Khan, R. A.; Le Tien, C.; Riedl, B.; Fraschini, C.; Bouchard, J.; Uribe-Calderon, J.; Kamal, M. R., et al. Nanocrystalline Cellulose (NCC) Reinforced Alginate Based Biodegradable Nanocomposite Film. Carbohydr. Polym. 2012, 90(4), 1757. DOI: 10.1016/j.carbpol.2012.07.065.
  • Kanmani, P.; Rhim, J. W. Development and Characterization of Carrageenan/grapefruit Seed Extract Composite Films for Active Packaging. Int. J. Biol. Macromol. 2014, 68, 258. DOI: 10.1016/j.ijbiomac.2014.05.011.
  • Zhao, J.; Jiang, H.; Huang, Q.; Xu, J.; Duan, M.; Yu, S.; Zhi, Z.; Pang, J.; Wu, C. Carboxymethyl Chitosan Incorporated with Gliadin/phlorotannin Nanoparticles Enables the Formation of New Active Packaging Films. Int. J. Biol. Macromol. 2022, 203, 40. DOI: 10.1016/j.ijbiomac.2022.01.128.
  • Khalil, H. A.; Saurabh, C. K.; Tye, Y.; Lai, T.; Easa, A.; Rosamah, E.; Fazita, M.; Syakir, M.; Adnan, A., and Fizree, H. J. R., et al. Seaweed Based Sustainable Films and Composites for Food and Pharmaceutical Applications: A Review. Renewable and Sustainable Energy Reviews. 2017, 77, 353.
  • Grenha, A.; Gomes, M. E.; Rodrigues, M.; Santo, V. E.; Mano, J. F.; Neves, N. M.; Reis, R. L. Development of New Chitosan/carrageenan Nanoparticles for Drug Delivery Applications. J. Biomed. Mater. Res. A. 2010, 92(4), 1265.
  • Kevadiya, B. D.; Joshi, G. V.; Patel, H. A.; Ingole, P. G.; Mody, H. M., and Bajaj, H. C. Montmorillonite-Alginate Nanocomposites as a Drug Delivery System: Intercalation and in vitro Release of Vitamin B1 and Vitamin B6. Journal of Biomaterial applications. 2010, 25(2), 161.
  • Varghese, J. S.; Chellappa, N., and Fathima, N. N. Gelatin–carrageenan Hydrogels: Role of Pore Size Distribution on Drug Delivery Process. Colloids and Surfaces B: Biointerfaces. 2014, 113, 346.
  • Alves, A.; Pinho, E. D.; Neves, N. M.; Sousa, R. A., and Reis, R. L. Processing Ulvan into 2D Structures: Cross-Linked Ulvan Membranes as New Biomaterials for Drug Delivery Applications. International Journal of Pharmaceutics. 2012, 426(1–2), 76.
  • Bilal, M.; Iqbal, H. M. N. Marine Seaweed Polysaccharides-Based Engineered Cues for the Modern Biomedical Sector. Mar. Drugs. 2019, 18(1), 7. DOI: 10.3390/md18010007.
  • Madub, K.; Goonoo, N.; Gimié, F.; Ait Arsa, I.; Schönherr, H.; Bhaw-Luximon, A. Green Seaweeds Ulvan-Cellulose Scaffolds Enhance in vitro Cell Growth and in vivo Angiogenesis for Skin Tissue Engineering. Carbohydr. Polym. 2021, 251, 117025. DOI: 10.1016/j.carbpol.2020.117025.
  • Tan, S. P.; McLoughlin, P.; O’Sullivan, L.; Prieto, M. L.; Gardiner, G. E.; Lawlor, P. G.; Hughes, H. Development of a Novel Antimicrobial Seaweed Extract-Based Hydrogel Wound Dressing. Int. J. Pharmaceutics. 2013, 456(1), 10. DOI: 10.1016/j.ijpharm.2013.08.018.
  • Couteau, C., and Coiffard, L. Seaweed Application in Cosmetics. In Seaweed in Health and Disease Prevention. Fleurence, Joel; London EC2Y 5AS, UK: Elsevier, 2016; pp 423.
