517
Views
0
CrossRef citations to date
0
Altmetric
Review

Autochthonous Starter Cultures in Cheese Production – A Review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all

References

  • González-Córdova, A. F.; Yescas, C.; Ortiz-Estrada, Á. M.; De la Rosa-Alcaraz, M. D. L. Á.; Hernández-Mendoza, A.; Vallejo-Cordoba, B. Artisanal Mexican Cheeses. J. Dairy. Sci. 2016, 99(5), 3250–3262. DOI: 10.3168/jds.2015-10103.
  • Johnson, M. E. A 100-Year Review: Cheese Production and Quality. J. Dairy. Sci. 2017, 100(12), 9952–9965. DOI: 10.3168/jds.2017-12979.
  • Wilkinson, M. G.; LaPointe, G. Starter Lactic Acid Bacteria Survival in Cheese: New Perspectives on Cheese Microbiology. J. Dairy. Sci. 2020, 103(12), 10963–10985. DOI: 10.3168/jds.2020-18960.
  • Bassi, D.; Puglisi, E.; Cocconcelli, P. S. Comparing Natural and Selected Starter Cultures in Meat and Cheese Fermentations. Curr. Opin. Food Sci. 2015, 2, 118–122. DOI: 10.1016/j.cofs.2015.03.002.
  • Chessa, L.; Paba, A.; Daga, E.; Dupré, I.; Piga, C.; Di Salvo, R.; Mura, M.; Addis, M.; Comunian, R. Autochthonous Natural Starter Cultures: A Chance to Preserve Biodiversity and Quality of Pecorino Romano PDO Cheese. Sustainability. 2021, 13, 8214. DOI: 10.3390/su13158214.
  • Frau, F.; Nuñez, M.; Gerez, L.; Pece, N.; Font, G. Development of an Autochthonous Starter Culture for Spreadable Goat Cheese. Food Sci. Technol. 2016, 36(4), 622–630. DOI: 10.1590/1678-457x.08616.
  • Terzić-Vidojević, A.; Tonković, K.; Leboš Pavunc, A.; Beganović, J.; Strahinić, I.; Kojić, M.; Veljović, K.; Golić, N.; Kos, B.; Čadež, N., et al. Evaluation of Autochthonous Lactic Acid Bacteria as Starter Cultures for Production of White Pickled and Fresh Soft Cheeses. LWT - Food Sci. Technol. 2015, 63(1), 298–306.
  • Özkan, E. R.; Demirci, T.; Akın, N. In Vitro Assessment of Probiotic and Virulence Potential of Enterococcus Faecium Strains Derived from Artisanal Goatskin Casing Tulum Cheeses Produced in Central Taurus Mountains of Turkey. Lwt. 2021, 141, 110908. DOI: 10.1016/j.lwt.2021.110908.
  • Özkan, E. R.; Demirci, T.; Öztürk, H. İ.; Akın, N. Screening Lactobacillus Strains from Artisanal Turkish Goatskin Casing Tulum Cheeses Produced by Nomads via Molecular and in vitro Probiotic Characteristics. J. Sci. Food Agric. 2021, 101(7), 2799–2808. DOI: 10.1002/jsfa.10909.
  • Tittarelli, F.; Perpetuini, G.; Di Gianvito, P.; Tofalo, R. Biogenic Amines Producing and Degrading Bacteria: A Snapshot from Raw Ewes’ Cheese. Lwt. 2019, 101, 1–9. DOI: 10.1016/j.lwt.2018.11.030.
  • Guarcello, R.; de Angelis, M.; Settanni, L.; Formiglio, S.; Gaglio, R.; Minervini, F.; Moschetti, G.; Gobbetti, M.; Björkroth, J. Selection of Amine-Oxidizing Dairy Lactic Acid Bacteria and Identification of the Enzyme and Gene Involved in the Decrease of Biogenic Amines. Appl. Environ. Microbiol. 2016, 82(23), 6870–6880. DOI: 10.1128/AEM.01051-16.
  • Casarotti, S. N.; Carneiro, B. M.; Todorov, S. D.; Nero, L. A.; Rahal, P.; Penna, A. L. B. In Vitro Assessment of Safety and Probiotic Potential Characteristics of Lactobacillus Strains Isolated from Water Buffalo Mozzarella Cheese. Ann. Microbiol. 2017, 67, 289–301. DOI: 10.1007/s13213-017-1258-2.
