847
Views
6
CrossRef citations to date
0
Altmetric
Review

Phytochemical and Nutritional Profiling of Tomatoes; Impact of Processing on Bioavailability - A Comprehensive Review

, , , , , , , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Perveen, R.; Suleria, H. A. R.; Anjum, F. M.; Butt, M. S.; Pasha, I.; Ahmad, S. Tomato (Solanum Lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims—a Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2015, 55(7), 919–929. DOI: 10.1080/10408398.2012.657809.
  • Rock, C.; Yang, W.; Goodrich-Schneider, R.; Feng, H. Conventional and Alternative Methods for Tomato Peeling. Food Eng. Rev. 2012, 4(1), 1–15. DOI: 10.1007/s12393-011-9047-3.
  • Lemaire-Chamley, M.; Petit, J.; Garcia, V.; Just, D.; Baldet, P.; Germain, V.; Fagard, M.; Mouassite, M.; Cheniclet, C.; Rothan, C. Changes in Transcriptional Profiles are Associated with Early Fruit Tissue Specialization in Tomato. Plant Physiol 2005, 139(2), 750–769. DOI: 10.1104/pp.105.063719.
  • Blanca, J.; Cañizares, J.; Cordero, L.; Pascual, L.; Diez, M. J.; Nuez, F.; Yan, W. Variation Revealed by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato. PLoS One 2012, 7(10), e48198. DOI: 10.1371/journal.pone.0048198.
  • Passam, H. C.; Karapanos, I. C.; Bebeli, P. J.; Savvas, D. A Review of Recent Research on Tomato Nutrition, Breeding and Post-Harvest Technology with Reference to Fruit Quality. Eur. J. Plant Sci. Biotechnol. 2007, 1, 1–21.
  • Tanksley, S. D. The Genetic, Developmental, and Molecular Bases of Fruit Size and Shape Variation in Tomato. The Plant Cell 2004, 16(suppl_1), S181–S189. DOI: 10.1105/tpc.018119.
  • Heuvelink, E. Tomatoes; CABI Organization. 2018, 27, 388.
  • Innovation, H. Australian Horticulture Statistics Handbook, 2017/18; Hort Innovation, 2018.
  • Viuda-Martos, M.; Sanchez-Zapata, E.; Sayas-Barberá, E.; Sendra, E.; Pérez-Álvarez, J.; Fernández-López, J. Tomato and Tomato Byproducts. Human Health Benefits of Lycopene and Its Application to Meat Products: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54(8), 1032–1049. DOI: 10.1080/10408398.2011.623799.
  • Kaur, D.; Wani, A. A.; Oberoi, D.; Sogi, D. Effect of Extraction Conditions on Lycopene Extractions from Tomato Processing Waste Skin Using Response Surface Methodology. Food Chem 2008, 108(2), 711–718. DOI: 10.1016/j.foodchem.2007.11.002.
  • Bhowmik, D.; Kumar, K. S.; Paswan, S.; Srivastava, S. Tomato-A Natural Medicine and Its Health Benefits. J. Pharmacogn. Phytochem. 2012, 1, 33–43.
  • Sainju, U. M.; Dris, R. Sustainable Production of Tomato. Europe. 2006, 703, 26–27.
  • Story, E. N.; Kopec, R. E.; Schwartz, S. J.; Harris, G. K. An Update on the Health Effects of Tomato Lycopene. Ann. Rev. Food Sci. Technol. 2010, 1(1), 189–210. DOI: 10.1146/annurev.food.102308.124120.
  • Górecka, D.; Wawrzyniak, A.; Jędrusek-Golińska, A.; Dziedzic, K.; Hamułka, J.; Kowalczewski, P. Ł.; Walkowiak, J. Lycopene in Tomatoes and Tomato Products. Open Chem 2020, 18(1), 752–756. DOI: 10.1515/chem-2020-0050.
  • Canene-Adams, K.; Campbell, J. K.; Zaripheh, S.; Jeffery, E. H.; Erdman, J. W., Jr. The Tomato as a Functional Food. J. Nutr. 2005, 135(5), 1226–1230. DOI: 10.1093/jn/135.5.1226.
  • Tan, H.-L.; Thomas-Ahner, J. M.; Grainger, E. M.; Wan, L.; Francis, D. M.; Schwartz, S. J.; Erdman, J. W.; Clinton, S. K. Tomato-Based Food Products for Prostate Cancer Prevention: What Have We Learned? Cancer Metastasis Rev 2010, 29(3), 553–568. DOI: 10.1007/s10555-010-9246-z.
  • Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A. K. Bioactivities of Phytochemicals Present in Tomato. J. Food Sci. Technol. 2018, 55(8), 2833–2849. DOI: 10.1007/s13197-018-3221-z.
  • Borguini, R. G.; Ferraz da Silva Torres, E. A. Tomatoes and Tomato Products as Dietary Sources of Antioxidants. Food Rev. Int. 2009, 25(4), 313–325. DOI: 10.1080/87559120903155859.
  • Slimestad, R.; Verheul, M. Review of Flavonoids and Other Phenolics from Fruits of Different Tomato (Lycopersicon Esculentum Mill.) Cultivars. J. Sci. Food Agric. 2009, 89(8), 1255–1270. DOI: 10.1002/jsfa.3605.
  • Choi, S. H.; Kim, D.-S.; Kozukue, N.; Kim, H.-J.; Nishitani, Y.; Mizuno, M.; Levin, C. E.; Friedman, M. Protein, Free Amino Acid, Phenolic, β-Carotene, and Lycopene Content, and Antioxidative and Cancer Cell Inhibitory Effects of 12 Greenhouse-Grown Commercial Cherry Tomato Varieties. J. Food Compost. Anal. 2014, 34(2), 115–127. DOI: 10.1016/j.jfca.2014.03.005.
  • Kaur, C.; Walia, S.; Nagal, S.; Walia, S.; Singh, J.; Singh, B. B.; Saha, S.; Singh, B.; Kalia, P.; Jaggi, S. Functional Quality and Antioxidant Composition of Selected Tomato (Solanum Lycopersicon L) Cultivars Grown in Northern India. LWT Food Sci. Technol. 2013, 50(1), 139–145. DOI: 10.1016/j.lwt.2012.06.013.
  • Martínez-Huélamo, M.; Tulipani, S.; Estruch, R.; Escribano, E.; Illán, M.; Corella, D.; Lamuela-Raventós, R. M. The Tomato Sauce Making Process Affects the Bioaccessibility and Bioavailability of Tomato Phenolics: A Pharmacokinetic Study. Food Chem 2015, 173, 864–872. DOI: 10.1016/j.foodchem.2014.09.156.
  • Tomas, M.; Beekwilder, J.; Hall, R. D.; Sagdic, O.; Boyacioglu, D.; Capanoglu, E. Industrial Processing versus Home Processing of Tomato Sauce: Effects on Phenolics, Flavonoids and in vitro Bioaccessibility of Antioxidants. Food Chem 2017, 220, 51–58. DOI: 10.1016/j.foodchem.2016.09.201.
  • Toor, R. K.; Savage, G. P. Antioxidant Activity in Different Fractions of Tomatoes. Food Res. Int. 2005, 38(5), 487–494. DOI: 10.1016/j.foodres.2004.10.016.
  • Valdez-Morales, M.; Espinosa-Alonso, L. G.; Espinoza-Torres, L. C.; Delgado-Vargas, F.; Medina-Godoy, S. Phenolic Content and Antioxidant and Antimutagenic Activities in Tomato Peel, Seeds, and Byproducts. J. Agric. Food Chem. 2014, 62(23), 5281–5289. DOI: 10.1021/jf5012374.
