864
Views
2
CrossRef citations to date
0
Altmetric
Review

Plant-Based Fermented Beverages and Key Emerging Processing Technologies

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , , & ORCID Icon show all

References

  • Fernandes, C. G.; Sonawane, S. K.; Arya, S. S. Cereal Based Functional Beverages: A Review. J. Microbiol. Biotechnol. Food Sci. 2018;8(3):914–919.
  • Mccarthy, K. S.; Parker, M.; Meerally, A. A.; Drake, S. L.; Drake, M. A. Drivers of Choice for Fluid Milk versus Plant-Based Alternatives: What are Consumer Perceptions of Fluid Milk? J. Dairy Sci. 2017;100(8):6125–6138.
  • Sethi, S.; Tyagi, S. K.; Anurag, R. K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016;53(9):3408–3423.
  • Salantă, L. C.; Uifălean, A., and Tofană, M. Valuable Food Molecules with Potential Benefits for Human Health. In The Health Benefits of Foods - Current Knowledge and Further Development; New York: IntechOpen, 2020.
  • Gehring, J.; Gehring, M.; Baudry, J.; Julia, C.; Allès, B. The Consumption of Ultra-Processed Foods by Fish-Eaters, Vegetarians and Vegans is Associated with the Duration and Commencing Age of Diet. Proc. Nutr. Soc. 2020. 79. DOI: 10.1017/S0029665120004152.
  • Donato, A.; Alice, R.; Giorgia, V.; Marika, D. R.; Nicoletta, P.; Daniela, M.; Group, O. B. O. T. S. Y. W. Nutritional Quality of Plant-Based Drinks Sold in Italy: The Food Labelling of Italian Products (FLIP) Study. Foods. 2020;9(5). DOI:10.3390/foods9050682
  • Yang, T., and Dharmasena, S. Market Power in the Dairy Alternative Beverage Industry in the United States. In 2018 Annual Meeting, Jacksonville, Florida, February 2–6, 2018. 2018.
  • Chalupa-Krebzdak, S.; Long, C. J.; Bohrer, B. M. Nutrient Density and Nutritional Value of Milk and Plant-Based Milk Alternatives. Int. Dairy J. 2018;87:84–92.
  • Gerliani, N.; Hammami, R.; Ader, M. Production of Functional Beverage by Using Protein-Carbohydrate Extract Obtained from Soybean Meal by Electro-Activation. LWT: Food Sci. Technol. 2019;113:108259.
  • Kandylis, P.; Pissaridi, K.; Bekatorou, A.; Kanellaki, M.; Koutinas, A. A. Dairy and Non-Dairy Probiotic Beverages. Curr. Opini. Food Sci. 2016;7:58–63.
  • Yang, T.; Dharmasena, S. U.S. Consumer Demand for Plant-Based Milk Alternative Beverages: Hedonic Metric Augmented Barten’s Synthetic Model. Foods. 2021;10(2). DOI:10.3390/foods10020265
  • Phan, U.; Chambers, I. E. Motivations for Meal and Snack Times: Three Approaches Reveal Similar Constructs. Food Qual. Preference. 2018;68:267–275.
  • Chaves-López, C.; Rossi, C.; Maggio, F.; Paparella, A.; Serio, A. Changes Occurring in Spontaneous Maize Fermentation: An Overview. Fermentation. 2020;6(1):36.
  • Angelescu, I.-R.; Zamfir, M.; Stancu, M.-M.; Grosu-Tudor, S.-S. Identification and Probiotic Properties of Lactobacilli Isolated from Two Different Fermented Beverages. Ann. Microbiol. 2019;69(2):1557–1565.
  • M’-Hir, S.; Filannino, P.; Mejri, A.; Tlais, A. Z. A.; Di Cagno, R.; Ayed, L. Functional Exploitation of Carob, Oat Flour, and Whey Permeate as Substrates for a Novel Kefir-Like Fermented Beverage: An Optimized Formulation. Foods. 2021;10(2):294.
  • Cardinali, F.; Osimani, A.; Milanovic, V.; Garofalo, C.; Aquilanti, L. Innovative Fermented Beverages Made with Red Rice, Barley, and Buckwheat. Foods. 2021;10(3):613.
  • Bocchi, S.; Rocchetti, G.; Elli, M.; Lucini, L.; Lim, C. Y.; Morelli, L. The Combined Effect of Fermentation of Lactic Acid Bacteria and in vitro Digestion on Metabolomic and Oligosaccharide Profile of Oat Beverage. Food Res. Int. 2021;142:110216.
  • Impe, J.; Smet, C.; Tiwari, B.; Greiner, R.; Ojha, S.; Stulić, V.; Vukušić, T.; Jambrak, A. R. State of the Art of Nonthermal and Thermal Processing for Inactivation of Micro‐organisms. J. Appl. Microbiol. 2018;125(1):16–35.
  • Pankaj, S. K.; Wan, Z.; Keener, K. M. Effects of Cold Plasma on Food Quality: A Review. Foods. 2018;7(1):4.
  • Briviba, K.; Gräf, V.; Walz, E.; Guamis, B.; Butz, P. Ultra High Pressure Homogenization of Almond Milk: Physico-Chemical and Physiological Effects. Food Chem. 2016;192:82–89.
  • Chen, J.; Tao, X.-Y.; Sun, A.-D.; Wang, Y.; Liao, X.-J.; Li, L.-N.; Zhang, S. Influence of Pulsed Electric Field and Thermal Treatments on the Quality of Blueberry Juice. Int. J. Food Prop. 2014;17(7):1419–1427.