  • Mojsova, S.; Krstevski, K.; Dzadzovski, I.; Popova, Z.; Sekulovski, P. Phenotypic and Genotypic Characteristics of Enterocin Producing Enterococci Against Pathogenic Bacteria. Maced. Vet. Rev. 2015, 38(2), 209–216. DOI: 10.14432/j.macvetrev.2015.08.052.
  • Campagnollo, F. B.; Margalho, L. P.; Kamimura, B. A.; Feliciano, M. D.; Freire, L.; Lopes, L. S.; Alvarenga, V. O.; Cadavez, V. A. P.; Gonzales-Barron, U.; Schaffner, D. W., et al. Selection of Indigenous Lactic Acid Bacteria Presenting Anti-Listerial Activity, and Their Role in Reducing the Maturation Period and Assuring the Safety of Traditional Brazilian Cheeses. Food Microbiol. 2018, 73, 288–297. DOI: 10.1016/j.fm.2018.02.006.
  • Morandi, S.; Silvetti, T.; Battelli, G.; Brasca, M. Can Lactic Acid Bacteria Be an Efficient Tool for Controlling Listeria Monocytogenes Contamination on Cheese Surface? the Case of Gorgonzola Cheese. Food Control. 2019, 96, 499–507. DOI: 10.1016/j.foodcont.2018.10.012.
  • Ferrari, I. D. S.; de Souza, J. V.; Ramos, C. L.; da Costa, M. M.; Schwan, R. F.; Dias, F. S. Selection of Autochthonous Lactic Acid Bacteria from Goat Dairies and Their Addition to Evaluate the Inhibition of Salmonella Typhi in Artisanal Cheese. Food Microbiol. 2016, 60, 29–38. DOI: 10.1016/j.fm.2016.06.014.
  • Allam, M. G. M.; Darwish, A. M. G.; Ayad, E. H. E.; Shokery, E. S.; Darwish, S. M. Lactococcus Species for Conventional Karish Cheese Conservation. LWT - Food Sci. Technol. 2017, 79, 625–631. DOI: 10.1016/j.lwt.2016.11.032.
  • Picon, A.; López-Pérez, O.; Torres, E.; Garde, S.; Nuñez, M. Contribution of Autochthonous Lactic Acid Bacteria to the Typical Flavour of Raw Goat Milk Cheeses. Int. J. Food Microbiol. 2019, 299, 8–22. DOI: 10.1016/j.ijfoodmicro.2019.03.011.
  • Carafa, I.; Stocco, G.; Franceschi, P.; Summer, A.; Tuohy, K. M.; Bittante, G.; Franciosi, E. Evaluation of Autochthonous Lactic Acid Bacteria as Starter and Non-Starter Cultures for the Production of Traditional Mountain Cheese. Food. Res. Int. 2019, 115, 209–218. DOI: 10.1016/j.foodres.2018.08.069.
  • Poveda, J. M.; Chicón, R.; Cabezas, L. Biogenic Amine Content and Proteolysis in Manchego Cheese Manufactured with Lactobacillus Paracasei Subsp. Paracasei as Adjunct and Other Autochthonous Strains as Starters. Int. Dairy. J. 2015, 47, 94–101. DOI: 10.1016/j.idairyj.2015.03.004.
  • Margalho, L. P.; Jorge, G. P.; Noleto, D. A. P.; Silva, C. E.; Abreu, J. S.; Piran, M. V. F.; Brocchi, M.; Sant’-Ana, A. S. Biopreservation and Probiotic Potential of a Large Set of Lactic Acid Bacteria Isolated from Brazilian Artisanal Cheeses: From Screening to in Product Approach. Microbiol. Res. 2021, 242, 126622. DOI: 10.1016/j.micres.2020.126622.
  • Fusco, V.; Quero, G. M.; Poltronieri, P.; Morea, M.; Baruzzi, F. Autochthonous and Probiotic Lactic Acid Bacteria Employed for Production of “Advanced Traditional Cheeses”. Foods. 2019, 8(9), 412. DOI: 10.3390/foods8090412.
  • González, L.; Zárate, V. Influence of an Autochthonous Starter Culture and a Commercial Starter on the Characteristics of Tenerife Pasteurised Goats’ Milk Cheese. Int. J Dairy Technol. 2012, 65(4), 542–547. DOI: 10.1111/j.1471-0307.2012.00862.x.
  • Cuffia, F.; Bergamini, C. V.; Hynes, É. R.; Wolf, I. V.; Perotti, M. C. Evaluation of Autochthonous Cultures to Improve the Cheese Flavor: A Case Study in Hard Cheese Model. Food Sci. Technol. Int. 2020, 26(2), 173–184. DOI: 10.1177/1082013219881512.
