183
Views
0
CrossRef citations to date
0
Altmetric
Review

An Overview of Lithocarpus polystachyus, with Dihydrochalcones as Natural-Derived Bioactive Compounds

, &

References

  • Xiao, W.; Peng, Y.; Xu, L. J.; He, C. N.; Liu, Y. Z.; Xiao, P. G. Preliminary Exploration of the Diversity of the Chinese Tea Culture. Mod. Chin. Med. 2011, 13, 60–62.
  • Ni, H. C.; Li, J.; Jin, Y.; Cheng, W. M.; Peng, L.; Zhang, J. Y. Effects of Total Flavonoids of Litsea Coreana Level on Nonalcoholic Steatohepatitis. Chin. Pharmacol. Bull. 2006, 22, 591–594.
  • Chen, X. J.; Chen, X. F.; Li, M.; Huang, S. L. Total Flavone of Ampelopsis Grossedentata Lipid-Lowering Effect Research. Guangxi J. Trad. Chin. Med. 2001, 5, 52–54.
  • Li, L.; Xu, L. J.; Peng, Y.; Shi, R.; Xiao, P. Comparison of Green Tea and Four Other Kind of Teas. China J. Chin. Mater. Med. 2011, 36, 5–10.
  • Bi, W.; He, C. N.; Ma, Y. Y.; Shen, J.; Harris Zhang, L. H.; Peng, Y., Xiao, P. Investigation of Free Amino Acid, Total Phenolics, Antioxidant Activity and Purine Alkaloids to Assess the Health Properties of Non-Camellia Tea. Acta Pharm. Sin. B. 2016, 6(2), 170–181.
  • Dong, H.; Ning, Z.; Yu, L.; Li, L.; Lin, L.; Huang, J. Preparative Separation and Identification of the Flavonoid Phlorizin from the Crude Extract of Lithocarpus Polystachyus Rehd. Molecules. 2007, 12(3), 552–562. DOI: 10.3390/12030552.
  • Li, S.; Wu, X.; Zeng, J.; Zhang, J.; Zhou, N. Study on the Flavonoids of Lithocarpus Polystachyus. Chin. Trad. Herb Drugs. 2010, 41, 1967–1969.
  • Chinese Materia Medica Editorial Board, National Administration of Traditional Chinese Medicine, Chinese Materia Medica (Volume 2); Shanghai Science and Technology Press: Shanghai, China, 1999; pp 430–431.
  • Dong, H. Q.; Ning, Z. X.; Cui, Z. X.; Li, L.; Yu, L. J.; Lin, L. C. Microwave-Assisted Extraction of Flavonoids from Tender Leaves of Lithocarpus Polystachyus Rehd. Trans. Chin. Soc. Agric. Eng. 2007, 23, 213–217.
  • Zhou, W.; Shui, G.; Tian, Z. Study on Sweet Components of Hunan Sweet Tea. Food Sci. 1992, 13, 17–19.
  • Xiao, K. F.; Liao, X. F. Isolation and Structural Identification of a Flavonoid from Lithocarpus Polysachyus Rehd. Chem. Ind. For. Prod. 2006, 26, 85–87.
  • Sun, Y. S.; Li, W.; Liu, Z. B. Preparative Isolation, Quantification and Antioxidant Activity of Dihydrochalcones from Sweet Tea (Lithocarpus Polystachyus Rehd.). J. Chromatogr. B. 2015, 1002(1002), 372–378. DOI: 10.1016/j.jchromb.2015.08.045.
  • Shang, A.; Luo, M.; Gan, R. Y.; Xu, X. Y.; Xia, Y.; Guo, H.; Liu, Y.; Li, H-B. Effects of Microwave-Assisted Extraction Conditions on Antioxidant Capacity of Sweet Tea (Lithocarpus Polystachyus Rehd.). Antioxidants. 2020, 9(8), 9, 678.
  • Fan, X. L.; Zhang, Y. H.; Dong, H. Q.; Wang, B. Y.; Ji, H. Q.; Liu, X. Trilobatin Attenuates the LPS-Mediated Inflammatory Response by Suppressing the NF-κB Signaling Pathway. Food Chem. 2015, 166, 609–615. DOI: 10.1016/j.foodchem.2014.06.022.