  • Jesumani, V.; Du, H.; Aslam, M.; Pei, P.; Huang, N. Potential Use of Seaweed Bioactive Compounds in Skincare—a Review. 2019, 17(12), 688.
  • Numata, T.; Kobayashi, Y.; Ito, T.; Harada, K.; Tsuboi, R., and Okubo, Y. Two Cases of Allergic Contact Dermatitis Due to Skin-Whitening Cosmetics. Allergology international. 2015, 64(2), 194.
  • Shibata, T.; Fujimoto, K.; Nagayama, K.; Yamaguchi, K., and Nakamura, T. Inhibitory Activity of Brown Algal Phlorotannins Against Hyaluronidase. Int. J. Food Sci. Technol. 2002, 37(6), 703.
  • Horvitz, S.; Chanaguano, D.; Arozarena, I. J. S. H. Andean Blackberries (Rubus Glaucus Benth) Quality as Affected by Harvest Maturity and Storage Conditions. Sci. Hortic. 2017, 226, 293.
  • Hegedus, F.; Mathew, L. M.; Schwartz, R. A. Radiation Dermatitis: An Overview. Int. J. Dermatol. 2017, 56(9), 909. DOI: 10.1111/ijd.13371.
  • Yang, K.; Kim, S. Y.; Park, J. H.; Ahn, W. G.; Jung, S. H.; Oh, D.; Park, H. C.; Choi, C. Topical Application of Phlorotannins from Brown Seaweed Mitigates Radiation Dermatitis in a Mouse Model. Mar. Drugs. 2020, 18, 8. DOI: 10.3390/md18080377.
  • Pandey, A.; Chauhan, O., and Semwal, A. Seaweeds—a Potential Source for Functional Foods. Defence Life Science Journal. 2020, 5 (4) , 315.
  • Kasimala, M. B.; Mebrahtu, L.; Magoha, P. P.; Asgedom, G. A Review on Biochemical Composition and Nutritional Aspects of Seaweeds. CJST 2015, 3(1), 789.
  • Kato, K.; Hayashi, M.; Umene, S., and Masunaga, H. A Novel Method for Producing Softened Edible Seaweed Kombu. LWT - Food Science and Technology. 2016, 65, 618.
  • Banu, A. T.; Mageswari, S. U. Nutritional Status and Effect of Seaweed Chocolate on Anemic Adolescent Girls. Food Sci. Hum. Wellness 2015, 4(1), 28.
  • Cox, S.; Abu‐ghannam, N. Enhancement of the Phytochemical and Fibre Content of Beef Patties with H Imanthalia Elongata Seaweed. Int. J Food Sci. Technol. 2013, 48(11), 2239.
  • Kumoro, A.; Johnny, D., and Alfilovita, D. Incorporation of Microalgae and Seaweed in Instant Fried Wheat Noodles Manufacturing: Nutrition and Culinary Properties Study. International Food Research Journal. 2016, 23(2), 715–722.
  • Kaneko, J. J. Chapter 3 - Carbohydrate Metabolism and Its Diseases. In Clinical Biochemistry of Domestic Animals, 5th ed.; Kaneko, J. J., Harvey, J.W., and Bruss, M.L., Eds.; Academic Press: San Diego, 1997; pp 45.
  • Hoffman, J. R., and Falvo, M. J. Protein–which is Best? Journal of sports science & medicine. 2004, 3(3), 118.
  • Gamero-Vega, G.; Palacios-Palacios, M., and Quitral, V. Nutritional Composition and Bioactive Compounds of Red Seaweed: A Mini-Review. Journal of Food and Nutrition Research. 2020, 8, 431.
  • Santoso, J.; Gunji, S.; Yoshie-Stark, Y., and Suzuki, T. Mineral Contents of Indonesian Seaweeds and Mineral Solubility Affected by Basic Cooking. Food Science and Technology Research. 2006, 12(1), 59.
  • Tabarsa, M.; Rezaei, M.; Ramezanpour, Z.; Robert Waaland, J., and Rabiei, R. Fatty Acids, Amino Acids, Mineral Contents, and Proximate Composition of Some Brown Seaweeds. Journal of Phycology. 2012, 48(2), 285.