  • Albertos, I.; Martin-Diana, A. B.; Cullen, P. J.; Tiwari, B. K.; Ojha, S. K.; Bourke, P.; Rico, D. Shelf-Life Extension of Herring (Clupea Harengus) Using In-Package Atmospheric Plasma Technology. Innov. Food Sci. Emerg. Technol. 2017. DOI:10.1016/j.ifset.2017.09.010
  • Bourke, P.; Ziuzina, D.; Han, L.; Cullen, P. J.; Gilmore, B. F. Microbiological Interactions with Cold Plasma. J. Appl. Microbiol. 2017;123(2):308–324.
  • Ripari, V. Techno-Functional Role of Exopolysaccharides in Cereal-Based, Yogurt-Like Beverages. Beverages. 2019;5(1):16.
  • Singh, U.; Kochhar, A.; Singh, S. Complex Carbohydrates: Their Effect in Human Health. Proc. Indian Natl. Sci. Acad. 2010;76:81–87.
  • Tsafrakidou, P.; Michaelidou, A. M.; Biliaderis, C. G. Fermented Cereal-Based Products: Nutritional Aspects. Possible Impact on Gut Microbiota and Health Implications. Foods. 2020;9(6). DOI:10.3390/foods9060734
  • Gabriel, D.; Branco, G. F.; Nazzaro, F.; Cruz, A. G.; Faria, J. A. F. Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Compreh. Rev. Food Sci. Food Saf. 2010;9(3):292–302.
  • Nazir, M.; Arif, S.; Khan, R. S.; Nazir, W.; Khalid, N.; Maqsood, S. Opportunities and Challenges for Functional and Medicinal Beverages: Current and Future Trends. Trends Food Sci. Technol. 2019;88:513–526.
  • Gupta, M.; Bajaj, B. K. Development of Fermented Oat Flour Beverage as a Potential Probiotic Vehicle. Food Biosci. 2017;20:104–109.
  • Maja, W.; Sharareh, H. Lactobacillus Rhamnosus GR-1 in Fermented Rice Pudding Supplemented with Short Chain Inulin, Long Chain Inulin, and Oat as a Novel Functional Food. Fermentation. 2017;3(4):55.
  • Justin, C.; Jennifer, E.; Julie, H.; Trevor, G.; Joanne, S. Prebiotic Dietary Fiber and Gut Health: Comparing the in vitro Fermentations of Beta-Glucan. Inulin and Xylooligosaccharide. Nutrients. 2017;9(12):1361.
  • Luckow, T.; Sheehan, V.; Delahunty, C.; Fitzgerald, G. Determining the Odor and Flavor Characteristics of Probiotic, Health‐promoting Ingredients and the Effects of Repeated Exposure on Consumer Acceptance. J. Food Sci. 2005;70(1):S53–S59.
  • Wegener, J.-W.; López-Sánchez, P. Furan Levels in Fruit and Vegetables Juices, Nutrition Drinks and Bakery Products. Anal. Chim. Acta. 2010;672(1):55–60.
  • Kaprasob, R.; Kerdchoechuen, O.; Laohakunjit, N.; Sarkar, D.; Shetty, K. Fermentation-Based Biotransformation of Bioactive Phenolics and Volatile Compounds from Cashew Apple Juice by Select Lactic Acid Bacteria. Process. Biochem. 2017;59:141–149.
  • Silva, E. K.; Meireles, M. A. A.; Saldaña, M. D. A. Supercritical Carbon Dioxide Technology: A Promising Technique for the Non-Thermal Processing of Freshly Fruit and Vegetable Juices. Trends Food Sci. Technol. 2020;97:381–390.
  • Davoodi, H.; Esmaeili, S.; Mortazavian, A. M. Effects of Milk and Milk Products Consumption on Cancer: A Review. Compr. Rev. Food Sci. Food Saf. 2013;12(3):249–264.
  • Garcia, C.; Guerin, M.; Souidi, K.; Remize, F. Lactic Fermented Fruit or Vegetable Juices: Past, Present and Future. Beverages. 2020;6(1):8.
  • Kidist, F. W.; Henok, K.; Yassin, H. Probiotication of Fruit Juices by Supplemented Culture of Lactobacillus Acidophilus. Int. J. Food Sci. Nutr. Eng. 2019;9(2). DOI:10.5923/j.food.20190902.03
  • Anil, P.; Sandeep, J.; Kiran, V.; Yogesh, G.; Vikas, K. Potential Non-Dairy Probiotic Products – a Healthy Approach. Food Biosci. Sci. 2018. DOI:10.1016/j.fbio.2017.12.003
  • Filannino, P.; Tlais, A.; Morozova, K.; Cavoski, I.; Cagno, R. D. Lactic Acid Fermentation Enriches the Profile of Biogenic Fatty Acid Derivatives of Avocado Fruit (Persea Americana Mill.). Food Chem. 2020;336:126384.
  • Mantzourani, I.; Nouska, C.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Panayiotidis, M.; Galanis, A.; Plessas, S. Production of a Novel Functional Fruit Beverage Consisting of Cornelian Cherry Juice and Probiotic Bacteria. Antioxidants. 2018;7(11):163.
  • Yang, X.; Zhao, F.; Liu, Y.; Li, J.; Zh, X. Enhancement of the Aroma in Low-Alcohol Apple-Blended Pear Wine Mixed Fermented with Saccharomyces Cerevisiae and Non-Saccharomyces Yeasts. LWT. 2022;155. Doi:10.1016/j.lwt.2021.112994
  • Ayed, L.; M’-Hir, S.; Hamdi, M. Microbiological, Biochemical, and Functional Aspects of Fermented Vegetable and Fruit Beverages. J. Chem. 2020;2020:1–12.