  • Souza, J. V. D.; Dias, F. S. Protective, Technological, and Functional Properties of Select Autochthonous Lactic Acid Bacteria from Goat Dairy Products. Curr. Opin. Food Sci. 2017, 13, 1–9. DOI: 10.1016/j.cofs.2017.01.003.
  • Roselló-Soto, E.; Barba-Orellana, S.; Barba, F. J.; Quilez, F.; Roohinejad, S., and Koubaa, M. New Trends in Molecular Techniques to Identify Microorganisms in Dairy Products. In Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity and Traceability; Sheikha, A.F.E.; Levin, R., and Xu, J., Eds.; Oxford: John Wiley & Sons, Ltd, 2018; pp. 309–322.
  • Arcuri, E. F.; El Sheikha, A. F.; Rychlik, T.; Piro-Métayer, I.; Montet, D. Determination of Cheese Origin by Using 16S rDna Fingerprinting of Bacteria Communities by PCR–DGGE: Preliminary Application to Traditional Minas Cheese. Food Control. 2013, 30(1), 1–6. DOI: 10.1016/j.foodcont.2012.07.007.
  • Costantino, G.; Calasso, M.; Minervini, F.; De Angelis, M. Use of Exopolysaccharide-Synthesizing Lactic Acid Bacteria and Fat Replacers for Manufacturing Reduced-Fat Burrata Cheese: Microbiological Aspects and Sensory Evaluation. Microorganisms. 2020, 8, 1–22. DOI: 10.3390/microorganisms8101618.
  • Di Cagno, R.; De Pasquale, I.; De Angelis, M.; Buchin, S.; Rizzello, C. G.; Gobbetti, M. Use of Microparticulated Whey Protein Concentrate, Exopolysaccharide-Producing Streptococcus Thermophilus, and Adjunct Cultures for Making Low-Fat Italian Caciotta-Type Cheese. J. Dairy. Sci. 2014, 97(1), 72–84. DOI: 10.3168/jds.2013-7078.
  • Silva, L. F.; Sunakozawa, T. N.; Amaral, D. M. F.; Casella, T.; Nogueira, M. C. L.; De Dea Lindner, J.; Bottari, B.; Gatti, M.; Penna, A. L. B. Safety and Technological Application of Autochthonous Streptococcus Thermophilus Cultures in the Buffalo Mozzarella Cheese. Food Microbiol. 2020, 87, 103383. DOI: 10.1016/j.fm.2019.103383.
  • Câmara, S. P. D. A. E.; Dias, C. M.; Rocha, L.; Dapkevicius, A.; Rosa, H. J. D.; de Borba, A. E. S.; Silveira, M. D. G.; Malcata, F. X.; Dapkevicius, M. D. L. E. Assessment of Autochthonous Lactic Acid Bacteria as Starter Cultures for Improved Manufacture of Pico Cheese Using a Cheese Model. Int. Dairy. J. 2022, 128, 105294. DOI: 10.1016/j.idairyj.2021.105294.
  • Ruvalcaba-Gómez, J. M.; Ruiz-Espinosa, H.; Méndez-Robles, M. D.; Arteaga-Garibay, R. I.; Anaya-Esparza, L. M.; Villagrán, Z.; Delgado-Macuil, R. J. Use of Autochthonous Lactic Acid Bacteria as Starter Culture of Pasteurized Milk Adobera Cheese. Fermentation. 2022, 8(5), 234. DOI: 10.3390/fermentation8050234.
  • Brandielli, M. C.; Burgardt, V. C. F.; Hashimoto, E. H.; Tonial, I. B.; Zemiani, A.; Silva, A. F.; Oro, S. R.; Marchi, J. F.; Badaró, A. C. L.; Castro-Cislaghi, F. P., et al. Physicochemical Parameters and Lactic Acid Bacteria Count During Ripening of Brazilian Regional Cheese Manufactured with the Addition of Autochthonous Cultures. Food Sci. Technol. 2020, 40(4), 877–884.
  • Moraes, G. M. D.; dos Santos, K. M. O.; de Barcelos, S. C.; Lopes, S. A.; Do Egito, A. S. Potentially Probiotic Goat Cheese Produced with Autochthonous Adjunct Culture of Lactobacillus Mucosae: Microbiological, Physicochemical and Sensory Attributes. Lwt. 2018, 94, 57–63. DOI: 10.1016/j.lwt.2018.04.028.