  • Olsson, J.; Toth, G. B.; Albers, E. Biochemical Composition of Red, Green and Brown Seaweeds on the Swedish West Coast. J. Appl. Phycol. 2020, 32(5), 3305. DOI: 10.1007/s10811-020-02145-w.
  • Guyton, A. C., and Hall, J. E. Textbook of Medical Physiology; Saunders Philadelphia: Elsevier, 1986; Vol. 548.
  • Epstein, M., and World, R. Alcohol’s Impact on Kidney Function. Alcohol Health and Researh World. 1997, 21(1), 84.
  • Laires, M. J.; Monteiro, C. P.; Bicho, M. Role of Cellular Magnesium in Health and Human Disease. Front. Biosci. 2004, 9(262), 262. DOI: 10.2741/1223.
  • Lieu, P. T.; Heiskala, M.; Peterson, P. A.; Yang, Y. The Roles of Iron in Health and Disease. Mol. Aspects Med. 2001, 22(1–2), 1. DOI: 10.1016/S0098-2997(00)00006-6.
  • Nielsen, C. W.; Rustad, T., and Holdt, S. L. Vitamin C from Seaweed: A Review Assessing Seaweed as Contributor to Daily Intake. Foods. 2021, 10(1), 198.
  • Praiboon, J.; Palakas, S.; Noiraksa, T.; Miyashita, K. Seasonal Variation in Nutritional Composition and Anti-Proliferative Activity of Brown Seaweed, Sargassum Oligocystum. J. Appl. Phycol. 2018, 30(1), 101. DOI: 10.1007/s10811-017-1248-6.
  • Semba, R. D. The Role of Vitamin a and Related Retinoids in Immune Function. Nutr. Rev. 1998, 56(1 Pt 2), S38. DOI: 10.1111/j.1753-4887.1998.tb01643.x.
  • Jacob, R. A.; Sotoudeh, G. Vitamin C Function and Status in Chronic Disease. Nutr Clin Care. 2002, 5(2), 66. DOI: 10.1046/j.1523-5408.2002.00005.x.
  • Brigelius‐flohé, R., and Traber, M. G. Vitamin E: Function and Metabolism. The Federation of American Societies for Experimental Biology Journal. 1999, 13(10), 1145.
  • Vimaladevi, S.; Mahesh, A.; Dhayanithi, B. N.; Karthikeyan, N. Mosquito Larvicidal Efficacy of Phenolic Acids of Seaweed Chaetomorpha Antennina (Bory) Kuetz. Against Aedes Aegypti. Biologia. 2012, 67(1), 212. DOI: 10.2478/s11756-011-0152-9.
  • Elsayed, K. N.; Radwan, M. M.; Hassan, S. H.; Abdelhameed, M. S.; Ibraheem, I. B., and Ross, S. A. Phytochemical and Biological Studies on Some Egyptian Seaweeds. Natural Product Communication. 2012, 7(9), 1934578X1200700927.
  • Xie, X.; Chen, C., and Fu, X. Screening α-Glucosidase Inhibitors from Four Edible Brown Seaweed Extracts by Ultra-Filtration and Molecular Docking. LWT. 2021, 138, 110654.
  • Choudhary, B.; Chauhan, O.; Mishra, A. J. F. I. M. S. Edible Seaweeds: A Potential Novel Source of Bioactive Metabolites and Nutraceuticals with Human Health Benefits. Front. Mar. Sci. 2021, 8. DOI: 10.3389/fmars.2021.740054.
  • Ganesan, A. R.; Tiwari, U.; Rajauria, G. Seaweed Nutraceuticals and Their Therapeutic Role in Disease Prevention. Food Sci. Hum. Wellness. 2019, 8(3), 252. DOI: 10.1016/j.fshw.2019.08.001.
  • Kim, K. Y.; Nguyen, T. H.; Kurihara, H.; Kim, S. M. Alpha-Glucosidase Inhibitory Activity of Bromophenol Purified from the Red Alga Polyopes Lancifolia. J. Food Sci. 2010, 75(5), H145.
  • Kurihara, H.; Mitani, T.; Kawabata, J., and Takahashi, K. Inhibitory Potencies of Bromophenols from Rhodomelaceae Algae Against α-Glucosidase Activity. Fisheries Science. 1999, 65(2), 300.