  • Saini, R. K.; Nile, S. H.; Park, S. W. Carotenoids from Fruits and Vegetables: Chemistry, Analysis, Occurrence, Bioavailability and Biological Activities. Food Res. Int. 2015, 76, 735–750. DOI: 10.1016/j.foodres.2015.07.047.
  • Ray, S.; Saha, R.; Raychaudhuri, U., and Chakraborty, R. Different Quality Characteristics of Tomato (Solanum lycopericum) as a Fortifying Ingredient in Food Products: A Review. Technical Sciences/university of Warmia and Mazury in Olsztyn. 2016, 59(1), 199–213.
  • Kalogeropoulos, N.; Chiou, A.; Pyriochou, V.; Peristeraki, A.; Karathanos, V. T. Bioactive Phytochemicals in Industrial Tomatoes and Their Processing Byproducts. LWT Food Sci. Technol. 2012, 49(2), 213–216. DOI: 10.1016/j.lwt.2011.12.036.
  • Unlu, N. Z.; Bohn, T.; Francis, D.; Clinton, S. K.; Schwartz, S. J. Carotenoid Absorption in Humans Consuming Tomato Sauces Obtained from Tangerine or High-β-Carotene Varieties of Tomatoes. J. Agric. Food Chem. 2007, 55(4), 1597–1603. DOI: 10.1021/jf062337b.
  • Kelebek, H.; Selli, S.; Kadiroğlu, P.; Kola, O.; Kesen, S.; Uçar, B.; Çetiner, B. Bioactive Compounds and Antioxidant Potential in Tomato Pastes as Affected by Hot and Cold Break Process. Food Chem. 2017, 220, 31–41. DOI: 10.1016/j.foodchem.2016.09.190.
  • Engelmann, N. J.; Clinton, S. K.; Erdman, J. W., Jr. Nutritional Aspects of Phytoene and Phytofluene, Carotenoid Precursors to Lycopene. Adv. Nutr. 2011, 2(1), 51–61. DOI: 10.3945/an.110.000075.
  • Fraser, P. D.; Enfissi, E. M.; Halket, J. M.; Truesdale, M. R.; Yu, D.; Gerrish, C.; Bramley, P. M. Manipulation of Phytoene Levels in Tomato Fruit: Effects on Isoprenoids, Plastids, and Intermediary Metabolism. The Plant Cell. 2007, 19(10), 3194–3211. DOI: 10.1105/tpc.106.049817.
  • Gama, J. J. T.; Tadiotti, A. C.; Sylos, C. D. Comparison of Carotenoid Content in Tomato, Tomato Pulp and Ketchup by Liquid Chromatography. Alimentos E Nutricao Araraquara. 2009, 17, 353–358.
  • Khachik, F.; Carvalho, L.; Bernstein, P. S.; Muir, G. J.; Zhao, D.-Y.; Katz, N. B. Chemistry, Distribution, and Metabolism of Tomato Carotenoids and Their Impact on Human Health. Experiment. Biol. Med. 2002, 227(10), 845–851. DOI: 10.1177/153537020222701002.
  • Kotikova, Z.; Hejtmánková, A.; Lachman, J. Determination of the Influence of Variety and Level of Maturity on the Content and Development of Carotenoids in Tomatoes. Czech J. Food Sci. 2009, 27, S200–S203. DOI: 10.17221/1093-CJFS.
  • Mapelli‐brahm, P.; Desmarchelier, C.; Margier, M.; Reboul, E.; Meléndez Martínez, A. J.; Borel, P. Phytoene and Phytofluene Isolated from a Tomato Extract are Readily Incorporated in Mixed Micelles and Absorbed by Caco‐2 Cells, as Compared to Lycopene, and SR‐BI is Involved in Their Cellular Uptake. Mol. Nutr. Food Res. 2018, 62(22), 1800703. DOI: 10.1002/mnfr.201800703.
  • Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention. Cancers. 2016, 8(6), 58. DOI: 10.3390/cancers8060058.
  • Rizk, E. M.; El-Kady, A. T.; El-Bialy, A. R. Charactrization of Carotenoids (Lyco-Red) Extracted from Tomato Peels and Its Uses as Natural Colorants and Antioxidants of Ice Cream. Ann. Agric. Sci. 2014, 59(1), 53–61. DOI: 10.1016/j.aoas.2014.06.008.
  • Daood, H. G.; Bencze, G.; Palotas, G.; Pek, Z.; Sidikov, A.; Helyes, L. HPLC Analysis of Carotenoids from Tomatoes Using Cross-Linked C18 Column and MS Detection. J. Chromatogr. Sci. 2014, 52(9), 985–991. DOI: 10.1093/chromsci/bmt139.
  • Ilahy, R.; Siddiqui, M.; Piro, G.; Lenucci, M.; Hdider, C.; Helyes, L. A Focus on High-Lycopene Tomato Cultivars: Horticultural Performance and Functional Quality. Proceedings of XIV International Symposium on Processing Tomato. 2016, 1159, 57–64.
  • Brandt, S.; Pék, Z.; Barna, É.; Lugasi, A.; Helyes, L. Lycopene Content and Colour of Ripening Tomatoes as Affected by Environmental Conditions. J. Sci. Food Agric. 2006, 86(4), 568–572. DOI: 10.1002/jsfa.2390.
  • Ilahy, R.; Tlili, I.; Helyes, L.; Siddiqui, M.; Lenucci, M.; Pék, Z.; Hdider, C. Organically Grown High-Lycopene Tomatoes: A Novel Adventure Within Functional Quality. Proceedings of XV International Symposium on Processing Tomato. 1233, 67–72.
  • Coyago-Cruz, E.; Corell, M.; Moriana, A.; Mapelli-Brahm, P.; Hernanz, D.; Stinco, C. M.; Beltrán-Sinchiguano, E.; Meléndez-Martínez, A. J. Study of Commercial Quality Parameters, Sugars, Phenolics, Carotenoids and Plastids in Different Tomato Varieties. Food Chem 2019, 277, 480–489. DOI: 10.1016/j.foodchem.2018.10.139.
  • Grumezescu, A. M. Nanoarchitectonics in Biomedicine; William Andrew. 2019. DOI:10.1016/C2017-0-04439-7.
  • Choi, H.; Lee, D. G. Lycopene Induces Apoptosis in Candida Albicans Through Reactive Oxygen Species Production and Mitochondrial Dysfunction. Biochimie. 2015, 115, 108–115. DOI: 10.1016/j.biochi.2015.05.009.
  • Rosati, C.; Aquilani, R.; Dharmapuri, S.; Pallara, P.; Marusic, C.; Tavazza, R.; Bouvier, F.; Camara, B.; Giuliano, G. Metabolic Engineering of Beta‐carotene and Lycopene Content in Tomato Fruit. Plant J 2000, 24(3), 413–420. DOI: 10.1046/j.1365-313x.2000.00880.x.
  • Tinyane, P. P.; Sivakumar, D.; Soundy, P. Influence of Photo-Selective Netting on Fruit Quality Parameters and Bioactive Compounds in Selected Tomato Cultivars. Sci. Hortic. 2013, 161, 340–349. DOI: 10.1016/j.scienta.2013.06.024.
  • Helyes, L.; Lugasi, A.; Pék, Z. Effect of Natural Light on Surface Temperature and Lycopene Content of Vine Ripened Tomato Fruit. Can. J. Plant Sci. 2007, 87(4), 927–929. DOI: 10.4141/CJPS07022.
  • Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of Environmental Factors and Agricultural Techniques on Antioxidant Content of Tomatoes. J. Sci. Food Agric. 2003, 83(5), 369–382. DOI: 10.1002/jsfa.1370.
  • Toor, R.; Savage, G.; Lister, C. Seasonal Variations in the Antioxidant Composition of Greenhouse Grown Tomatoes. J. Food Compost. Anal. 2006, 19(1), 1–10. DOI: 10.1016/j.jfca.2004.11.008.
  • Berki, M.; Daood, H.; Helyes, L. The Influence of the Water Supply on the Bioactive Compounds of Different Tomato Varieties. Acta Aliment 2014, 43(Supplement 1), 21–28. DOI: 10.1556/AAlim.43.2014.Suppl.4.
  • Takács, S.; Pék, Z.; Csányi, D.; Daood, H. G.; Szuvandzsiev, P.; Palotás, G.; Helyes, L. Influence of Water Stress Levels on the Yield and Lycopene Content of Tomato. Water. 2020, 12(8), 2165. DOI: 10.3390/w12082165.
  • Pék, Z.; Helyes, L.; Lugasi, A. Color Changes and Antioxidant Content of Vine and Postharvest-Ripened Tomato Fruits. HortScience. 2010, 45(3), 466–468. DOI: 10.21273/HORTSCI.45.3.466.
  • Leonardi, C.; Ambrosino, P.; Esposito, F.; Fogliano, V. Antioxidative Activity and Carotenoid and Tomatine Contents in Different Typologies of Fresh Consumption Tomatoes. J. Agric. Food Chem. 2000, 48(10), 4723–4727. DOI: 10.1021/jf000225t.
  • Fitri, B. L. Pengaruh Varietas Dan Lama Penyimpanan Terhadap Kandungan Lycopen Buah Tomat (Lycopersicon Esculentum Mill.); Universitas Islam Negeri Maulana Malik Ibrahim, 2007.
  • Domínguez, R.; Gullón, P.; Pateiro, M.; Munekata, P. E.; Zhang, W.; Lorenzo, J. M. Tomato as Potential Source of Natural Additives for Meat Industry. A Review. Antioxidants. 2020, 9(1), 73. DOI: 10.3390/antiox9010073.
  • Baranska, M.; Schütze, W.; Schulz, H. Determination of Lycopene and β-Carotene Content in Tomato Fruits and Related Products: Comparison of FT-Raman, ATR-IR, and NIR Spectroscopy. Anal. Chem. 2006, 78(24), 8456–8461. DOI: 10.1021/ac061220j.
  • Zhivkova, V. Evaluation of Nutrient and Mineral Content in Tomato and Cucumber Wastes. Quality-Access to Success 2020, 21, 118–121.
  • Asquer, C.; Pistis, A.; Scano, E. A. Characterization of Fruit and Vegetable Wastes as a Single Substrate for the Anaerobic Digestion Extended Abstract. Environ. Eng. Manage. J. 2013, 12, 89–92.
  • Pehlivan, F. E. Vitamin C: An Antioxidant Agent. Vitamin C 2017, 2, 23–35.
  • Martí, R.; Leiva-Brondo, M.; Lahoz, I.; Campillo, C.; Cebolla-Cornejo, J.; Roselló, S. Polyphenol and L-Ascorbic Acid Content in Tomato as Influenced by High Lycopene Genotypes and Organic Farming at Different Environments. Food Chem 2018, 239, 148–156. DOI: 10.1016/j.foodchem.2017.06.102.
  • Traber, M. Vitamin, E. Modern Nutrition in Health and Disease; Shils, M.E., Shike, M., Ross, A., Caballero, B. and Cousins, R. Eds.; Lippincott Williams & Wilkins: Philadelphia, 2006.
  • Baiano, A.; Del Nobile, M. A. Antioxidant Compounds from Vegetable Matrices: Biosynthesis, Occurrence, and Extraction Systems. Crit. Rev. Food Sci. Nutr. 2016, 56(12), 2053–2068. DOI: 10.1080/10408398.2013.812059.
  • Persia, M.; Parsons, C.; Schang, M.; Azcona, J. Nutritional Evaluation of Dried Tomato Seeds. Poultr. Sci. 2003, 82(1), 141–146. DOI: 10.1093/ps/82.1.141.
  • Sogi, D.; Bhatia, R.; Garg, S.; Bawa, A. Biological Evaluation of Tomato Waste Seed Meals and Protein Concentrate. Food Chem 2005, 89(1), 53–56. DOI: 10.1016/j.foodchem.2004.01.083.
  • Al-Wandawi, H.; Abdul-Rahman, M.; Al-Shaikhly, K. Tomato Processing Wastes as Essential Raw Materials Source. J. Agric. Food Chem. 1985, 33(5), 804–807. DOI: 10.1021/jf00065a009.
  • Shao, D.; Bartley, G. E.; Yokoyama, W.; Pan, Z.; Zhang, H.; Zhang, A. Plasma and Hepatic Cholesterol-Lowering Effects of Tomato Pomace, Tomato Seed Oil and Defatted Tomato Seed in Hamsters Fed with High-Fat Diets. Food Chem 2013, 139(1–4), 589–596. DOI: 10.1016/j.foodchem.2013.01.043.
  • D’-Este, M.; Alvarado-Morales, M.; Angelidaki, I. Amino Acids Production Focusing on Fermentation Technologies – a Review. Biochem. Adv. 2018, 36(1), 14–25. DOI: 10.1016/j.biotechadv.2017.09.001.
  • Sarkar, A.; Kaul, P. Evaluation of Tomato Processing By‐products: A Comparative Study in a Pilot Scale Setup. J. Food Process Eng. 2014, 37(3), 299–307. DOI: 10.1111/jfpe.12086.
  • Zhang, Y.; Pan, Z.; Venkitasamy, C.; Ma, H.; Li, Y. Umami Taste Amino Acids Produced by Hydrolyzing Extracted Protein from Tomato Seed Meal. LWT Food Sci. Technol. 2015, 62(2), 1154–1161. DOI: 10.1016/j.lwt.2015.02.003.
  • Baxter, C. J.; Carrari, F.; Bauke, A.; Overy, S.; Hill, S. A.; Quick, P. W.; Fernie, A. R.; Sweetlove, L. J. Fruit Carbohydrate Metabolism in an Introgression Line of Tomato with Increased Fruit Soluble Solids. Plant Cell Physiol 2005, 46(3), 425–437. DOI: 10.1093/pcp/pci040.
  • Schaffer, A. A.; Miron, D.; Petreikov, M.; Fogelman, M.; Spiegelman, M.; Bnei-Moshe, Z.; Shen, S.; Granot, D.; Hadas, R.; Dai, N. Modification of Carbohydrate Content in Developing Tomato Fruit. HortScience. 1999, 34(6), 1024–1027. DOI: 10.21273/HORTSCI.34.6.1024.
  • Del Valle, M.; Cámara, M.; Torija, M. E. Chemical Characterization of Tomato Pomace. J. Sci. Food Agric. 2006, 86(8), 1232–1236. DOI: 10.1002/jsfa.2474.
  • King, A. J.; Zeidler, G. Tomato Pomace May Be a Good Source of Vitamin E in Broiler Diets. Calif. Agric. 2004, 58(1), 59–62. DOI: 10.3733/ca.v058n01p59.
  • Rabak, F. The Utilization of Waste Tomato Seeds and Skins. US Department of Agriculture 1917, 626. DOI: 10.5962/bhl.title.108064.