  • Sagar, N. A.; Pareek, S.; Sharma, S.; Yahia, E. M.; Lobo, M. G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compreh. Rev. Food Sci. Food Saf. 2018;17(3):512–531.
  • Vasquez, Z. S.; De, D. P.; Pereira, G.; Vandenberghe, L.; Oliveira, P. Z.; Tiburcio, P. B.; Rogez, H.; Neto, A. G.; Soccol, C. R. Biotechnological Approaches for Cocoa Waste Management: A Review. Waste Manage. 2019;90:72–83.
  • Padayachee, A.; Day, L.; Howell, K.; Gidley, M. Complexity and Health Functionality of Plant Cell Wall Fibers from Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2015;57(1):59–81.
  • Gómez-García, R.; Campos, D. A.; Aguilar, C. N.; Madureira, A. R.; Pintado, M. Valorization of Melon Fruit (Cucumis Melo L.) By-Products: Phytochemical and Biofunctional Properties with Emphasis on Recent Trends and Advances. Trends Food Sci. Technol. 2020;99:507–519.
  • Galanakis, C. M. Recovery of High Added-Value Components from Food Wastes: Conventional, Emerging Technologies and Commercialized Applications. Trends Food Sci. Technol. 2012;26(2):68–87.
  • Banerjee, J.; Singh, R.; Vijayaraghavan, R.; Macfarlane, D.; Patti, A. F.; Arora, A. Bioactives from Fruit Processing Wastes: Green Approaches to Valuable Chemicals. Food Chem. 2017;225:10–22.
  • Roselló-Soto, E.; Koubaa, M.; Moubarik, A.; Lopes, R. P.; Saraiva, J. A.; Boussetta, N.; Grimi, N.; Barba, F. J. Emerging Opportunities for the Effective Valorization of Wastes and By-Products Generated During Olive Oil Production Process: Non-Conventional Methods for the Recovery of High-Added Value Compounds. Trends Food Sci. Technol. 2015;45(2):296–310.
  • Wang, X.; Kristo, E.; LaPointe, G. The Effect of Apple Pomace on the Texture, Rheology and Microstructure of Set Type Yogurt. Food Hydrocolloids. 2019;91:83–91.
  • Pavithra, C. S.; Devi, S. S.; Suneetha, W. J.; Rani, C. V. D. Development and Evaluation of Papaya Peel Powder and Paste Incorporated Chapathis. J. Pharmaceut. Res. Int. 2018;24(1):1–14.
  • Pathak, P. D.; Mandavgane, S. A.; Kulkarni, B. D. Waste to Wealth: A Case Study of Papaya Peel. Waste Biomass Valorizat. 2019;10(6):1755–1766.
  • Santos, V. A.; Nascimento, C. G.; Schmidt, C.; Mantovani, D.; De Kker, R.; Cunha, M. Solid-State Fermentation of Soybean Okara: Isoflavones Biotransformation, Antioxidant Activity and Enhancement of Nutritional Quality. LWT- Food Sci. Technol. 2018;92:509–515.
  • Sanjukta, S.; Rai, A. K. Production of Bioactive Peptides During Soybean Fermentation and Their Potential Health Benefits. Trends Food Sci. Technol. 2016;50:1–10.
  • Azi, F.; Tu, C.; Meng, L.; Li, Z.; Cherinet, M. T.; Ahmadullah, Z.; Dong, M. Metabolite Dynamics and Phytochemistry of a Soy Whey-Based Beverage Bio-Transformed by Water Kefir Consortium. Food Chem. 2021;342:128–225.
  • Vong, W. C.; Yang, K. A.; Liu, S. Q. Okara (Soybean Residue) Biotransformation by Yeast Yarrowia Lipolytica. Int. J. Food Microbiol. 2016;235:1–9.
  • Ignat, M. V.; Salanta, L. C.; Pop, O. L.; Pop, C. R.; Tofana, M.; Mudura, E.; Coldea, T. E.; Borsa, A.; Pasqualone, A. Current Functionality and Potential Improvements of Non-Alcoholic Fermented Cereal Beverages. Foods. 2020;9(8):1031.
  • Salehi, F. Physico-Chemical and Rheological Properties of Fruit and Vegetable Juices as Affected by High Pressure Homogenization: A Review. Int J. Food Prop. 2020;23(1):1136–1149.
  • Li, C.; Rui, X.; Zhang, Y.; Cai, F.; Chen, X.; Jiang, M. Production of Tofu by Lactic Acid Bacteria Isolated from Naturally Fermented Soy Whey and Evaluation of Its Quality. LWT - Food Sci. Technol. 2017;82:227–234.
  • Zhou, X.; Liu, Z.; Xie, L.; Li, L.; Zhou, W.; Zhao, L. The Correlation Mechanism Between Dominant Bacteria and Primary Metabolites During Fermentation of Red Sour Soup. Foods. 2022;11(3):341.
  • Alvarez-Fernandez, M. A.; Cerezo, A. B.; Canete-Rodriguez, A. M.; Troncoso, A. M.; Garcia-Parrilla, M. C. Composition of Nonanthocyanin Polyphenols in Alcoholic-Fermented Strawberry Products Using LC-MS (QTRAP), High-Resolution MS (UHPLC-Orbitrap-MS), LC-DAD, and Antioxidant Activity. J. Agric. Food. Chem. 2015;63(7):2041–2051.
  • Li, X.; Zhang, L.; Peng, Z.; Zhao, Y.; Wu, K.; Zhou, N.; Yan, Y.; Ramaswamy, H. S.; Sun, J.; Bai, W. The Impact of Ultrasonic Treatment on Blueberry Wine Anthocyanin Color and Its in-Vitro Anti-Oxidant Capacity. Food Chem. 2020;333:127455.