  • Hou, S. Z.; Chen, S. X.; Huang, S.; Jiang, D. X.; Zhou, C. J.; Chen, C. Q. The Hypoglycemic Activity of Lithocarpus Polystachyus Rehd. Leaves in the Experimental Hyperglycemic Rats. J. Ethnopharmacol. 2011, 138(1), 142–149. DOI: 10.1016/j.jep.2011.08.067.
  • Wang, J. F.; Huang, Y. M.; Li, K. X.; Chen, Y. Y.; Vanegas, D.; McLamore, E. S.; Shen, Y. Leaf Extract from Lithocarpus Polystachyus Rehd. Promote Glycogen Synthesis in T2DM Mice. PLoS One. 2016, 11(11), e0166557.
  • Meng, Y.; Ding, L.; Wang, Y.; Nie, Q. T.; Xing, Y. Y., and Ren, Q. Phytochemical Identification from Lithocarpus Polystachyus by UHPLC-Q-TOF-MS and Its Protein Tyrosine Phosphatase 1B and α-Glucosidase Activities. Biomed. Chromatog. 2019, 34 (9), e4705.
  • Lin, C. Y.; Wang, L.; Wang, H.; Fang, S. T.; Zhang, Q. B.; Yang, L. Q., Guo, H., Lin, P., Zhang, J., Wang, X. Lithocarpus Polystachyus Rehd Leaf Aqueous Extract Inhibits Human Breast Cancer Growth in vitro and in vivo. Nutr. Cancer. 2014, 4(4), 613–624.
  • Hou, S. Z.; Xu, S. J.; Jiang, D. X.; Chen, S. X.; Wang, L. L.; Huang, S., Lai, X.-P. Effect of the Flavonoid Fraction of Lithocarpus Polystachyus Rehd. On Spontaneously Hypertensive and Normotensive Rats. J. Ethnopharmacol. 2012, 143(2), 441–447.
  • Zhou, C. J.; Huang, S.; Liu, J. Q.; Qiu, S. Q.; Xie, F. Y.; Song, H. P., Li, Y.-S., Hou, S.-Z., Lai, X.-P. Sweet Tea Leaves Extract Improves Leptin Resistance in Diet-Induced Obese Rats. J. Ethnopharmacol. 2013, 145(1), 386–392.
  • Li, S. H.; Zeng, J. Y.; Tan, J.; Zhang, J.; Wu, Q. F.; Wang, L. P.; Wu, X. Antioxidant and Hepatoprotective Effects of Lithocarpus Polystachyus Against Carbon Tetrachloride-Induced Injuries in Rat. Bangladesh J. Pharmacol. 2013, 8, 420–427.
  • Gao, J. M.; Xu, Y. S.; Zhang, J. Y.; Shi, J. S.; Gong, Q. H. Lithocarpus Polystachyus Rehd. Leaves Aqueous Extract Protects Against Hydrogen Peroxide-Induced SH-SY5Y Cells Injury Through Activation of Sirt3 Signaling Pathway. Int. J. Mol. Med. 2018, 42, 3485–3494.
  • Liang, J.; Chen, S. X.; Huang, S.; Wu, Y. Y.; Zhou, C. J.; Jiang, D. X., Liang, C.-Y., Yuan, H.-Q., Hou, S.-Z., Lai, X.-P. Evaluation of Toxicity Studies of Flavonoid Fraction of Lithocarpus Polystachyus Rehd in Rodents. Regul. Toxicol. Pharm. 2017, 88, 283–290. DOI: 10.1016/j.yrtph.2017.07.006.
  • Liu, C. M.; Wang, R. W.; Liu, F. Z.; Li, H. Y.; Liu, X. H. Analysis of Ingredient and the Appraisal of Security of Hunan Sweet Tea. J. Hunan Agric. Univ.: Nat. Sci. 2004, 3, 65–67.
  • Mattila, P. H.; Hellström, J.; Karhu, S.; Pihlava, J. M.; Veteläinen, M. High Variability in Flavonoid Contents and Composition Between Different North European Currant (Ribes spp.) Varieties. Food Chem. 2016, 204, 14–20. DOI: 10.1016/j.foodchem.2016.02.056.
  • He, G. X.; Pei, G.; Zhou, T. D.; Zhou, X. X. Determination of Total Flavonoids and Dihydromyricetin in Ampelopsis Grossedentala (Hand-Mazz) W.T. Wang. Chin. J. Chin. Mater. Med. 2000, 25, 423–425.