  • Nour, V.; Panaite, T. D.; Ropota, M.; Turcu, R.; Trandafir, I.; Corbu, A. R. Nutritional and Bioactive Compounds in Dried Tomato Processing Waste. CyTa-J. Food. 2018, 16(1), 222–229. DOI: 10.1080/19476337.2017.1383514.
  • Rossell, B. Oils and Fats Volume 2 Animal Carcass Fats. Food RA Leatherhead Publishing: Leatherhead, UK, 2001, 121–173.
  • Pinela, J.; Oliveira, M.; Ferreira, I. Bioactive Compounds of Tomatoes as Health Promoters. Natural Bioactive Compounds from Fruits and Vegetables 2016, 2, 48–91.
  • Fujiwara, Y.; Kiyota, N.; Tsurushima, K.; Yoshitomi, M.; Horlad, H.; Ikeda, T.; Nohara, T.; Takeya, M.; Nagai, R. Tomatidine, a Tomato Sapogenol, Ameliorates Hyperlipidemia and Atherosclerosis in apoE-Deficient Mice by Inhibiting Acyl-CoA: Cholesterol Acyl-Transferase (ACAT). J. Agric. Food Chem. 2012, 60(10), 2472–2479. DOI: 10.1021/jf204197r.
  • Manabe, H.; Murakami, Y.; El-Aasr, M.; Ikeda, T.; Fujiwara, Y.; Ono, M.; Nohara, T. Content Variations of the Tomato Saponin Esculeoside a in Various Processed Tomatoes. J. Nat. Med. 2011, 65(1), 176–179. DOI: 10.1007/s11418-010-0443-4.
  • Jarosz, M.; Taraszewska, A. Risk Factors for Gastroesophageal Reflux Disease: The Role of Diet. Prz Gastroenterol 2014, 9(5), 297–301. DOI: 10.5114/pg.2014.46166.
  • Vella, M.; Robinson, D.; Cardozo, L. Painful Bladder Syndrome. Obstet. Gynaecol. Reprod. Med. 2015, 25(8), 222–228. DOI: 10.1016/j.ogrm.2015.05.006.
  • Hernández Suárez, M.; Rodríguez Rodríguez, E.; Díaz Romero, C. Analysis of Organic Acid Content in Cultivars of Tomato Harvested in Tenerife. Eur. Food Res. Technol. 2008, 226(3), 423–435. DOI: 10.1007/s00217-006-0553-0.
  • Gemede, H. F.; Ratta, N. Antinutritional Factors in Plant Foods: Potential Health Benefits and Adverse Effects. Int. J. Nutr. Food Sci. 2014, 3(4), 284–289. DOI: 10.11648/j.ijnfs.20140304.18.
  • Boehm, S.; Huck, S. Presynaptic Inhibition by Concanavalin A: Are α‐latrotoxin Receptors Involved in Action Potential‐dependent Transmitter Release? J. Neurochem. 1998, 71, 2421–2430. DOI: 10.1046/j.1471-4159.1998.71062421.x.
  • Kondo, Y.; Urisu, A.; Tokuda, R. Identification and Characterization of the Allergens in the Tomato Fruit by Immunoblotting. Int. Arch. Allergy Immunol. 2001, 126(4), 294–299. DOI: 10.1159/000049526.
  • Dölle, S.; Lehmann, K.; Schwarz, D.; Weckwert, W.; Scheler, C.; George, E.; Franken, P.; Worm, M. Allergenic Activity of Different Tomato Cultivars in Tomato Allergic Subjects. Clin. Exp. Allergy. 2011, 41(11), 1643–1652. DOI: 10.1111/j.1365-2222.2011.03841.x.
  • Zhang, X.; Tang, H.; Du, H.; Liu, Z.; Bao, Z.; Shi, Q. Comparative N-Glycoproteome Analysis Provides Novel Insights into the Regulation Mechanism in Tomato (Solanum Lycopersicum L.) During Fruit Ripening Process. Plant Sci 2020, 293, 110413. DOI: 10.1016/j.plantsci.2020.110413.
  • Tohge, T.; Fernie, A. R. Metabolomics-Inspired Insight into Developmental, Environmental and Genetic Aspects of Tomato Fruit Chemical Composition and Quality. Plant Cell Physiol 2015, 56(9), 1681–1696. DOI: 10.1093/pcp/pcv093.
  • Siener, R.; Bade, D. J.; Hesse, A.; Hoppe, B. Dietary Hyperoxaluria is Not Reduced by Treatment with Lactic Acid Bacteria. J. Transl. Med. 2013, 11(1), 1–7. DOI: 10.1186/1479-5876-11-306.
  • Voss, S.; Hesse, A.; Zimmermann, D. J.; Sauerbruch, T.; von Unruh, G. E. Intestinal Oxalate Absorption is Higher in Idiopathic Calcium Oxalate Stone Formers Than in Healthy Controls: Measurements with the [13 C 2]Oxalate Absorption Test. J. Urol. 2006, 175(5), 1711–1715. DOI: 10.1016/S0022-5347(05)01001-3.
  • Friedman, M. Tomato Glycoalkaloids: Role in the Plant and in the Diet. J. Agric. Food Chem. 2002, 50(21), 5751–5780. DOI: 10.1021/jf020560c.
  • Takeda, S.; Miyasaka, K.; Shimoda, H. Lycoperoside H, a Steroidal Alkaloid Saponin in Tomato Seeds, Ameliorates Atopic Dermatitis‐like Symptoms in IL‐33 Transgenic Mice. J. Food Biochem. 2021, 45(9), e13877. DOI: 10.1111/jfbc.13877.
  • Kaynard, A.; Flora, K. Gastroesophageal Reflux Disease. Control of Symptoms, Prevention of Complications. Postgrad. Med. 2001, 110(3), 42–43. DOI: 10.3810/pgm.2001.09.1017.
  • de Bortoli, N.; Guidi, G.; Martinucci, I.; Savarino, E.; Imam, H.; Bertani, L.; Russo, S.; Franchi, R.; Macchia, L.; Furnari, M., et al. Voluntary and Controlled Weight Loss Can Reduce Symptoms and Proton Pump Inhibitor Use and Dosage in Patients with Gastroesophageal Reflux Disease: A Comparative Study. Dis Esophagus 2016, 29(2), 197–204.
  • Wang, J. H.; Luo, J. Y.; Dong, L.; Gong, J.; Tong, M. Epidemiology of Gastroesophageal Reflux Disease: A General Population-Based Study in Xi’An of Northwest China. World J. Gastroenterol. 2004, 10, 1647–1651. DOI: 10.3748/wjg.v10.i11.1647.
  • Townsend, M. K.; Devore, E. E.; Resnick, N. M.; Grodstein, F. Acidic Fruit Intake in Relation to Incidence and Progression of Urinary Incontinence. Int Urogynecol J 2013, 24(4), 605–612. DOI: 10.1007/s00192-012-1914-9.
  • Friedlander, J. I.; Shorter, B.; Moldwin, R. M. Diet and Its Role in Interstitial Cystitis/bladder Pain Syndrome (IC/BPS) and Comorbid Conditions. BJU Int 2012, 109(11), 1584–1591. DOI: 10.1111/j.1464-410X.2011.10860.x.
  • Chow, E. J.; Sediva, I. Influenza a Infection and Anaphylaxis in a Pediatric Patient Hospitalized for Asthma Exacerbation. R I Med J (2013) 2017, 100, 35–36.