  • Margalho, L. P.; Feliciano, M. D. E.; Silva, C. E.; Abreu, J. S.; Piran, M. V. F.; Sant’-Ana, A. S. Brazilian Artisanal Cheeses are Rich and Diverse Sources of Nonstarter Lactic Acid Bacteria Regarding Technological, Biopreservative, and Safety Properties—insights Through Multivariate Analysis. J. Dairy. Sci. 2020, 103(9), 7908–7926. DOI: 10.3168/jds.2020-18194.
  • Papadimitriou, K.; Zoumpopoulou, G.; Foligné, B.; Alexandraki, V.; Kazou, M.; Pot, B.; Tsakalidou, E. Discovering Probiotic Microorganisms: In Vitro, In Vivo, Genetic and Omics Approaches. Front. Microbiol. 2015, 6, 58. DOI: 10.3389/fmicb.2015.00058.
  • FAO/WHO. Guidelines for the Evaluation of Probiotics in Food; London, Ontario, Canada: Food and Agriculture Organization of the United Nations and World Health Organization, 2002.
  • Domingos-Lopes, M. F. P.; Stanton, C.; Ross, R. P.; Silva, C. C. G. Histamine and Cholesterol Lowering Abilities of Lactic Acid Bacteria Isolated from Artisanal Pico Cheese. J. Appl. Microbiol. 2020, 129(6), 1428–1440. DOI: 10.1111/jam.14733.
  • Ait Chait, Y.; Gunenc, A.; Hosseinian, F.; Bendali, F. Antipathogenic and Probiotic Potential of Lactobacillus Brevis Strains Newly Isolated from Algerian Artisanal Cheeses. Folia Microbiol. (Praha). 2021, 66(3), 429–440. DOI: 10.1007/s12223-021-00857-1.
  • Huang, L.; Goda, H. A.; Abdel-Hamid, M.; Renye, J. A.; Yang, P.; Huang, Z.; Zeng, Q. K.; Li, L. Partial Characterization of Probiotic Lactic Acid Bacteria Isolated from Chinese Dairy Products. Int. J. Food. Prop. 2021, 24(1), 446–456. DOI: 10.1080/10942912.2021.1900233.
  • Ołdak, A.; Zielińska, D.; Łepecka, A.; Długosz, E.; Kołożyn-Krajewska, D. Lactobacillus Plantarum Strains Isolated from Polish Regional Cheeses Exhibit Anti-Staphylococcal Activity and Selected Probiotic Properties. Probiotics Antimicrob. Proteins. 2020, 12(3), 1025–1038. DOI: 10.1007/s12602-019-09587-w.
  • Hussein, W. E.; Abdelhamid, A. G.; Rocha-Mendoza, D.; García-Cano, I.; Yousef, A. E. Assessment of Safety and Probiotic Traits of Enterococcus Durans OSY-EGY, Isolated from Egyptian Artisanal Cheese, Using Comparative Genomics and Phenotypic Analyses. Front. Microbiol. 2020, 11, 3094. DOI: 10.3389/fmicb.2020.608314.
  • Bhagat, D.; Raina, N.; Kumar, A.; Katoch, M.; Khajuria, Y.; Slathia, P. S.; Sharma, P. Probiotic Properties of a Phytase Producing Pediococcus Acidilactici Strain SMVDUDB2 Isolated from Traditional Fermented Cheese Product, Kalarei. Sci. Rep. 2020, 10(1), 1–11. DOI: 10.1038/s41598-020-58676-2.
  • Merchán, A. V.; Benito, M. J.; Galván, A. I.; Ruiz-Moyano Seco de Herrera, S. Identification and Selection of Yeast with Functional Properties for Future Application in Soft Paste Cheese. Lwt. 2020, 124, 109173. DOI: 10.1016/j.lwt.2020.109173.
  • Syngai, G. G.; Gopi, R.; Bharali, R.; Dey, S.; Lakshmanan, G. M. A.; Ahmed, G. Probiotics - the Versatile Functional Food Ingredients. J. Food Sci. Technol. 2016, 53(2), 921–933. DOI: 10.1007/s13197-015-2011-0.
  • Li, B.; Lu, S. The Importance of Amine-Degrading Enzymes on the Biogenic Amine Degradation in Fermented Foods: A Review. Process Biochem. 2020, 99, 331–339. DOI: 10.1016/j.procbio.2020.09.012.
  • Gardini, F.; Özogul, Y.; Suzzi, G.; Tabanelli, G.; Özogul, F. Technological Factors Affecting Biogenic Amine Content in Foods: A Review. Front. Microbiol. 2016, 7, 1218. DOI: 10.3389/fmicb.2016.01218.