  • Li, L.; Xu, L. J.; Pen, Y.; Shi, R. B.; Xiao, P. G. Comparison of Green Tea and Four Other Kinds of Teas. Chin. J. Chin. Mater. Med. 2011, 36, 5–10.
  • Li, S. H.; Wu, X. J.; Yang, Q. D.; Chen, Y. Y.; Zhou, N. Studies on Chemical Constituents of Lithocarpus Polystachyus Rehd. Chin. J. Chin. Mater. Med. 2010, 33, 549–551.
  • Li, X.; Zhao, Y.; Hou, S. Z.; Huang, S.; Yang, W. Q.; Lai, X. P., Zeng, X. Identification of the Bioactive Components of Orally Administered Lithocarpus Polystachyus Rehd and Their Metabolites in Rats by Liquid Chromatography Coupled to LTQ Orbitrap Mass Spectrometry. J. Chromatogr. B. 2014, 962, 37–43. DOI: 10.1016/j.jchromb.2014.05.016.
  • Li, X.; Zhao, Y.; Huang, S.; Song, W. F.; Zeng, X.; Hou, S. Z., Lai, X. P. New Dihydrochalcone and Propenamide from Lithocarpus Polystachyus. Nat. Prod. Commun. 2014, 9(5), 653–654.
  • Chen, Z. H.; Zhang, R. J.; Wu, J.; Zhao, W. M. New Dihydrochalcone Glycosides from Lithocarpus Litseifolius and the Phenomenon of C–H→C–D Exchange Observed in NMR Spectra of Phenolic Components. J. Asian Nat. Prod. Res. 2009, 11(6), 508–513. DOI: 10.1080/10286020902920752.
  • Chen, Y.; Yin, L. Z.; Zhao, L.; Shu, G.; Yuan, Z. X.; Fu, H. L., Lv, C., Lin, J.-C. Optimization of the Ultrasound-Assisted Extraction of Antioxidant Phloridzin from Lithocarpus Polystachyus Rehd. Using Response Surface Methodology. J. Sep. Sci. 2017, 40(22), 4329–4337.
  • Qin, X. D.; Liu, J. K. A New Sweet Dihydrochalcone-Glucoside from Leaves of Lithocarpus Pachyphyllus (Kurz) Rehd. (Fagaceae). Z. Naturforsch C. Biosci. 2003, 58, 9–10.
  • Wang, M. K.; Liu, X.; Zhang, Z. J.; Yu, J. W.; Liu, J. J.; Wu, Y. Q. Phytochemicals and Bioactive Analysis of Different Sweet Tea (Lithocarpus Litseifolius [Hance] Chun) Varieties. J. Food Biochem. 2020, 00, e13183.
  • Ren, K.; Han, B. Q.; Lv, L. J.; Zhang, G. J.; Lei, L. J.; Bai, X. R., Xiao, P.-G., Li, M.-H. Non-Camellia Tea in China: Traditional Usage, Phytochemistry, and Pharmacology. Chin. Herb. Med. 2019, 11(2), 119–131.
  • Lei, M.; Xu, Y. S.; Xu, F.; Long, L.; Gong, Q. H.; Gao, J. M. Research Progress on Chemical Constituents and Pharmacological Effect of Lithocarpus Polystachyus (Wall.) Rehd. Pharmacol. Clin. Chin. Mater. Med. 2017, 33, 176–180.
  • Liao, X. F.; Yu, R.; Xiao, K. F. Composition of Natural Wilding Lithocarpus Polystachyus (Wall.). Rehd. Biomass. Chem. EngRehd. Biomass. Chem. Eng Rehd. Biomass. Chem. Eng. 2003, 6, 32–34.
  • Ning, R. N.; Wang, H. M.; Shen, Y.; Chen, Z. H.; Zhang, R. J.; Leng, Y., Zhao, W.-M. Lithocarpic Acids O–S, Five Homo-Cycloartane Derivatives from the Cupules of Lithocarpus Polystachyus. Bioorg. Med. Chem. Lett. 2014, 24(23), 5395–5398.
  • Sankhla, C. S. Oxidative Stress and Parkinson’s Disease. Neurol. India. 2017, 65(2), 269–270. DOI: 10.4103/0028-3886.201842.