  • Westphal, S.; Kolarich, D.; Foetisch, K.; Lauer, I.; Altmann, F.; Conti, A.; Crespo, J. F.; Rodríguez, J.; Enrique, E.; Vieths, S. Molecular Characterization and Allergenic Activity of Lyc E 2 (β‐fructofuranosidase), a Glycosylated Allergen of Tomato. Eur.J. Biochem. 2003, 270(6), 1327–1337. DOI: 10.1046/j.1432-1033.2003.03503.x.
  • Westphal, S.; Kempf, W.; Foetisch, K.; Retzek, M.; Vieths, S.; Scheurer, S. Tomato Profilin Lyc E 1: IgE Cross-Reactivity and Allergenic Potency. Allergy. 2004, 59(5), 526–532. DOI: 10.1046/j.1398-9995.2003.00413.x.
  • Foetisch, K.; Son, D.; Altmann, F.; Aulepp, H.; Conti, A.; Haustein, D.; Vieths, S. Tomato (Lycopersicon esculentum) Allergens in Pollen-Allergic Patients. Eur. Food Res. Technol. 2001, 213(4–5), 259–266. DOI: 10.1007/s002170100343.
  • Ito, S.-I.; Ihara, T.; Tamura, H.; Tanaka, S.; Ikeda, T.; Kajihara, H.; Dissanayake, C.; Abdel-Motaal, F. F.; El-Sayed, M. A. α-Tomatine, the Major Saponin in Tomato, Induces Programmed Cell Death Mediated by Reactive Oxygen Species in the Fungal Pathogen Fusarium Oxysporum. FEBS Lett 2007, 581(17), 3217–3222. DOI: 10.1016/j.febslet.2007.06.010.
  • Friedman, M.; Rayburn, J.; Bantle, J. Structural Relationships and Development Toxicity of Solanum Alkaloids in the Frog Embryo Teratogenesis Assay-Xenopus. J. Agric. Food Chem. 1992, 40(9), 1617–1624. DOI: 10.1021/jf00021a029.
  • Salehi, B.; Sharifi-Rad, R.; Sharopov, F.; Namiesnik, J.; Roointan, A.; Kamle, M.; Kumar, P.; Martins, N.; Sharifi-Rad, J. Beneficial Effects and Potential Risks of Tomato Consumption for Human Health: An Overview. Nutrition. 2019, 62, 201–208. DOI: 10.1016/j.nut.2019.01.012.
  • Noureddine, L.; Dixon, B. S. Complications and Management of Hyperkalemia: Implications for the Use of the Novel Cation Exchangers Zirconium Cyclosilicate and Patiromer. Clin. Investig. 2015, 5(10), 805–823. DOI: 10.4155/cli.15.48.
  • Siener, R.; Seidler, A.; Voss, S.; Hesse, A. The Oxalate Content of Fruit and Vegetable Juices, Nectars and Drinks. J. Food Compost. Anal. 2016, 45, 108–112. DOI: 10.1016/j.jfca.2015.10.004.
  • Awasthi, M.; Malhotra, S.; Modgil, R. Dietary Habits of Kidney Stone Patients of Kangra District, Himachal Pradesh, North India. J Human Ecol 2011, 34(3), 163–169. DOI: 10.1080/09709274.2011.11906381.
  • Massey, L. K. Dietary Influences on Urinary Oxalate and Risk of Kidney Stones. Front. Biosci. 2003, 8(6), 584–594. DOI: 10.2741/1082.
  • Santamaria, P. Nitrate in Vegetables: Toxicity, Content, Intake and EC Regulation. J. Sci. Food Agric. 2006, 86(1), 10–17. DOI: 10.1002/jsfa.2351.
  • Crozier, A.; Lean, M. E.; McDonald, M. S.; Black, C. Quantitative Analysis of the Flavonoid Content of Commercial Tomatoes, Onions, Lettuce, and Celery. J. Agric. Food Chem. 1997, 45(3), 590–595. DOI: 10.1021/jf960339y.
  • Stewart, A. J.; Bozonnet, S.; Mullen, W.; Jenkins, G. I.; Lean, M. E.; Crozier, A. Occurrence of Flavonols in Tomatoes and Tomato-Based Products. J. Agric. Food Chem. 2000, 48(7), 2663–2669. DOI: 10.1021/jf000070p.
  • Pernice, R.; Parisi, M.; Giordano, I.; Pentangelo, A.; Graziani, G.; Gallo, M.; Fogliano, V.; Ritieni, A. Antioxidants Profile of Small Tomato Fruits: Effect of Irrigation and Industrial Process. Sci. Hortic. 2010, 126, 156–163. DOI: 10.1016/j.scienta.2010.06.021.
  • Martínez-Hernández, G. B.; Boluda-Aguilar, M.; Taboada-Rodríguez, A.; Soto-Jover, S.; Marín-Iniesta, F.; López-Gómez, A. Processing, Packaging, and Storage of Tomato Products: Influence on the Lycopene Content. Food Eng. Rev. 2016, 8(1), 52–75. DOI: 10.1007/s12393-015-9113-3.
  • Dewanto, V.; Wu, X.; Adom, K. K.; Liu, R. H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50(10), 3010–3014. DOI: 10.1021/jf0115589.
  • Jayathunge, K.; Grant, I. R.; Linton, M.; Patterson, M. F.; Koidis, A. Impact of Long-Term Storage at Ambient Temperatures on the Total Quality and Stability of High-Pressure Processed Tomato Juice. Innov. Food Sci. Emerg. Technol. 2015, 32, 1–8. DOI: 10.1016/j.ifset.2015.10.003.
  • Lana, M. M.; Tijskens, L. Effects of Cutting and Maturity on Antioxidant Activity of Fresh-Cut Tomatoes. Food Chem 2006, 97(2), 203–211. DOI: 10.1016/j.foodchem.2005.03.037.
  • Capanoglu, E.; Beekwilder, J.; Boyacioglu, D.; Hall, R.; De Vos, R. Changes in Antioxidant and Metabolite Profiles During Production of Tomato Paste. J. Agric. Food Chem. 2008, 56(3), 964–973. DOI: 10.1021/jf072990e.
  • Gahler, S.; Otto, K.; Böhm, V. Alterations of Vitamin C, Total Phenolics, and Antioxidant Capacity as Affected by Processing Tomatoes to Different Products. J. Agric. Food Chem. 2003, 51(27), 7962–7968. DOI: 10.1021/jf034743q.
  • Muir, S. R.; Collins, G. J.; Robinson, S.; Hughes, S.; Bovy, A.; Ric De Vos, C. H. V.; van Tunen, A. J.; Verhoeyen, M. E. Overexpression of Petunia Chalcone Isomerase in Tomato Results in Fruit Containing Increased Levels of Flavonols. Nat. Biotechnol. 2001, 19(5), 470–474. DOI: 10.1038/88150.
  • Toor, R. K.; Savage, G. P. Effect of Semi-Drying on the Antioxidant Components of Tomatoes. Food Chem 2006, 94(1), 90–97. DOI: 10.1016/j.foodchem.2004.10.054.
  • Mounet, F.; Lemaire-Chamley, M.; Maucourt, M.; Cabasson, C.; Giraudel, J.-L.; Deborde, C.; Lessire, R.; Gallusci, P.; Bertrand, A.; Gaudillere, M. Quantitative Metabolic Profiles of Tomato Flesh and Seeds During Fruit Development: Complementary Analysis with ANN and PCA. Metabolomics. 2007, 3(3), 273–288. DOI: 10.1007/s11306-007-0059-1.