  • Lorenzo, J. M.; Munekata, P. E.; Gómez, B.; Maggiolino, A.; Franco, D.; De Palo, P., and Barba, F. J. Controlling Biogenic Amine Formation in Food. In Food Chemistry, Function and Analysis, London: Royal Society of Chemistry: 2020; Vols. Saad, B., Tofalo, R., (Eds.); 41–61.
  • Daliri, E. B. M.; Lee, B. H.; Park, B. J.; Kim, S. H.; Oh, D. H. Antihypertensive Peptides from Whey Proteins Fermented by Lactic Acid Bacteria. Food Sci. Biotechnol. 2018, 27(6), 1781–1789. DOI: 10.1007/s10068-018-0423-0.
  • Wu, J.; Liao, W.; Udenigwe, C. C. Revisiting the Mechanisms of ACE Inhibitory Peptides from Food Proteins. Trends Food Sci. Technol. 2017, 69, 214–219. DOI: 10.1016/j.tifs.2017.07.011.
  • Chaves-López, C.; Serio, A.; Rossi, C.; Pepe, A.; Compagnone, E.; Paparella, A. Interaction Between Galactomyces Geotrichum KL20B, Lactobacillus Plantarum LAT3 and Enterococcus Faecalis KE06 During Milk Fermentation. Fermentation. 2017, 3(4), 52. DOI: 10.3390/fermentation3040052.
  • Chaves-López, C.; Serio, A.; Paparella, A.; Martuscelli, M.; Corsetti, A.; Tofalo, R.; Suzzi, G. Impact of Microbial Cultures on Proteolysis and Release of Bioactive Peptides in Fermented Milk. Food Microbiol. 2014, 42, 117–121. DOI: 10.1016/j.fm.2014.03.005.
  • Li, Y.; Sadiq, F. A.; Liu, T. J.; Chen, J. C.; He, G. Q. Purification and Identification of Novel Peptides with Inhibitory Effect Against Angiotensin I-Converting Enzyme and Optimization of Process Conditions in Milk Fermented with the Yeast Kluyveromyces Marxianus. J. Funct. Foods. 2015, 16, 278–288. DOI: 10.1016/j.jff.2015.04.043.
  • Rai, A. K.; Sanjukta, S.; Jeyaram, K. Production of Angiotensin I Converting Enzyme Inhibitory (ACE-I) Peptides During Milk Fermentation and Their Role in Reducing Hypertension. Crit. Rev. Food Sci. Nutr. 2017, 57(13), 2789–2800. DOI: 10.1080/10408398.2015.1068736.
  • Mazorra-Manzano, M. A.; Robles-Porchas, G. R.; González-Velázquez, D. A.; Torres-Llanez, M. J.; Martínez-Porchas, M.; García-Sifuentes, C. O.; González-Córdova, A. F.; Vallejo-Córdoba, B. Cheese Whey Fermentation by Its Native Microbiota: Proteolysis and Bioactive Peptides Release with ACE-Inhibitory Activity. Fermentation. 2020, 6(1), 19. DOI: 10.3390/fermentation6010019.
  • Sánchez-Rivera, L.; Diezhandino, I.; Gómez-Ruiz, J. Á.; Fresno, J. M.; Miralles, B.; Recio, I. Peptidomic Study of Spanish Blue Cheese (Valdeón) and Changes After Simulated Gastrointestinal Digestion. Electrophoresis. 2014, 35(11), 1627–1636. DOI: 10.1002/elps.201300510.
  • Stuknyte, M.; Cattaneo, S.; Masotti, F.; De Noni, I. Occurrence and Fate of ACE-Inhibitor Peptides in Cheeses and in Their Digestates Following In Vitro Static Gastrointestinal Digestion. Food Chem. 2015, 168, 27–33. DOI: 10.1016/j.foodchem.2014.07.045.
  • Yousefi, L.; Habibi Najafi, M. B.; Edalatian Dovom, M. R.; Mortazavian, A. M. Production of Angiotensin-Converting Enzyme Inhibitory Peptides in Iranian Ultrafiltered White Cheese Prepared with Lactobacillus Brevis KX572382. Int. J. Food Sci. Technol. 2021, 56(5), 2530–2538. DOI: 10.1111/ijfs.14891.
  • Tagliazucchi, D.; Baldaccini, A.; Martini, S.; Bianchi, A.; Pizzamiglio, V.; Solieri, L. Cultivable Non-Starter Lactobacilli from Ripened Parmigiano Reggiano Cheeses with Different Salt Content and Their Potential to Release Anti-Hypertensive Peptides. Int. J. Food Microbiol. 2020, 330, 108688. DOI: 10.1016/j.ijfoodmicro.2020.108688.