  • Kurihara, H.; Yachiyama, K. Decreasing Mechanism of Lipoxygenase-Mediated Peroxides by Seaweed Constituents. 2017.
  • Blamo, P. A., Jr; Liu, X.; Tran, T. V. A., and M, S. Kim, β-Glucuronidase Inhibitory Activity of Bromophenol Isolated from Red Alga Grateloupia Lancifolia. Agriculture and Food. 2021, 6(2), 551.
  • Shi, D.; Xu, F.; He, J.; Li, J.; Fan, X., and Han, L. Inhibition of Bromophenols Against PTP1B and Anti-Hyperglycemic Effect of Rhodomela Confervoides Extract in Diabetic Rats. Chinese Science Bulletin. 2008, 53(16), 2476.
  • Xue, M.; Ge, Y.; Zhang, J.; Wang, Q.; Hou, L.; Liu, Y.; Sun, L.; Li, Q.; Tan, M. Anticancer Properties and Mechanisms of Fucoidan on Mouse Breast Cancer in vitro and in vivo. PLoS One. 2012, 7(8), e43483. DOI: 10.1371/journal.pone.0043483.
  • Isaza Martínez, J. H.; Torres Castañeda, H. G. Preparation and Chromatographic Analysis of Phlorotannins. J. Chromatogr. Sci. 2013, 51(8), 825. DOI: 10.1093/chromsci/bmt045.
  • Kellogg, J.; Grace, M. H., and Lila, M. A. Phlorotannins from Alaskan Seaweed Inhibit Carbolytic Enzyme Activity. Marine Drugs. 2014, 12(10), 5277.
  • Wang, Y.; Xu, Z.; Bach, S., and McAllister, T. Sensitivity of Escherichia Coli to Seaweed (Ascophyllum Nodosum) Phlorotannins and Terrestrial Tannins. Asian-Australasian Journal of Animal Sciences. 2009, 22(2), 238.
  • Zhang, R.; Yuen, A. K. L.; Magnusson, M.; Wright, J. T.; de Nys, R.; Masters, A. F.; Maschmeyer, T. A Comparative Assessment of the Activity and Structure of Phlorotannins from the Brown Seaweed Carpophyllum Flexuosum. Algal Res. 2018, 29, 130. DOI: 10.1016/j.algal.2017.11.027.
  • Ahn, G.-N.; Kim, K.-N.; Cha, S.-H.; Song, C.-B.; Lee, J.; Heo, M.-S.; Yeo, I.-K.; Lee, N.-H.; Jee, Y.-H.; Kim, J.-S. Antioxidant Activities of Phlorotannins Purified from Ecklonia Cava on Free Radical Scavenging Using ESR and H 2 O 2-Mediated DNA Damage. Eur. Food Res. Technol. 2007, 226(1), 71.
  • Kannan, R. R. R.; Aderogba, M. A.; Ndhlala, A. R.; Stirk, W. A.; Van Staden, J. Acetylcholinesterase Inhibitory Activity of Phlorotannins Isolated from the Brown Alga, Ecklonia Maxima (Osbeck) Papenfuss. Food Res. Int. 2013, 54(1), 1250. DOI: 10.1016/j.foodres.2012.11.017.
  • Zhen, A. X.; Hyun, Y. J.; Piao, M. J.; Fernando, P. D. S. M.; Kang, K. A.; Ahn, M. J.; Yi, J. M.; Kang, H. K.; Koh, Y. S.; Lee, N. H., et al. Eckol Inhibits Particulate Matter 2.5-Induced Skin Keratinocyte Damage via MAPK Signaling Pathway. Mar. Drugs 2019, 17(8), 444.
  • Choi, J. G.; Kang, O. H.; Brice, O. O.; Lee, Y. S.; Chae, H. S.; Oh, Y. C.; Sohn, D. H.; Park, H.; Choi, H. G.; Kim, S. G., et al. Antibacterial Activity of Ecklonia Cava Against Methicillin-Resistant Staphylococcus Aureus and Salmonella Spp. Foodborne Pathog. Dis. 2010, 7(4), 435. DOI: 10.1089/fpd.2009.0434.