  • Tudela, J. A.; Cantos, E.; Espín, J. C.; Tomás-Barberán, F. A.; Gil, M. I. Induction of Antioxidant Flavonol Biosynthesis in Fresh-Cut Potatoes. Effect of Domestic Cooking. J. Agric. Food Chem. 2002, 50(21), 5925–5931. DOI: 10.1021/jf020330y.
  • Porrini, M.; Riso, P. Factors Influencing the Bioavailability of Antioxidants in Foods: A Critical Appraisal. Nutr. Metab. Cardiovasc. Dis. 2008, 18(10), 647–650. DOI: 10.1016/j.numecd.2008.08.004.
  • Erlund, I.; Freese, R.; Marniemi, J.; Hakala, P.; Alfthan, G. Bioavailability of Quercetin from Berries and the Diet. Nutr. Cancer. 2006, 54(1), 13–17. DOI: 10.1207/s15327914nc5401_3.
  • Kamiloglu, S.; Demirci, M.; Selen, S.; Toydemir, G.; Boyacioglu, D.; Capanoglu, E. Home Processing of Tomatoes (Solanum Lycopersicum): Effects on in vitro Bioaccessibility of Total Lycopene, Phenolics, Flavonoids, and Antioxidant Capacity. J. Sci. Food Agric. 2014, 94(11), 2225–2233. DOI: 10.1002/jsfa.6546.
  • Stahl, W.; Sies, H. Uptake of Lycopene and Its Geometrical Isomers is Greater from Heat-Processed Than from Unprocessed Tomato Juice in Humans. J. Nutr. 1992, 122(11), 2161–2166. DOI: 10.1093/jn/122.11.2161.
  • Porrini, M.; Riso, P.; Testolin, G. Absorption of Lycopene from Single or Daily Portions of Raw and Processed Tomato. Br. J. Nutr. 1998, 80(4), 353–361. DOI: 10.1017/S000711459800141X.
  • Böhm, V.; Bitsch, R. Intestinal Absorption of Lycopene from Different Matrices and Interactions to Other Carotenoids, the Lipid Status, and the Antioxidant Capacity of Human Plasma. Eur. J. Nutr. 1999, 38(3), 118–125. DOI: 10.1007/s003940050052.
  • Xianquan, S.; Shi, J.; Kakuda, Y.; Yueming, J. Stability of Lycopene During Food Processing and Storage. J. Med. Food. 2005, 8(4), 413–422. DOI: 10.1089/jmf.2005.8.413.
  • Alda, L. M.; Gogoasa, I.; Bordean, D.-M.; Gergen, I.; Alda, S.; Moldovan, C.; Nita, L. Lycopene Content of Tomatoes and Tomato Products. J. Agroaliment. Processes Technol. 2009, 15, 540–542.
  • Baenas, N.; Bravo, S.; García-Alonso, F. J.; Gil, J. V.; Periago, M. J. Changes in Volatile Compounds, Flavour-Related Enzymes and Lycopene in a Refrigerated Tomato Juice During Processing and Storage. Eur. Food Res. Technol. 2021, 247(4), 975–984. DOI: 10.1007/s00217-020-03678-7.
  • Reboul, E.; Richelle, M.; Perrot, E.; Desmoulins-Malezet, C.; Pirisi, V.; Borel, P. Bioaccessibility of Carotenoids and Vitamin E from Their Main Dietary Sources. J. Agric. Food Chem. 2006, 54(23), 8749–8755. DOI: 10.1021/jf061818s.
  • Ryan, L.; O’-Connell, O.; O’-Sullivan, L.; Aherne, S.; O’-Brien, N. M. Micellarisation of Carotenoids from Raw and Cooked Vegetables. Plant Foods Human Nutr 2008, 63(3), 127–133. DOI: 10.1007/s11130-008-0081-0.
  • Demiray, E.; Tulek, Y.; Yilmaz, Y. Degradation Kinetics of Lycopene, β-Carotene and Ascorbic Acid in Tomatoes During Hot Air Drying. LWT Food Sci. Technol. 2013, 50(1), 172–176. DOI: 10.1016/j.lwt.2012.06.001.
  • Urbonaviciene, D.; Viskelis, P.; Viskelis, J.; Jankauskiene, J.; Bobinas, C. Lycopene and β-Carotene in Non-Blanched and Blanched Tomatoes. J. Food Agric Environ. 2012, 10, 142–146.
  • Viljanen, K.; Lille, M.; Heiniö, R.-L.; Buchert, J. Effect of High-Pressure Processing on Volatile Composition and Odour of Cherry Tomato Purée. Food Chem 2011, 129(4), 1759–1765. DOI: 10.1016/j.foodchem.2011.06.046.
  • Aguiló‐aguayo, I.; Soliva‐fortuny, R.; Martín‐belloso, O. Volatile Compounds and Changes in Flavour‐related Enzymes During Cold Storage of High‐intensity Pulsed Electric Field‐and Heat‐processed Tomato Juices. J. Sci. Food Agric. 2010, 90(10), 1597–1604. DOI: 10.1002/jsfa.3984.
  • Lee, J.; Koo, N.; Min, D. B. Reactive Oxygen Species, Aging, and Antioxidative Nutraceuticals. Comprehensive Reviews in Food Science and Food Safety. 2004, 3(1), 21–33. DOI: 10.1111/j.1541-4337.2004.tb00058.x.
  • Davey, M. W.; Montagu, M. V.; Inze, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, N.; Benzie, I. J. J.; Strain, J. J.; Favell, D.; Fletcher, J. Plant L‐ascorbic Acid: Chemistry, Function, Metabolism, Bioavailability and Effects of Processing. J. Sci. Food Agric. 2000, 80(7), 825–860. DOI: 10.1002/(SICI)1097-0010(20000515)80:7<825:AID-JSFA598>3.0.CO;2-6.
  • Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects–a Review. J. Funct. Foods. 2015, 18, 820–897.
  • Fraga, C. G.; Galleano, M.; Verstraeten, S. V.; Oteiza, P. I. Basic Biochemical Mechanisms Behind the Health Benefits of Polyphenols. Mol. Asp. Med. 2010, 31(6), 435–445. DOI: 10.1016/j.mam.2010.09.006.
  • Raiola, A.; Rigano, M. M.; Calafiore, R.; Frusciante, L.; Barone, A. Enhancing the Health-Promoting Effects of Tomato Fruit for Biofortified Food. Mediators Inflammation 2014, 2014, 1–16. DOI: 10.1155/2014/139873.
  • Borel, P.; Desmarchelier, C.; Nowicki, M.; Bott, R.; Morange, S.; Lesavre, N. Interindividual Variability of Lutein Bioavailability in Healthy Men: Characterization, Genetic Variants Involved, and Relation with Fasting Plasma Lutein Concentration. Am. J. Clin. Nutr. 2014, 100(1), 168–175. DOI: 10.3945/ajcn.114.085720.
  • Armoza, A.; Haim, Y.; Basiri, A.; Wolak, T.; Paran, E. Tomato Extract and the Carotenoids Lycopene and Lutein Improve Endothelial Function and Attenuate Inflammatory NF-κB Signaling in Endothelial Cells. J. Hypertens. 2013, 31(3), 521–529. DOI: 10.1097/HJH.0b013e32835c1d01.
  • Raiola, A.; Tenore, G. C.; Barone, A.; Frusciante, L.; Rigano, M. M. Vitamin E Content and Composition in Tomato Fruits: Beneficial Roles and Bio-Fortification. Int. J. Mol. Sci. 2015, 16(12), 29250–29264. DOI: 10.3390/ijms161226163.