  • Wolf, C. A.; Malone, T.; McFadden, B. R. Beverage Milk Consumption Patterns in the United States: Who is Substituting from Dairy to Plant-Based Beverages? J. Dairy Sci. 2020;103(12):11209–11217.
  • Vázquez-Frias, R.; Icaza-Chávez, M. E.; Ruiz-Castillo, M. A.; Amieva-Balmori, M.; Argüello-Arévalo, G. A.; Carmona-Sánchez, R. I.; Flores-Bello, M. V.; Hernández-Rosiles, V.; Hernández-Vez, G.; Medina-Vera, I., et al. Technical Opinion of the Asociación Mexicana de Gastroenterología on Soy Plant-Based Beverages. Revista de Gastroenterología de México. 2020;85(4):461–471. DOI:10.1016/j.rgmxen.2020.07.001
  • Szutowska, J. Functional Properties of Lactic Acid Bacteria in Fermented Fruit and Vegetable Juices: A Systematic Literature Review. Eur. Food Res. Technol. 2020;246(3):357–372.
  • Swain, M. R.; Anandharaj, M.; Ray, R. C.; Rani, R. P.; Roukas, T. Fermented Fruits and Vegetables of Asia: A Potential Source of Probiotics. Biotechnol. Res. Int. 2014;2014:1–19.
  • Parvez, S.; Malik, K. A.; Ah Kang, S.; Kim, H.-Y. Probiotics and Their Fermented Food Products are Beneficial for Health. J. Appl. Microbiol. 2006;100(6):1171–1185.
  • Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and Vegetables, as a Source of Nutritional Compounds and Phytochemicals: Changes in Bioactive Compounds During Lactic Fermentation. Food Res. Int. 2018;104:86–99.
  • Kwaw, E.; Ma, Y.; Tchabo, W.; Apaliya, M. T.; Wu, M.; Sackey, A. S.; Xiao, L.; Tahir, H. E. Effect of Lactobacillus Strains on Phenolic Profile, Color Attributes and Antioxidant Activities of Lactic-Acid-Fermented Mulberry Juice. Food Chem. 2018;250:148–154.
  • Mantzourani, I.; Kazakos, S.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A.; Plessas, S. Potential of the Probiotic Lactobacillus Plantarum ATCC 14917 Strain to Produce Functional Fermented Pomegranate Juice. Foods. 2018;8(1):4.
  • Tangpricha, V.; Koutkia, P.; Rieke, S. M.; Chen, T. C.; Perez, A. A.; Holick, M. F. Fortification of Orange Juice with Vitamin D: A Novel Approach for Enhancing Vitamin D Nutritional Health. Am. J. Clin. Nutr. 2003;77(6):77.
  • Tofalo, R.; Fusco, V.; Bohnlein, C.; Kabisch, J.; Logrieco, A. F.; Habermann, D.; Cho, G. S.; Benomar, N.; Abriouel, H.; Schmidt-Heydt, M., et al. The Life and Times of Yeasts in Traditional Food Fermentations. Crit. Rev. Food Sci. Nutr. 2020;60(18):3103–3132. DOI:10.1080/10408398.2019.1677553
  • Martins, E. M. F.; Ramos, A. M.; Vanzela, E. S. L.; Stringheta, P. C.; Pinto, C. L. D. O.; Martins, J. M. Products of Vegetable Origin: A New Alternative for the Consumption of Probiotic Bacteria. Food Res. Int. 2013;51(2):764–770.
  • Hassani, A.; Procopio, S.; Becker, T. Influence of Malting and Lactic Acid Fermentation on Functional Bioactive Components in Cereal-Based Raw Materials: A Review Paper. Int. J. Food Sci. Technol. 2016;51(1):14–22.
  • Wu, H.; Rui, X.; Li, W.; Xiao, Y.; Zhou, J.; Dong, M. Whole-Grain Oats (Avena Sativa L.) as a Carrier of Lactic Acid Bacteria and a Supplement Rich in Angiotensin I-Converting Enzyme Inhibitory Peptides Through Solid-State Fermentation. Food Funct. 2018;9(4):2270–2281.
  • Granato, D.; Branco, G. F.; Nazzaro, F.; Cruz, A. G.; Faria, J. E. A. F. Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Compr. Rev. Food Sci. Food Saf. 2010;9(3):292–302.
  • Ruiz de la Bastida, A.; Peiroten, A.; Langa, S.; Alvarez, I.; Arques, J. L.; Landete, J. M. Metabolism of Flavonoids and Lignans by Lactobacilli and Bifidobacteria Strains Improves the Nutritional Properties of Flaxseed-Enriched Beverages. Food Res. Int. 2021;147:147.
  • Tao, W.; He, F.; Chen, G. Improving Bioaccessibility and Bioavailability of Phenolic Compounds in Cereal Grains Through Processing Technologies: A Concise Review. J Funct. Foods. 2014;7(1):101–111.
  • Putnik, P.; Kresoja, Z.; Bosiljkov, T.; Jambrak, A. R.; Barba, F. J.; Lorenzo, J. M.; Roohinejad, S.; Granato, D.; Žuntar, I.; Kovačevića, D. B. Comparing the Effects of Thermal and Non-Thermal Technologies on Pomegranate Juice Quality: A Review. Food Chem. 2019;279. DOI:10.1016/j.foodchem.2018.11.131
  • Li, X.; Farid, M. A Review on Recent Development in Non-Conventional Food Sterilization Technologies. J. Food Eng. 2016;182:33–45.