  • Lee, M.-S.; Shin, T.; Utsuki, T.; Choi, J.-S.; Byun, D.-S.; Kim, H.-R. Isolation and Identification of Phlorotannins from Ecklonia Stolonifera with Antioxidant and Hepatoprotective Properties in Tacrine-Treated HepG2 Cells. J. Agric. Food Chem. 2012, 60(21), 5340. DOI: 10.1021/jf300157w.
  • Okada, Y.; Ishimaru, A.; Suzuki, R.; Okuyama, T. A New Phloroglucinol Derivative from the Brown Alga Eisenia Bicyclis: Potential for the Effective Treatment of Diabetic Complications. J. Nat. Prod. 2004, 67(1), 103. DOI: 10.1021/np030323j.
  • Ahn, M.; Moon, C.; Yang, W.; Ko, E.-J.; Hyun, J. W.; Joo, H. G.; Jee, Y.; Lee, N. H.; Park, J. W.; Ko, R. K., et al. Diphlorethohydroxycarmalol, Isolated from the Brown Algae Ishige Okamurae, Protects Against Radiation-Induced Cell Damage in Mice. Food Chem. Toxicol. 2011, 49(4), 864. DOI: 10.1016/j.fct.2010.12.008.
  • Corona, G.; Coman, M. M.; Spencer, J. P., and Rowland, I. Digested and Fermented Seaweed Phlorotannins Reduce DNA Damage and Inhibit Growth of HT-29 Colon Cancer Cells. Proceedings of the Nutrition Society. 2014, 73(1), 1.
  • Montero, L.; Sanchez-Camargo, A. P.; Garcia-Canas, V.; Tanniou, A.; Stiger-Pouvreau, V.; Russo, M.; Rastrelli, L.; Cifuentes, A.; Herrero, M.; Ibanez, E. Anti-Proliferative Activity and Chemical Characterization by Comprehensive Two-Dimensional Liquid Chromatography Coupled to Mass Spectrometry of Phlorotannins from the Brown Macroalga Sargassum Muticum Collected on North-Atlantic Coasts. J. Chromatogr. A. 2016, 1428, 115. DOI: 10.1016/j.chroma.2015.07.053.
  • Sugiura, Y.; Matsuda, K.; Okamoto, T.; Kakinuma, M.; Amano, H. Anti-Allergic Effects of the Brown Alga Eisenia Arborea on Brown Norway Rats. Fish. Sci. 2008, 74(1), 180.
  • Uchida, M.; Kurushima, H.; Ishihara, K.; Murata, Y.; Touhata, K.; Ishida, N.; Niwa, K.; Araki, T. Characterization of Fermented Seaweed Sauce Prepared from Nori (Pyropia Yezoensis). J. Biosci. Bioeng. 2017, 123(3), 327. DOI: 10.1016/j.jbiosc.2016.10.003.
  • Jenifer, A., and Kanjana, K. Effect of Seaweed Based Biscuit Supplementation on Anthropometric Profile of Malnourished Children Residing at Tuticorin. Journal of Science Technology. 2019, 4, 2349.
  • López-López, I.; Bastida, S.; Ruiz-Capillas, C.; Bravo, L.; Larrea, M. T.; Sánchez-Muniz, F.; Cofrades, S.; Jiménez-Colmenero, F. Composition and Antioxidant Capacity of Low-Salt Meat Emulsion Model Systems Containing Edible Seaweeds. Meat Sci. 2009, 83(3), 492.
  • Sanjeewa, K. K. A.; Kim, E.-A.; Son, K.-T.; Jeon, Y.-J.-J.-J.-O.-P. Bioactive Properties and Potentials Cosmeceutical Applications of Phlorotannins Isolated from Brown Seaweeds: A Review. J. Photochem. Photobiol., B 2016, 162, 100.
  • Zhang, X.; Zhou, J.; Li, Z.; Qin, Y.; Yu, R.; Zhang, H.; Zheng, Y.; Zhu, J.; Zhang, D.; Fu, L. The Qualitative Electrochemical Determination of Multiple Components in Seaweed Fertilizer. Int. J. Electrochem. Sci. 2019, 14, 6283.