  • Loperena, R.; Harrison, D. G. Oxidative Stress and Hypertensive Diseases. Med. Clin. N. Am. 2017, 101(1), 169–193. DOI: 10.1016/j.mcna.2016.08.004.
  • Goran, P.; Kai, K.; Daniel, P. Oxidative Stress, Epigenetics, Environment and Epidemiology of Diabetic Retinopathy. J. Diabetes Res. 2017, 2017, 1–2.
  • Li, S. H.; Wu, X. J.; Zeng, J. Y. The Anti-Oxidant Effects of the Total Flavonoid of Lithocarpus Polystachyus Rehd. In vitro and in vivo. Chin. Pharm. J. 2014, 49, 731–735.
  • Feng, T. Y.; Fang, R.; Deng, G. G.; Luo, Y. C.; Zou, K.; Chen, J. F. The Protective Effect of Phloridzin on Ccl4–induced Acute Liver Injury in Mice. Pharma. Clin. Chin. Mater. Med. 2010, 26, 47–50.
  • Shen, T. T.; Ma, N.; Li, C. L.; Yu, X.; Xue, W. S.; Wang, H. Mechanism by Which Phloridzin Protects Against High-Fat Diet-Induced Oxidative Damage in Hamster. Food Sci. 2014, 35, 221–225.
  • Gao, J. M.; Lei, M.; Liu, S.; Gong, Q. H. Protective Effects of Phloridzin Against Hydrogen Peroxide- Induced Injury in PC12 Cells. Chin. J. New Drugs Clin. Remedies. 2016, 35, 886–889.
  • Gao, J. M.; Liu, S.; Xu, F.; Liu, Y. G.; Lv, C.; Deng, Y., Shi, J., Gong, Q. Trilobatin Protects Against Oxidative Injury in Neuronal PC12 Cells Through Regulating Mitochondrial ROS Homeostasis Mediated by Ampk/nrf2/sirt3 Signaling Pathway. Front Mol. Neurosci. 2018, 11, 267. DOI: 10.3389/fnmol.2018.00267.
  • Yang, Y. C.; Lii, C. K.; Lin, A. H.; Yeh, Y. W.; Yao, H. T.; Li, C. C., Liu, K.-L., Chen, H.-W. Induction of Glutathione Synthesis and Heme Oxygenase 1 by the Flavonoids Butein and Phloretin is Mediated Through the Erk/nrf2 Pathway and Protects Against Oxidative Stress. Free Radic Biol Med. 2011, 51(11), 2073–2081.
  • Yang, Q.; Han, L.; Li, J.; Xu, H.; Liu, X. F.; Wang, X. Y., Pan, C., Lei, C., Chen, H., Lan, X. Activation of Nrf2 by Phloretin Attenuates Palmitic Acid-Induced Endothelial Cell Oxidative Stress via AMPK-Dependent Signaling. J. Agric. Food. Chem. 2019, 67(1), 120–131.
  • Huang, W. C.; Dai, Y. W.; Peng, H. L.; Kang, C. W.; Kuo, C. Y.; Liou, C. J. Phloretin Ameliorates Chemokines and ICAM-1 Expression via Blocking of the NF-κB Pathway in the TNF-α-Induced HaCat Human Keratinocytes. Int. Immunopharmacol. 2015a, 27(1), 32–37. DOI: 10.1016/j.intimp.2015.04.024.
  • Huang, W. C.; Wu, S. J.; Tu, R. S.; Lai, Y. R.; Liou, C. J. Phloretin Inhibits Interleukin-1β-Induced COX-2 and ICAM-1 Expression Through Inhibition of MAPK, Akt, and NF-κB Signaling in Human Lung Epithelial Cells. Food Funct. 2015, 6(6), 1960–1967. DOI: 10.1039/C5FO00149H.
  • Cheon, D.; Kim, J.; Jeon, D.; Shin, H. C.; Kim, Y. Target Proteins of Phloretin for Its Anti-Inflammatory and Antibacterial Activities Against Propionibacterium Acnes-Induced Skin Infection. Molecules. 2019, 24(7), 1319. DOI: 10.3390/molecules24071319.
  • Kim, J.; Durai, P.; Jeon, D.; Jung, I. D.; Lee, S. J.; Park, Y.-M., Kim, Y. Phloretin as a Potent Natural TLR2/1 Inhibitor Suppresses TLR2-Induced Inflammation. Nutrients. 2018, 10(7), 868.