  • Sidhu, J.; Singh, R. Ultra High Pressure Homogenization of Soy Milk: Effect on Quality Attributes During Storage. Beverages. 2016;2(2):15.
  • Ni, Y.; Zhang, Z.; Fan, L.; Li, J. Evaluation of Physical Stability of High Pressure Homogenization Treatment Cloudy Ginkgo Beverages. LWT. 2019;111:31–38.
  • Leite, T. S.; Augusto, P. E. D.; Cristianini, M. Using High Pressure Homogenization (HPH) to Change the Physical Properties of Cashew Apple Juice. Food Biophys. 2014;18(2):1–12. 258. DOI:10.1007/s11483-014-9385-9
  • Yu, Z.-Y.; Jiang, S.-W.; Cao, X.-M.; Jiang, S.-T.; Pan, L.-J. Effect of High Pressure Homogenization (HPH) on the Physical Properties of Taro (Colocasia Esculenta (L). Schott) Pulp. J. Food Eng. 2016;177:1–8.
  • Karacam, C. H.; Sahin, S.; Oztop, M. H. Effect of High Pressure Homogenization (Microfluidization) on the Quality of Ottoman Strawberry (F. Ananassa) Juice. LWT - Food Sci. Technol. 2015;64(2):932–937.
  • Augusto, P.; Ibarz, A.; Cristianini, M. Effect of High Pressure Homogenization (HPH) on the Rheological Properties of Tomato Juice: Viscoelastic Properties and the Cox–merz Rule. J. Food Eng. 2013;114(1):57–63.
  • Bernat, N.; Cháfer, M.; Rodríguez-García, J.; Chiralt, A.; González-Martínez, C. Effect of High Pressure Homogenisation and Heat Treatment on Physical Properties and Stability of Almond and Hazelnut Milks. LWT - Food Sci. Technol. 2015;62(1):488–496.
  • Pang, C.; Yin, X.; Zhang, G.; Liu, S.; Zhou, J.; Li, J.; Du, G. Current Progress and Prospects of Enzyme Technologies in Future Foods. Syst. Microbiol. Biomanuf. 2020;1(1):24–32.
  • Khan, N. Enzyme Technology - an Emerging Trend in Biotechnology. Enzyme Eng. 2018;07(01). DOI:10.4172/2329-6674.1000163
  • Dong, T. Application of Enzyme Technology in Food Processing and Testing. IOP Conf. Ser.: Earth Environ. Sci. 2020;546(5). DOI:10.1088/1755-1315/546/5/052066
  • Kaushik, N.; Gondi, A. R.; Rana, R.; Rao, P. S. Application of Fuzzy Logic Technique for Sensory Evaluation of High Pressure Processed Mango Pulp and Litchi Juice and Its Comparison to Thermal Treatment. Innov. Food Sci. Emerg. Technol. 2015;32:70–78.
  • Rosello-Soto, E.; Poojary, M. M.; Barba, F. J.; Koubaa, M.; Lorenzo, J. M.; Manes, J.; Carlos Molto, J. Thermal and Non-Thermal Preservation Techniques of Tiger Nuts’ Beverage “Horchata de Chufa”. Implications for Food Safety, Nutritional and Quality Properties. Food Res. Int. 2018;105:945–951.
  • Putnik, P.; Kresoja, Z.; Bosiljkov, T.; Rezek Jambrak, A.; Barba, F. J.; Lorenzo, J. M.; Roohinejad, S.; Granato, D.; Zuntar, I.; Bursac Kovacevic, D. Comparing the Effects of Thermal and Non-Thermal Technologies on Pomegranate Juice Quality: A Review. Food Chem. 2019;279:150–161.
  • Bian, C.; Cheng, H.; Yu, H.; Mei, J.; Xie, J. Effect of Multi-Frequency Ultrasound Assisted Thawing on the Quality of Large Yellow Croaker (Larimichthys Crocea). Ultrason. Sonochem. 2022 Vol. 82:p. 105907. 10.1016/j.ultsonch.2021.105907
  • Nasiru, M. M.; Frimpong, E. B.; Muhammad, U.; Qian, J.; Mustapha, A. T.; Yan, W.; Zhuang, H.; Zhang, J. Dielectric Barrier Discharge Cold Atmospheric Plasma: Influence of Processing Parameters on Microbial Inactivation in Meat and Meat Products. Compr. Rev. Food Sci. Food Saf. 2021;20(3):2626–2659.
  • Ahangari, H.; King, J. W.; Ehsani, A.; Yousefi, M. Supercritical Fluid Extraction of Seed Oils – a Short Review of Current Trends. Trends Food Sci. Technol. 2021;111:249–260.
  • Cheng, C.-X.; Jia, M.; Gui, Y.; Ma, Y. Comparison of the Effects of Novel Processing Technologies and Conventional Thermal Pasteurisation on the Nutritional Quality and Aroma of Mandarin (Citrus Unshiu) Juice. Innov. Food Sci. Emerg. Technol. 2020;64. DOI:10.1016/j.ifset.2020.102425
  • Zhang, W.; Liang, L.; Pan, X.; Lao, F.; Liao, X.; Wu, J. Alterations of Phenolic Compounds in Red Raspberry Juice Induced by High-Hydrostatic-Pressure and High-Temperature Short-Time Processing. Innov. Food Sci. Emerg. Technol. 2021;67. DOI:10.1016/j.ifset.2020.102569
  • He, Y.; Li, Y.; Luo, X.; Li, G.; Duan, Z.; Chen, C. Effects of Thermal and Nonthermal Processing Technology on the Quality of Red Sour Soup After Storage. Food Sci. Nutr. 2021;9(7):3863–3872.