  • Shi, Y.; Wei, G.; Huang, A. Simulated in vitro Gastrointestinal Digestion of Traditional Chinese Rushan and Naizha Cheese: Peptidome Profiles and Bioactivity Elucidation. Food. Res. Int. 2021, 142, 110201. DOI: 10.1016/j.foodres.2021.110201.
  • Gonzalez-Gonzalez, C. R.; Machado, J.; Correia, S.; McCartney, A. L.; Stephen Elmore, J.; Jauregi, P. Highly Proteolytic Bacteria from Semi-Ripened Chiapas Cheese Elicit Angiotensin-I Converting Enzyme Inhibition and Antioxidant Activity. Lwt. 2019, 111, 449–456. DOI: 10.1016/j.lwt.2019.05.039.
  • Solieri, L.; Rutella, G. S.; Tagliazucchi, D. Impact of Non-Starter Lactobacilli on Release of Peptides with Angiotensin-Converting Enzyme Inhibitory and Antioxidant Activities During Bovine Milk Fermentation. Food Microbiol. 2015, 51, 108–116. DOI: 10.1016/j.fm.2015.05.012.
  • Basiricò, L.; Catalani, E.; Morera, P.; Cattaneo, S.; Stuknyte, M.; Bernabucci, U.; De Noni, I.; Nardone, A. Release of Angiotensin Converting Enzyme-Inhibitor Peptides During in vitro Gastrointestinal Digestion of Parmigiano Reggiano PDO Cheese and Their Absorption Through an In Vitro Model of Intestinal Epithelium. J. Dairy. Sci. 2015, 98(11), 7595–7601. DOI: 10.3168/jds.2015-9801.
  • Martini, S.; Conte, A.; Tagliazucchi, D. Effect of Ripening and In Vitro Digestion on the Evolution and Fate of Bioactive Peptides in Parmigiano-Reggiano Cheese. Int. Dairy. J. 2020, 105, 104668. DOI: 10.1016/j.idairyj.2020.104668.
  • Feng, T.; Wang, J. Oxidative Stress Tolerance and Antioxidant Capacity of Lactic Acid Bacteria as Probiotic: A Systematic Review. Gut Microbes. 2020, 12(1), 1801944. DOI: 10.1080/19490976.2020.1801944.
  • Lorenzo, J. M.; Munekata, P. E. S.; Gómez, B.; Barba, F. J.; Mora, L.; Pérez-Santaescolástica, C.; Toldrá, F. Bioactive Peptides as Natural Antioxidants in Food Products – a Review. Trends Food Sci. Technol. 2018, 79, 136–147. DOI: 10.1016/j.tifs.2018.07.003.
  • Zago, M.; Massimiliano, L.; Bonvini, B.; Penna, G.; Giraffa, G.; Rescigno, M. Functional Characterization and Immunomodulatory Properties of Lactobacillus Helveticus Strains Isolated from Italian Hard Cheeses. PLoS One. 2021, 16(1), e0245903. DOI: 10.1371/journal.pone.0245903.
  • Abanoz, H. S.; Kunduhoglu, B. Antimicrobial Activity of a Bacteriocin Produced by Enterococcus Faecalis Kt11 Against Some Pathogens and Antibiotic-Resistant Bacteria. Korean J. Food Sci. Anim. Resour. 2018, 38(5), 1064–1079. DOI: 10.5851/kosfa.2018.e40.
  • Meade, E.; Slattery, M. A.; Garvey, M. Bacteriocins, Potent Antimicrobial Peptides and the Fight Against Multi Drug Resistant Species: Resistance is Futile? Antibiotics. 2020, 9(1), 32. DOI: 10.3390/antibiotics9010032.
  • Preciado, G. M.; Michel, M. M.; Villarreal-Morales, S. L.; Flores-Gallegos, A. C.; Aguirre-Joya, J.; Morlett-Chavez, J.; Aguilar, C. N., and Rodríguez-Herrera, R. Bacteriocins and Its Use for Multidrug-Resistant Bacteria Control. In Antibiotic Resistance: Mechanisms and New Antimicrobial Approaches; Kon, K., and Rai, M., Eds.; London: Elsevier, 2016; pp. 329–350.