  • Costa, L. G.; Garrick, J. M.; Roquè, P. J.; Pellacani, C. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More. Oxid. Med. Cell. Longev. 2016, 2016, 1–10. DOI: 10.1155/2016/2986796.
  • Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M. T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients. 2016, 8(3), 167. DOI: 10.3390/nu8030167.
  • Sahlin, E.; Savage, G.; Lister, C. Investigation of the Antioxidant Properties of Tomatoes After Processing. J. Food Compost. Anal. 2004, 17(5), 635–647. DOI: 10.1016/j.jfca.2003.10.003.
  • Kocot, J.; Luchowska-Kocot, D.; Kiełczykowska, M.; Musik, I.; Kurzepa, J. Does Vitamin C Influence Neurodegenerative Diseases and Psychiatric Disorders? Nutrients. 2017, 9(7), 659. DOI: 10.3390/nu9070659.
  • Rao, A. V.; Rao, L. G. Carotenoids and Human Health. Pharmacol. Res. 2007, 55(3), 207–216. DOI: 10.1016/j.phrs.2007.01.012.
  • Rowles, J. L.; Ranard, K. M.; Applegate, C. C.; Jeon, S.; An, R.; Erdman, J. W. Processed and Raw Tomato Consumption and Risk of Prostate Cancer: A Systematic Review and Dose–response Meta-Analysis. Prostate Cancer Prostatic Dis 2018, 21(3), 319–336. DOI: 10.1038/s41391-017-0005-x.
  • Wu, A.; Liu, R.; Dai, W.; Jie, Y.; Yu, G.; Fan, X.; Huang, Q. Lycopene Attenuates Early Brain Injury and Inflammation Following Subarachnoid Hemorrhage in Rats. Int. J. Clin. Exp. Med. 2015, 8, 14316.
  • Taveira, M.; Sousa, C.; Valentão, P.; Ferreres, F.; Teixeira, J. P.; Andrade, P. B. Neuroprotective Effect of Steroidal Alkaloids on Glutamate-Induced Toxicity by Preserving Mitochondrial Membrane Potential and Reducing Oxidative Stress. J. Steroid Biochem. Mol. Biol. 2014, 140, 106–115. DOI: 10.1016/j.jsbmb.2013.12.013.
  • Paul, R.; Mazumder, M. K.; Nath, J.; Deb, S.; Paul, S.; Bhattacharya, P.; Borah, A. Lycopene-A Pleiotropic Neuroprotective Nutraceutical: Deciphering Its Therapeutic Potentials in Broad Spectrum Neurological Disorders. Neurochem. Int. 2020, 140, 104823. DOI: 10.1016/j.neuint.2020.104823.
  • Lei, X.; Lei, L.; Zhang, Z.; Cheng, Y. Neuroprotective Effects of Lycopene Pretreatment on Transient Global Cerebral Ischemia‑reperfusion in Rats: The Role of the Nrf2/ho‑1 Signaling Pathway. Mol. Med. Rep. 2016, 13(1), 412–418. DOI: 10.3892/mmr.2015.4534.
  • Prema, A.; Janakiraman, U.; Manivasagam, T.; Thenmozhi, A. J. Neuroprotective Effect of Lycopene Against MPTP Induced Experimental Parkinson’s Disease in Mice. Neurosci. Lett. 2015, 599, 12–19. DOI: 10.1016/j.neulet.2015.05.024.
  • Hu, W.; Wang, H.; Liu, Z.; Liu, Y.; Wang, R.; Luo, X.; Huang, Y. Neuroprotective Effects of Lycopene in Spinal Cord Injury in Rats via Antioxidative and Anti-Apoptotic Pathway. Neurosci. Lett. 2017, 642, 107–112. DOI: 10.1016/j.neulet.2017.02.004.
  • Ratto, F.; Franchini, F.; Musicco, M.; Caruso, G., and Di Santo, S. G. A Narrative Review on the Potential of Tomato and Lycopene for the Prevention of Alzheimer’s Disease and Other Dementias. Crit. Rev. Food Sci. Nutr. 2021, 62(18), 4970–4981.
  • Gokul, K. Oral Supplements of Aqueous Extract of Tomato Seeds Alleviate Motor Abnormality, Oxidative Impairments and Neurotoxicity Induced by Rotenone in Mice: Relevance to Parkinson’s Disease. Neurochem. Res. 2014, 39(7), 1382–1394. DOI: 10.1007/s11064-014-1323-1.
  • Krishna, G. Aqueous Extract of Tomato Seeds Attenuates Rotenone-Induced Oxidative Stress and Neurotoxicity in Drosophila Melanogaster. J. Sci. Food Agric. 2016, 96(5), 1745–1755. DOI: 10.1002/jsfa.7281.
  • Manochkumar, J.; Doss, C. G. P.; El-Seedi, H. R.; Efferth, T.; Ramamoorthy, S. The Neuroprotective Potential of Carotenoids in vitro and in vivo. Phytomedicine. 2021, 91, 153676. DOI: 10.1016/j.phymed.2021.153676.
  • Frusciante, L.; Carli, P.; Ercolano, M. R.; Pernice, R.; Di Matteo, A.; Fogliano, V.; Pellegrini, N. Antioxidant Nutritional Quality of Tomato. Mol. Nutr. Food Res. 2007, 51(5), 609–617. DOI: 10.1002/mnfr.200600158.
  • Guil-Guerrero, J. L.; Rebolloso-Fuentes, M. Nutrient Composition and Antioxidant Activity of Eight Tomato (Lycopersicon Esculentum) Varieties. J. Food Compost. Anal. 2009, 22(2), 123–129. DOI: 10.1016/j.jfca.2008.10.012.
  • Aydemir, G.; Kasiri, Y.; Birta, E.; Beke, G.; Garcia, A. L.; Bartók, E. M.; Rühl, R. Lycopene‐derived Bioactive Retinoic Acid Receptors/retinoid‐x Receptors‐activating Metabolites May Be Relevant for Lycopene’s Anti‐cancer Potential. Mol. Nutr. Food Res. 2013, 57(5), 739–747. DOI: 10.1002/mnfr.201200548.
  • Bhuvaneswari, V.; Nagini, S. Lycopene: A Review of Its Potential as an Anticancer Agent. Current Medicinal Chemistry-Anti-Cancer Agents 2005, 5(6), 627–635. DOI: 10.2174/156801105774574667.
  • Chik, W. D. W.; Amid, A.; Jamal, P. Predicting Group of Metabolites Available in Partially Purified Tomato Leaves Extract Showing Anticancer Activity by High Performance Liquid Chromatography (HPLC) and Fourier Transform Infrared (FTIR). Afr. J. Biotechnol. 2011, 10, 18666–18673.
  • Kapoor, S.; Dharmesh, S. M. Pectic Oligosaccharide from Tomato Exhibiting Anticancer Potential on a Gastric Cancer Cell Line: Structure-Function Relationship. Carbohydr. Polym. 2017, 160, 52–61. DOI: 10.1016/j.carbpol.2016.12.046.
  • Kim, H. R.; Ahn, J. B. Antioxidative and Anticancer Activities of the Betatini Cultivar of Cherry Tomato (Lycopersicon Esculentum Var. Cerasiforme) Extract. Food Eng. Prog. 2014, 18(4), 359–365. DOI: 10.13050/foodengprog.2014.18.4.359.
  • Chik, W. W.; Amid, A.; Jamal, P. Purification and Cytotoxicity Assay of Tomato (Lycopersicon Esculentum) Leaves Methanol Extract as Potential Anti-Cancer Agent. J. Appl. Sci. 2010, 10(24), 3283–3288. DOI: 10.3923/jas.2010.3283.3288.