  • Tarafdar, J. Biostimulants for Sustainable Crop Production. 2022.
  • Poddar, S., Seaweed Extract’s Use in Agriculture.
  • Rengasamy, K. R.; Kulkarni, M. G.; Papenfus, H. B.; Van Staden, J. Quantification of Plant Growth Biostimulants, Phloroglucinol and Eckol, in Four Commercial Seaweed Liquid Fertilizers and Some By-Products. Algal Res. 2016, 20, 57.
  • Spieler, R. Seaweed Compound’s Anti-HIV Efficacy Will Be Tested in Southern Africa. Lancet 2002, 359(9318), 1675.
  • Stokvis, E.; Rosing, H.; Lopez-Lazaro, L.; Rodriguez, I.; Jimeno, J. M.; Supko, J. G.; Schellens, J. H.; Beijnen, J. H. Quantitative Analysis of the Novel Depsipeptide Anticancer Drug Kahalalide F in Human Plasma by High-Performance Liquid Chromatography Under Basic Conditions Coupled to Electrospray Ionization Tandem Mass Spectrometry. J. Mass Spectrom. 2002, 37(9), 992. DOI: 10.1002/jms.362.
  • Teas, J.; Irhimeh, M. R.; Druker, S.; Hurley, T. G.; Hebert, J. R.; Savarese, T. M.; Kurzer, M. S. Serum IGF-1 Concentrations Change with Soy and Seaweed Supplements in Healthy Postmenopausal American Women. Nutr. Cancer. 2011, 63(5), 743. DOI: 10.1080/01635581.2011.579383.
  • Haskell-Ramsay, C. F.; Jackson, P. A.; Dodd, F. L.; Forster, J. S.; Bérubé, J.; Levinton, C.; Kennedy, D. O. Acute Post-Prandial Cognitive Effects of Brown Seaweed Extract in Humans. Nutrients 2018, 10(1), 85.
  • Santana, I.; Félix, M.; Guerrero, A.; Bengoechea, C. Processing and Characterization of Bioplastics from the Invasive Seaweed Rugulopteryx Okamurae. Polymers 2022, 14(2), 355.
  • Sudhakar, M. P.; Magesh Peter, D.; Dharani, G. Studies on the Development and Characterization of Bioplastic Film from the Red Seaweed (Kappaphycus Alvarezii). Environ. Sci. Pollut. Res. 2021, 28(26), 33899. DOI: 10.1007/s11356-020-10010-z.
  • Janarthanan, M.; Kumar, M. S. Novel Improvement of Bioactive Microencapsulated Textile Products Using Brown Seaweed for Healthcare Applications. Int. J. Clothing Sci. Technol. 2017, 29(2), 200–214. DOI: 10.1108/IJCST-03-2016-0023.
  • Ab Kadir, M.; Wan Ahmad, W.; Ahmad, M.; Misnon, M.; Ruznan, W.; Abdul Jabbar, H.; Ngalib, K., and Ismail, A., Utilization of Eco-Colourant from Green Seaweed on Textile Dyeing. Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014); Malayisa, Springer, 2014; pp 79.
  • Yu, Z.; Robinson, S. M. C.; Xia, J.; Sun, H.; Hu, C. Growth, Bioaccumulation and Fodder Potentials of the Seaweed Sargassum Hemiphyllum Grown in Oyster and Fish Farms of South China. Aquaculture. 2016, 464, 459. DOI: 10.1016/j.aquaculture.2016.07.031.
  • Da Costa, A.; De Mesquita, L.; Tornovsky, J. Batch and Continuous Heavy Metals Biosorption by a Brown Seaweed from a Zinc-Producing Plant. Miner. Eng. 1996, 9(8), 811.
  • Davis, T.; Volesky, B.; Vieira, R. Sargassum Seaweed as Biosorbent for Heavy Metals. Water. Res. 2000, 34(17), 4270.
  • Khan, A. M.; Fatima, N.; Hussain, M. S.; Yasmeen, K. Biodiesel Production from Green Seaweed Ulva Fasciata Catalyzed by Novel Waste Catalysts from Pakistan Steel Industry. Chin. J. Chem. Eng. 2016, 24(8), 1080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.