  • Meng, F.; Zhu, X.; Zhao, H.; Nie, T.; Lu, F.; Lu, Z.; Lu, Y. A Class III Bacteriocin with Broad-Spectrum Antibacterial Activity from Lactobacillus Acidophilus NX2-6 and Its Preservation in Milk and Cheese. Food Control. 2021, 121, 107597. DOI: 10.1016/j.foodcont.2020.107597.
  • European Commission. Commission Regulation (EC) N° 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1591043791792&uri=CELEX:32005R2073 (accessed Aug 11, 2021).
  • Vázquez-Velázquez, R.; Salvador-Figueroa, M.; Adriano-Anaya, L.; Degyves–Córdova, G.; Vázquez-Ovando, A. Use of Starter Culture of Native Lactic Acid Bacteria for Producing an Artisanal Mexican Cheese Safe and Sensory Acceptable. CyTa - J. Food. 2018, 16(1), 460–468. DOI: 10.1080/19476337.2017.1420694.
  • Mailam, M. A.; Abd El-Razek, H.; Shaaban, H. A. Effect of Exopolysaccharides-Producing Starter Culture on the Flavor Profile and Characteristics of Low Fat Ras Cheese. Pakistan J. Biol. Sci. 2020, 23(5), 691–700. DOI: 10.3923/pjbs.2020.691.700.
  • Vert, M.; Doi, Y.; Hellwich, K. H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for Biorelated Polymers and Applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84(2), 377–410. DOI: 10.1351/PAC-REC-10-12-04.
  • Moradi, M.; Guimarães, J. T.; Sahin, S. Current Applications of Exopolysaccharides from Lactic Acid Bacteria in the Development of Food Active Edible Packaging. Curr. Opin. Food Sci. 2021, 40, 33–39. DOI: 10.1016/j.cofs.2020.06.001.
  • Gómez, N. C.; Ramiro, J. M. P.; Quecan, B. X. V.; de Melo Franco, B. D. G. Use of Potential Probiotic Lactic Acid Bacteria (LAB) Biofilms for the Control of Listeria Monocytogenes, Salmonella Typhimurium, and Escherichia Coli O157:H7 Biofilms Formation. Front. Microbiol. 2016, 7, 863. DOI: 10.3389/fmicb.2016.00863.
  • Salas-Jara, M. J.; Ilabaca, A.; Vega, M.; García, A. Biofilm Forming Lactobacillus: New Challenges for the Development of Probiotics. Microorganisms. 2016, 4(3), 1–14. DOI: 10.3390/microorganisms4030035.
  • Cruciata, M.; Gaglio, R.; Scatassa, M. L.; Sala, G.; Cardamone, C.; Palmeri, M.; Moschetti, G.; Mantia, T. L.; Settanni, L.; Björkroth, J. Formation and Characterization of Early Bacterial Biofilms on Different Wood Typologies Applied in Dairy Production. Appl. Environ. Microbiol. 2018, 84(4). DOI: 10.1128/AEM.02107-17.
  • Gaglio, R.; Cruciata, M.; Scatassa, M. L.; Tolone, M.; Mancuso, I.; Cardamone, C.; Corona, O.; Todaro, M.; Settanni, L. Influence of the Early Bacterial Biofilms Developed on Vats Made with Seven Wood Types on PDO Vastedda Della Valle Del Belìce Cheese Characteristics. Int. J. Food Microbiol. 2019, 291, 91–103. DOI: 10.1016/j.ijfoodmicro.2018.11.017.
  • Settanni, L.; Moschetti, G. Non-Starter Lactic Acid Bacteria Used to Improve Cheese Quality and Provide Health Benefits. Food Microbiol. 2010, 27(6), 691–697. DOI: 10.1016/j.fm.2010.05.023.
  • Muruzović, M.; Mladenović, K. G.; Djilas, M. D.; Stefanović, O. D.; Čomić, L. R. In vitro Evaluation of Antimicrobial Potential and Ability of Biofilm Formation of Autochthonous Lactobacillus Spp. And Lactococcus Spp. Isolated from Traditionally Made Cheese from Southeastern Serbia. J. Food Process Preserv. 2018, 42(11), e13776. DOI: 10.1111/jfpp.13776.
  • Živković, M.; Miljković, M. S.; Ruas-Madiedo, P.; Markelić, M. B.; Veljović, K.; Tolinački, M.; Soković, S.; Korać, A.; Golić, N. EPS-SJ Exopolisaccharide Produced by the Strain Lactobacillus Paracasei Subsp. Paracasei BGSJ2-8 is Involved in Adhesion to Epithelial Intestinal Cells and Decrease on E. Coli Association to Caco-2 Cells. Front. Microbiol. 2016, 7, 286. DOI: 10.3389/fmicb.2016.00286.