  • Kumar, S.; Sinha, K.; Sharma, R.; Purohit, R.; Padwad, Y. Phloretin and Phloridzin Improve Insulin Sensitivity and Enhance Glucose Uptake by Subverting PPARγ/Cdk5 Interaction in Differentiated Adipocytes. Exp. Cell Res. 2019, 383(1), 111480. DOI: 10.1016/j.yexcr.2019.06.025.
  • Kobori, M.; Masumoto, S.; Akimoto, Y.; Oike, H. Phloridzin Reduces Blood Glucose Levels and Alters Hepatic Gene Expression in Normal Balb/c Mice. Food. Chem. Toxicol. 2012, 50(7), 2547–2553. DOI: 10.1016/j.fct.2012.04.017.
  • Shen, X.; Wang, L. B.; Zhou, N.; Gai, S. C.; Liu, X. Y.; Zhang, S. Y. Beneficial Effects of Combination Therapy of Phloretin and Metformin in Streptozotocin-Induced Diabetic Rats and Improved Insulin Sensitivity in vitro. Food Funct. 2020, 11(1), 392–403. DOI: 10.1039/C9FO01326A.
  • Sampath, C.; Sang, S. M.; Ahmedna, M. In vitro and in vivo Inhibition of Aldose Reductase and Advanced Glycation End Products by Phloretin, Epigallocatechin 3-Gallate and [6]-Gingerol. Biomed. Pharmacother. 2016, 84, 502–513. DOI: 10.1016/j.biopha.2016.09.073.
  • Osorio, H.; Bautista, R.; Rios, A.; Franco, M.; Arellano, A.; Vargas Robles, H., Romo, E., Escalante, B. Effect of Phlorizin on SGLT2 Expression in the Kidney of Diabetic Rats. J. Nephrol. 2010, 23(5), 541–546.
  • Nagata, T.; Suzuki, M.; Fukazawa, M.; Honda, K.; Yamane, M.; Yoshida, A., Azabu, H., Kitamura, H., Toyota, N., Suzuki, Y. Competitive Inhibition of SGLT2 by Tofogliflozin or Phlorizin Induces Urinary Glucose Excretion Through Extending Splay in Cynomolgus Monkeys. Am. J. Physiol. Renal Physiol. 2014, 306(12), F1520–1533.
  • Li, B. Y.; Xu, X. Y.; Gan, R. Y.; Sun, Q. C.; Meng, J. M.; Shang, A.; Mao, Q-Q.; Li, H-B. Targeting Gut Microbiota for the Prevention and Management of Diabetes Mellitus by Dietary Natural Products. Foods. 2019, 8(10), 440.
  • Mei, X. R.; Zhang, X. Y.; Wang, Z. G.; Gao, Z. Y.; Liu, G.; Hu, H. L.; Zou, L.; Li, X. Insulin Sensitivity-Enhancing Activity of Phlorizin is Associated with Lipopolysaccharide Decrease and Gut Microbiota Changes in Obese and Type 2 Diabetes (Db/db) Mice. J. Agric. Food. Chem. 2016, 64(40), 7502–7511.
  • Dong, H. Q.; Li, M.; Zhu, F.; Liu, F. L.; Huang, J. B. Inhibitory Potential of Trilobatin from Lithocarpus Polystachyus Rehd Against α-Glucosidase and α-Amylase Linked to Type 2 Diabetes. Food Chem. 2012, 130(2), 261–266. DOI: 10.1016/j.foodchem.2011.07.030.
  • Dong, H. Q.; Ning, Z. X.; Yu, L. J.; Li, L.; Lin, L. C. Anti-Hypeglycemia and Effects of Flavonoid Phloridzin from Lithocarpus Polystachyus Rehd on Diabetic Model Mice. Food Funct. 2006, 27, 714–718.
  • Shen, T. T.; Liu, S. W.; Zhao, J.; Wang, M. C.; Chang, Z. Y.; Wang, H. Phlorizin Decreases Plasma Cholesterol by Down-Regulation of Intestine NPC1L1 and HMG-CoA Reductase. Food Sci. 2014, 35, 192–196.