  • Shejawal, K. P.; Randive, D. S.; Bhinge, S. D.; Bhutkar, M. A.; Todkar, S. S.; Mulla, A. S.; Jadhav, N. R. Green Synthesis of Silver, Iron and Gold Nanoparticles of Lycopene Extracted from Tomato: Their Characterization and Cytotoxicity Against COLO320DM, HT29 and Hella Cell. J. Mater. Sci.: Mater. Med. 2021, 32, 1–12. DOI: 10.1007/s10856-020-06475-6.
  • Walfisch, S.; Walfisch, Y.; Kirilov, E.; Linde, N.; Mnitentag, H.; Agbaria, R.; Sharoni, Y.; Levy, J. Tomato Lycopene Extract Supplementation Decreases Insulin-Like Growth Factor-I Levels in Colon Cancer Patients. Eur. J. Cancer Prev. 2007, 16(4), 298–303. DOI: 10.1097/01.cej.0000236251.09232.7b.
  • Zhang, X.; Lin, D.; Jiang, R.; Li, H.; Wan, J.; Li, H. Ferulic Acid Exerts Antitumor Activity and Inhibits Metastasis in Breast Cancer Cells by Regulating Epithelial to Mesenchymal Transition. Oncol. Rep. 2016, 36(1), 271–278. DOI: 10.3892/or.2016.4804.
  • Rajabi, S.; Maresca, M.; Yumashev, A. V.; Choopani, R.; Hajimehdipoor, H. The Most Competent Plant-Derived Natural Products for Targeting Apoptosis in Cancer Therapy. Biomolecules. 2021, 11(4), 534. DOI: 10.3390/biom11040534.
  • Seo, K.-I.; Lee, J.; Choi, R.-Y.; Lee, H.-I.; Lee, J.-H.; Jeong, Y.-K.; Kim, M.-J.; Lee, M.-K. Anti-Obesity and Anti-Insulin Resistance Effects of Tomato Vinegar Beverage in Diet-Induced Obese Mice. Food Funct 2014, 5(7), 1579–1586. DOI: 10.1039/c4fo00135d.
  • Vinha, A. F.; Barreira, S. V.; Costa, A. S.; Alves, R. C.; Oliveira, M. B. P. Pre-Meal Tomato (Lycopersicon Esculentum) Intake Can Have Anti-Obesity Effects in Young Women? Int. J. Food Sci. Nutr. 2014, 65(8), 1019–1026. DOI: 10.3109/09637486.2014.950206.
  • Lee, J.-H.; Cho, H.-D.; Jeong, J.-H.; Lee, M.-K.; Jeong, Y.-K.; Shim, K.-H.; Seo, K.-I. New Vinegar Produced by Tomato Suppresses Adipocyte Differentiation and Fat Accumulation in 3T3-L1 Cells and Obese Rat Model. Food Chem 2013, 141(3), 3241–3249. DOI: 10.1016/j.foodchem.2013.05.126.
  • Choi, K.-M.; Lee, Y.-S.; Shin, D.-M.; Lee, S.; Yoo, K.-S.; Lee, M. K.; Lee, J.-H.; Kim, S. Y.; Lee, Y.-M.; Hong, J.-T. Green Tomato Extract Attenuates High-Fat-Diet-Induced Obesity Through Activation of the AMPK Pathway in C57BL/6 Mice. J. Nutr. Biochem. 2013, 24(1), 335–342. DOI: 10.1016/j.jnutbio.2012.06.018.
  • Fenni, S.; Hammou, H.; Astier, J.; Bonnet, L.; Karkeni, E.; Couturier, C.; Tourniaire, F.; Landrier, J. F. Lycopene and Tomato Powder Supplementation Similarly Inhibit High‐fat Diet Induced Obesity, Inflammatory Response, and Associated Metabolic Disorders. Mol. Nutr. Food Res. 2017, 61(9), 1601083. DOI: 10.1002/mnfr.201601083.
  • Weremfo, A.; Asamoah, K.; Abassah-Oppong, S. Preliminary Study on Hepatoprotective Activity of Tomato (Solanum Lycopersicum L.) Pulp Against Hepatic Damage in Rats. Adv. Biol. Res. 2011, 5, 248–250.
  • Pinto, C.; Rodríguez-Galdón, B.; Cestero, J. J.; Macías, P. Hepatoprotective Effects of Lycopene Against Carbon Tetrachloride-Induced Acute Liver Injury in Rats. J. Funct. Foods. 2013, 5(4), 1601–1610. DOI: 10.1016/j.jff.2013.07.002.
  • Wadie, W.; Mohamed, A. H.; Masoud, M. A.; Rizk, H. A.; Sayed, H. M. Protective Impact of Lycopene on Ethinylestradiol-Induced Cholestasis in Rats. Naunyn Schmiedebergs Arch. Pharmacol. 2021, 394(3), 447–455. DOI: 10.1007/s00210-020-01980-5.
  • Sheriff, S. A.; Devaki, T. Lycopene Stabilizes Liver Function During D -Galactosamine/lipopolysaccharide Induced Hepatitis in Rats. J. Taibah Univ. Sci. 2013, 7(1), 8–16. DOI: 10.1016/j.jtusci.2013.01.002.
  • Ujowundu, C.; Okoye, H.; Nwaoguikpe, R.; Belonwu, D.; Igwe, K.; Ujowundu, F. Hepatoprotective Effects of Crude Extracts of Tomato and Onion in Rats Exposed to Locally Processed Beef. Int. J. Biochem. Res. Rev. 2014, 4(2), 193. DOI: 10.9734/IJBCRR/2014/7353.
  • Nwokocha, C. R.; Nwokocha, M. I.; Aneto, I.; Obi, J.; Udekweleze, D. C.; Olatunde, B.; Owu, D. U.; Iwuala, M. O. Comparative Analysis on the Effect of Lycopersicon Esculentum (Tomato) in Reducing Cadmium, Mercury and Lead Accumulation in Liver. Food Chem. Toxicol. 2012, 50(6), 2070–2073. DOI: 10.1016/j.fct.2012.03.079.
  • El-Nashar, N. N.; Abduljawad, S. H. Impact Effect of Lycopene and Tomato-Based Products Network on Cardio-Protective Biomarkers in vivo. Funct. Foods Health Dis. 2012, 2(5), 151–165. DOI: 10.31989/ffhd.v2i5.92.
  • Wood, N.; Johnson, R. B. The Relationship Between Tomato Intake and Congestive Heart Failure Risk in Periodontitis Subjects. J. Clin. Periodontol. 2004, 31(7), 574–580. DOI: 10.1111/j.1600-051X.2004.00531.x.
  • Parvin, R.; Akhter, N. Protective Effect of Tomato Against Adrenaline-Induced Myocardial Infarction in Rats. Bangladesh Med. Res. Counc. Bull. 2008, 34, 104–108. DOI: 10.3329/bmrcb.v34i3.1974.
  • Karimi, G.; Ramezani, M.; Abdi, A. Protective Effects of Lycopene and Tomato Extract Against Doxorubicin‐induced Cardiotoxicity. Phytother. Res. 2005, 19(10), 912–914. DOI: 10.1002/ptr.1746.
  • Bose, K.; Agrawal, B. Effect of Lycopene from Cooked Tomatoes on Serum Antioxidant Enzymes, Lipid Peroxidation Rate and Lipid Profile in Coronary Heart Disease. Singapore Med. J. 2007, 48(5), 415.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.