  • Djekic, I.; Sanjuán, N.; Clemente, G.; Jambrak, R. Review on Environmental Models in the Food Chain - Current Status and Future Perspectives. J. Clean Prod. 2018;176:1012–1025.
  • Cao, B.; Fang, L.; Liu, C.; Min, W.; Liu, J. Effects of High Hydrostatic Pressure on the Functional and Rheological Properties of the Protein Fraction Extracted from Pine Nuts. Food Sci. Technol. Int. 2018;24(1):53–66.
  • Yan, L.; Li, T.; Liu, C.; Zheng, L. Effects of High Hydrostatic Pressure and Superfine Grinding Treatment on Physicochemical/functional Properties of Pear Pomace and Chemical Composition of Its Soluble Dietary Fibre. LWT. 2019;107:171–177.
  • Liu, X.; Liu, J.; Bi, J.; Cao, F.; Ding, Y.; Peng, J. Effects of High Pressure Homogenization on Physical Stability and Carotenoid Degradation Kinetics of Carrot Beverage During Storage. J. Food Eng. 2019;263:63–69.
  • Zhu, Z.; Zhu, W.; Yi, J.; Liu, N.; Cao, Y.; Lu, J.; Decker, E. A.; Mcclements, D. J. Effects of Sonication on the Physicochemical and Functional Properties of Walnut Protein Isolate. Food Res. Int. 2018;106:853–861.
  • Vidal, A. R.; Cansian, R. L.; Mello, R. D. O.; Kubota, E. H.; Dornelles, R. C. P. Effect of Ultrasound on the Functional and Structural Properties of Hydrolysates of Different Bovine Collagens. Food Sci. Technol. 2019;40(3). DOI:10.1590/fst.00319
  • Li, S.; Zhang, R.; Lei, D.; Huang, Y.; Cravotto, G. Impact of Ultrasound, Microwaves and High-Pressure Processing on Food Components and Their Interactions. Trends Food Sci. Technol. 2021;109. DOI:10.1016/j.tifs.2021.01.017
  • Roobab, U.; Aadil, R. M.; Madni, G. M.; Bekhit, A. E. The Impact of Nonthermal Technologies on the Microbiological Quality of Juices: A Review. Compr. Rev. Food Sci. Food Saf. 2018;17(2):437–457.
  • Aghajanzadeh, S.; Ziaiifar, A. M. A Review of Pectin Methylesterase Inactivation in Citrus Juice During Pasteurization. Trends Food Sci. Technol. 2018;71:1–12.
  • Biancaniello, M.; Popovi´-C, V.; Fernandez-Avila, C.; Ros-Polski, V.; Koutchma, T. Feasibility of a Novel Industrial-Scale Treatment of Green Cold-Pressed Juices by UV-C Light Exposure. Beverages. 2018;4(2):29.
  • Irene, M.; Caminiti, I. P.; Arantxa, M.; Francesco, N.; Paul, W. The Effect of Ultraviolet Light on Microbial Inactivation and Quality Attributes of Apple Juice. Food Bioprocess. Technol. 2012. DOI:10.1007/s11947-010-0365-x
  • Gunter‐ward, D. M.; Patras, A.; Bhullar, M. S.; Kilonzo‐nthenge, A.; Pokharel, B.; Sasges, M. Efficacy of Ultraviolet (UV‐C) Light in Reducing Foodborne Pathogens and Model Viruses in Skim Milk. J Food Process. Preserv. 2017;42(2). DOI:10.1111/jfpp.13485
  • Bourke, P.; Ziuzina, D.; Boehm, D.; Cullen, P. J.; Keener, K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 2018;36(6):615–626.
  • Chen, Y. Q.; Cheng, J. H.; Sun, D. W. Chemical, Physical and Physiological Quality Attributes of Fruit and Vegetables Induced by Cold Plasma Treatment: Mechanisms and Application Advances. Critic. Rev. Food Sci. Nutr. 2019;59(1):1–15.
  • Silva, E. K.; Guimarães, J. T.; Costa, A. L. R.; Cruz, A. G.; Meireles, M. A. A. Non-Thermal Processing of Inulin-Enriched Soursop Whey Beverage Using Supercritical Carbon Dioxide Technology. J. Supercrit. Fluids. 2019;154. DOI:10.1016/j.supflu.2019.104635
  • Smigic, N.; Djekic, I.; Tomic, N.; Udovicki, B.; Rajkovic, A. The Potential of Foods Treated with Supercritical Carbon Dioxide (Sc-CO_2) as Novel Foods. Br. Food J. 2019;121(3):815–834.
  • Rosa, M.; Alvarez, V. H.; Albarelli, J. Q.; Santos, D. T.; Meireles, M.; Saldaña, M. D. A. Supercritical Anti-Solvent Process as an Alternative Technology for Vitamin Complex Encapsulation Using Zein as Wall Material: Technical-Economic Evaluation. J. Supercrit. Fluids. 2019. DOI:10.1016/j.supflu.2019.03.011
  • Georget, E.; Sevenich, R.; Reineke, K.; Mathys, A.; Heinz, V.; Callanan, M.; Rauh, C.; Knorr, D. Inactivation of Microorganisms by High Isostatic Pressure Processing in Complex Matrices: A Review. Innov. Food Sci. Emerg. Technol. 2015;27:1–14.
  • Balasubramaniam, V. M.; Martínez-Monteagudo, S. I.; Gupta, R. Principles and Application of High Pressure–based Technologies in the Food Industry. Ann. Rev. Food Sci. Technol. 2015;6(1):435–462.