  • Popovic, N.; Dinic, M.; Tolinacki, M.; Mihajlovic, S.; Terzic-Vidojevic, A.; Bojic, S.; Djokic, J.; Golic, N.; Veljovic, K. New Insight into Biofilm Formation Ability, the Presence of Virulence Genes and Probiotic Potential of Enterococcus Sp. Dairy Isolates. Front. Microbiol. 2018, 9, 78. DOI: 10.3389/fmicb.2018.00078.
  • Zannini, E.; Waters, D. M.; Coffey, A.; Arendt, E. K. Production, Properties, and Industrial Food Application of Lactic Acid Bacteria-Derived Exopolysaccharides. Appl. Microbiol. Biotechnol. 2016, 100(3), 1121–1135. DOI: 10.1007/s00253-015-7172-2.
  • Hilbig, J.; Loeffler, M.; Herrmann, K.; Weiss, J. Application of Exopolysaccharide-Forming Lactic Acid Bacteria in Cooked Ham Model Systems. Food. Res. Int. 2019, 119, 761–768. DOI: 10.1016/j.foodres.2018.10.058.
  • Xu, Y.; Cui, Y.; Yue, F.; Liu, L.; Shan, Y.; Liu, B.; Zhou, Y.; Lü, X. Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria: Structures, Physiochemical Functions and Applications in the Food Industry. Food Hydrocoll. 2019, 94, 475–499. DOI: 10.1016/j.foodhyd.2019.03.032.
  • Nehal, F.; Sahnoun, M.; Smaoui, S.; Jaouadi, B.; Bejar, S.; Mohammed, S. Characterization, High Production and Antimicrobial Activity of Exopolysaccharides from Lactococcus Lactis F-Mou. Microb. Pathog. 2019, 132, 10–19. DOI: 10.1016/j.micpath.2019.04.018.
  • Hahn, C.; Müller, E.; Wille, S.; Weiss, J.; Atamer, Z.; Hinrichs, J. Control of Microgel Particle Growth in Fresh Cheese (Concentrated Fermented Milk) with an Exopolysaccharide-Producing Starter Culture. Int. Dairy. J. 2014, 36(1), 46–54. DOI: 10.1016/j.idairyj.2013.12.011.
  • Raziani, F.; Ebrahimi, P.; Engelsen, S. B.; Astrup, A.; Raben, A.; Tholstrup, T. Consumption of Regular-Fat Vs Reduced-Fat Cheese Reveals Gender-Specific Changes in LDL Particle Size - a Randomized Controlled Trial. Nutr. Metab. 2018, 15(1), 1–10. DOI: 10.1186/s12986-018-0300-0.
  • Peng, K.; Koubaa, M.; Bals, O.; Vorobiev, E. Recent Insights in the Impact of Emerging Technologies on Lactic Acid Bacteria: A Review. Food. Res. Int. 2020, 137, 109544. DOI: 10.1016/j.foodres.2020.109544.
  • Burns, P. G.; Patrignani, F.; Tabanelli, G.; Vinderola, G. C.; Siroli, L.; Reinheimer, J. A.; Gardini, F.; Lanciotti, R. Potential of High Pressure Homogenisation on Probiotic Caciotta Cheese Quality and Functionality. J. Funct. Foods. 2015, 13, 126–136. DOI: 10.1016/j.jff.2014.12.037.
  • Giannoglou, M. N.; Katsaros, G. I.; Taoukis, P. S. Application of High Pressure for Selective Activity Regulation of Starter Cultures Aminopeptidases Involved in Ripening of Brined Cheeses. Food Bioprocess Technol. 2016, 9(12), 1991–2001. DOI: 10.1007/s11947-016-1781-3.
  • Gholamhosseinpour, A.; Hashemi, S. M. B. Ultrasound Pretreatment of Fermented Milk Containing Probiotic Lactobacillus Plantarum AF1: Carbohydrate Metabolism and Antioxidant Activity. J. Food Process. Eng. 2019, 42(1), e12930. DOI: 10.1111/jfpe.12930.
  • Vaessen, E. M. J.; den Besten, H. M. W.; Leito, K. M. N.; Schutyser, M. A. I. Pulsed Electric Field Pre-Treatment for Enhanced Bacterial Survival After Drying: Effect of Carrier Matrix and Strain Variability. Innov. Food Sci. Emerg. Technol. 2020, 66, 102515. DOI: 10.1016/j.ifset.2020.102515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.