  • Dhakal, S.; Liu, C.; Zhang, Y.; Roux, K. H.; Sathe, S. K.; Balasubramaniam, V. M. Effect of High Pressure Processing on the Immunoreactivity of Almond Milk. Food Res. Int 2014;62:215–222. 10.1016/j.foodres.2014.02.021
  • Manassero, C. A.; Vaudagna, S. R.; Sancho, A. M.; Añón, M. C.; Speroni, F. Combined High Hydrostatic Pressure and Thermal Treatments Fully Inactivate Trypsin Inhibitors and Lipoxygenase and Improve Protein Solubility and Physical Stability of Calcium-Added Soymilk. Innov. Food Sci. Emerg. Technol. 2016;35:86–95.
  • Cilla, A.; Rodrigo, M. J.; De Ancos, B.; Sanchez-Moreno, C.; Cano, M. P.; Zacarias, L.; Barbera, R.; Alegria, A. Impact of High-Pressure Processing on the Stability and Bioaccessibility of Bioactive Compounds in Clementine Mandarin Juice and Its Cytoprotective Effect on Caco-2 Cells. Food Funct. 2020;11(10):8951–8962.
  • Zhang, Z.; Cho, S.; Dadmohammadi, Y.; Li, Y.; Abbaspourrad, A. Improvement of the Storage Stability of C-Phycocyanin in Beverages by High-Pressure Processing. Food Hydrocolloids. 2021;110. DOI:10.1016/j.foodhyd.2020.106055
  • Dolas, R.; Saravanan, C.; Kaur, B. P. Emergence and Era of Ultrasonic’s in Fruit Juice Preservation: A Review. Ultrason. Sonochem. 2019;58:58.
  • Cecilia, J.-S.; Jesús, L.-S.; Antonio, S.-C.; Alberto, F.-G. Alternatives to Conventional Thermal Treatments in Fruit-Juice Processing. Part 2: Effect on Composition, Phytochemical Content, and Physicochemical, Rheological, and Organoleptic Properties of Fruit Juices. Crit. Rev. Food Sci. Nutr. 2017;57(3):637–652.
  • Abid, M.; Jabbar, S.; Wu, T.; Hashim, M. M.; Hu, B.; Lei, S.; Zhang, X.; Zeng, X. Effect of Ultrasound on Different Quality Parameters of Apple Juice. Ultrasonic. Sonochem. 2013;20(5):1182–1187.
  • Koshani, R.; Ziaee, E.; Niakousari, M.; Golmakani, M. T. Optimization of Thermal and Thermosonication Treatments on Pectin Methyl Esterase Inactivation of Sour Orange Juice (Citrus Aurantium). J. Food Process. Preserv. 2014;39(6):567–573.
  • Leong, T.; Juliano, P.; Knoerzer, K. Advances in Ultrasonic and Megasonic Processing of Foods. Food Eng. Rev. 2017;9(3):237–256.
  • Anaya-Esparza, L. M.; Velázquez-Estrada, R. M.; Roig, A. X.; García-Galindo, H. S.; Sayago-Ayerdi, S. G.; Montalvo-González, E. Thermosonication: An Alternative Processing for Fruit and Vegetable Juices. Trends Food Sci. Technol. 2017;61:26–37.
  • Faisal Manzoor, M.; Ahmed, Z.; Ahmad, N.; Karrar, E.; Rehman, A.; Muhammad Aadil, R.; Al‐farga, A.; Waheed Iqbal, M.; Rahaman, A.; Zeng, X. A. Probing the Combined Impact of Pulsed Electric Field and Ultra‐sonication on the Quality of Spinach Juice. J. Food Process Preserv. 2021;45(5). DOI:10.1111/jfpp.15475
  • Evrendilek, G. A. Impacts of Pulsed Electric Field and Heat Treatment on Quality and Sensory Properties and Microbial Inactivation of Pomegranate Juice. Food Sci. Technol. Int. 2017;23(8):668–680.
  • Barba, F. J.; Parniakov, O.; Pereira, S. A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, J. A.; Raso, J.; Martin-Belloso, O.; Witrowa-Rajchert, D., et al. Current Applications and New Opportunities for the Use of Pulsed Electric Fields in Food Science and Industry. Food Res. Int. 2015;77:773–798.
  • Puértolas, E.; Barba, F. J. Electrotechnologies Applied to Valorization of By-Products from Food Industry: Main Findings, Energy and Economic Cost of Their Industrialization. Food Bioproducts Process. 2016;100:172–184.
  • Gabrić, D.; Barba, F.; Roohinejad, S.; Gharibzahedi, S. M. T.; Radojčin, M.; Putnik, P.; Kovačević, D. B. Pulsed Electric Fields as an Alternative to Thermal Processing for Preservation of Nutritive and Physicochemical Properties of Beverages: A Review. J. Food Proc. Eng. 2018;41(1):e12638.
  • Salehi, F. Physico-Chemical Properties of Fruit and Vegetable Juices as Affected by Pulsed Electric Field: A Review. Int. J. Food Prop. 2020;23(1):1036–1050.
  • Ahmed, Z.; Manzoor, M. F.; Ahmad, N.; Zeng, X. A.; Din, Z. U.; Roobab, U.; Qayum, A.; Siddique, R.; Siddeeg, A.; Rahaman, A. Impact of Pulsed Electric Field Treatments on the Growth Parameters of Wheat Seeds and Nutritional Properties of Their Wheat Plantlets Juice. Food Sci. Nutr. 2020;8(5):2490–2500.
  • Gayán, E.; Serrano, M. J.; Raso, J.; Álvarez, I.; Condón, S. Inactivation of Salmonella Enterica by UV-C Light Alone and in Combination with Mild Temperatures. Appl. Environ. Microbiol. 2012;78(23):8353.
  • Guerrero-Beltr·n, J. A. Advantages and Limitations on Processing Foods by UV Light. Food Sci. Technol. Int. 2004;10(3):137–147.
  • Bhat, R.; Ameran, S. B.; Han, C. V.; Karim, A. A.; Tze, L. M. Quality Attributes of Starfruit (Averrhoa Carambola L.) Juice Treated with Ultraviolet Radiation. Food Chem. 2011;127(2):641–644.
  • Pala, Ç. U.; Toklucu, A. K. Microbial, Physicochemical and Sensory Properties of UV-C Processed Orange Juice and Its Microbial Stability During Refrigerated Storage. LWT - Food Sci. Technol. 2013;50(2):426–431.
  • Puligundla, P.; Mok, C. Microwave- and Radio-Frequency-Powered Cold Plasma Applications for Food Safety and Preservation - ScienceDirect. Adv. Cold Plasma Applic. Food Saf. Preserv. 2020;309–329. DOI:10.1016/B978-0-12-814921-8.00011-6
  • Brun, P.; Bernabè, G.; Marchiori, C.; Scarpa, M.; Zuin, M.; Cavazzana, R.; Zaniol, B.; Martines, E. Antibacterial Efficacy and Mechanisms of Action of Low Power Atmospheric Pressure Cold Plasma: Membrane Permeability, Biofilm Penetration and Antimicrobial Sensitization. J. Appl. Microbiol. 2018;125(2):398–408.
  • Paz, X. M. D. L.; Cecilia, D.; Paula, M.; Enrique, D.; Ana, M.; Alejandra, S.; Ana, C.; Rosa, M.; Carlos, M.; Tomás, L. Use of Mild Irradiation Doses to Control Pathogenic Bacteria on Meat Trimmings for Production of Patties Aiming at Provoking Minimal Changes in Quality Attributes. Meat. Sci. 2014;98(3):383–391.
  • Coutinho, N. M.; Silveira, M. R.; Rocha, R. S.; Moraes, J.; Ferreira, M.; Pimentel, T. C.; Freitas, M. Q.; Silva, M. C.; Raices, R.; Ranadheera, C. S. Cold Plasma Processing of Milk and Dairy Products. Trends Food Sci. Technol. 2018;74:56–68.
  • Xiang, Q.; Liu, X.; Li, J.; Liu, S.; Zhang, H.; Bai, Y. Effects of Dielectric Barrier Discharge Plasma on the Inactivation of Zygosaccharomyces Rouxii and Quality of Apple Juice. Food Chem. 2018;254:201–207.
  • Groot, M. N.; Abee, T.; Hermien, B. V. D. V. Inactivation of Conidia from Three Penicillium Spp. Isolated from Fruit Juices by Conventional and Alternative Mild Preservation Technologies and Disinfection Treatments. Food Microbiol. 2018;81:108–114.
  • Simoncicova, J.; Krystofova, S.; Medvecka, V.; Durisova, K.; Kalinakova, B. Technical Applications of Plasma Treatments: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2019;103(13):5117–5129.
  • Phan, K. T. K.; Tai, P. H.; Dheerawan, B.; Pilairuk, I.; Brennan, C. S.; Regenstein, J. M.; Yuthana, P. Non-Thermal Plasma for Elimination of Pesticide Residues in Mango. Innov. Food Sci. Emerg. Technol. 2018;48:164–171.
  • Saremnezhad, S.; Soltani, M.; Faraji, A.; Hayaloglu, A. A. Chemical Changes of Food Constituents During Cold Plasma Processing: A Review. Food Res. Int. 2021;147:110552.
  • Cla, B.; Chen, C.; Aja, B.; Xsa, B.; Qga, B.; Wha, B. Effects of Plasma-Activated Water on Microbial Growth and Storage Quality of Fresh-Cut Apple. Innov. Food Sci. Emerg. Technol. 2019;59. DOI:10.1016/j.ifset.2019.102256
  • Lim, J.; Byeon, Y. S.; Hong, E. J.; Ryu, S.; Kim, S. B. Effect of Post‐discharge Time of Plasma‐treated Water (PTW) on Microbial Inactivation and Quality of Fresh‐cut Potatoes. J Food Process. Preserv. 2021;45(5). DOI:10.1111/jfpp.15387
  • Illera, A. E.; Sanz, M. T.; Beltrán, S.; Melgosa, R.; Solaesa, A. G.; Ruiz, M. O. Evaluation of HPCD Batch Treatments on Enzyme Inactivation Kinetics and Selected Quality Characteristics of Cloudy Juice from Golden Delicious Apples. J. Food Eng. 2018;221:141–150.
  • Sanli, D.; Bozbag, S. E.; Erkey, C. Synthesis of Nanostructured Materials Using Supercritical Co2: Part I. Physical Transformations. J. Mater. Sci. 2012;47(7):2995–3025.
  • Spilimbergo, S.; Elvassore, N.; Bertucco, A. Microbial Inactivation by High-Pressure. J Supercrit. Fluids. 2002;22(1):55–63.
  • Garcia-Gonzalez, L.; Geeraerd, A. H.; Spilimbergo, S.; Elst, K.; Ginneken, L. V.; Debevere, J.; Impe, J. F. V.; Devlieghere, F. High Pressure Carbon Dioxide Inactivation of Microorganisms in Foods: The Past, the Present and the Future. Int. J. Food Microbiol. 2007;117(1):1–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.