  • Shen, T.; Shang, Y.; Wu, Q. L.; Ren, H. W. The Protective Effect of Trilobatin Against Isoflurane- Induced Neurotoxicity in Mouse Hippocampal Neuronal HT22 Cells Involves the Nrf2/are Pathway. Toxicol. 2020, 442, 152537. DOI: 10.1016/j.tox.2020.152537.
  • Min, J.; Li, X.; Huang, K. N.; Tang, H.; Ding, X. Y.; Qi, C.; Qin, X.; Xu, Z.Phloretin Induces Apoptosis of Non- Small Cell Lung Carcinoma A549 Cells via JNK1/2 and P38 MAPK Pathways. Oncol. Rep. 2015, 34(6), 2871–2879.
  • Lu, M. Q.; Kong, Q. Z.; Xu, X. H.; Lu, H. D.; Lu, Z. X.; Yu, W., Zuo, B., Su, J., Guo, R. Evaluation of Apoptotic and Growth Inhibitory Activity of Phloretin in BGC823 Gastric Cancer Cell. Trop. J. Pharm. Res. 2015, 14(1), 27–31.
  • Wu, C. H.; Ho, Y. S.; Tsai, C. Y.; Wang, Y. J.; Tseng, H.; Wei, P. L., Lee, C.-H., Liu, R.-S., Lin, S.-Y. In vitro and in vivo Study of Phloretin-Induced Apoptosis in Human Liver Cancer Cells Involving Inhibition of Type II Glucose Transporter. Int. J. Cancer. 2009, 124(9), 2210–2219.
  • Choi, B. Y. Biochemical Basis of Anti-Cancer-Effects of Phloretin—a Natural Dihydrochalcone. Molecules. 2019, 24(2), 278. DOI: 10.3390/molecules24020278.
  • Deng, G. G.; Wang, J. Z.; Zhang, Q. Y.; He, H. B.; Wu, F. F.; Feng, T. Y., Zhou, J., Zou, K., Hattori, M. Hepatoprotective Effects of Phloridzin on Hepatic Fibrosis Induced by Carbon Tetrachloride Against Oxidative Stress-Triggered Damage and Fibrosis in Rats. Biol. Pharm. Bull. 2012, 35(7), 1118–1125.
  • Ren, D. Y.; Liu, Y. F.; Zhao, Y.; Yang, X. B. Hepatotoxicity and Endothelial Dysfunction Induced by High Choline Diet and the Protective Effects of Phloretin in Mice. Food. Chem. Toxicol. 2016, 94, 203–212. DOI: 10.1016/j.fct.2016.06.004.
  • Li, W. Y.; Li, R. Y.; Nai, Z.; Na, X. Y.; Su, X. S.; Chen, Z. D. Studies on Active Antiallergic Constituents in Lithocarpus Polystachyus (Wall) Rehd. J Yunnan Univ (Nat Sci Ed). 2001, 23, 461–463.
  • Li, W. Y.; Nai, Z.; Su, X. S.; Li, Y. S.; Chen, Z. D. Studies on Antiallergic Activity of Tea and Sweet Tea in Yunnan. J. Pharm. Pract. 2000, 18, 292–294.
  • Li, S. H.; Wu, X. J.; Xiang, X. J. Study on Activity Contents and Bacteriostasis Function of Lithocarpus Polystarch. Food Sci. Technol. 2010, 35, 211–214.
  • Kim, M. S.; Park, S. H.; Han, S. Y.; Kim, Y. H.; Lee, E. J.; Park, J. H. Y.; Kang, Y.-H. Phloretin Suppresses Thrombin- Mediated Leukocyte-Platelet-Endothelial Interactions. Mol. Nutr Food Res. 2014, 58, 698–708. DOI: 10.1002/mnfr.201300267.
  • Stangl, V.; Lorenz, M.; Ludwig, A.; Grimbo, N.; Guether, C.; Sanad, W., Ziemer, S., Martus, P., Baumann, G., Stangl, K. The Flavonoid Phloretin Suppresses Stimulated Expression of Endothelial Adhesion Molecules and Reduces Activation of Human Platelets. J. Nutr. 2005, 135(2), 172–178.
  • Liu, S. Y.; Yuan, Y. J.; Zhou, Y. J.; Zhao, M.; Chen, Y. N.; Cheng, J. Q., Lu, Y., Liu, J. Phloretin Attenuates Hyperuricemia Induced Endothelial Dysfunction Through Co-Inhibiting Inflammation and GLUT9- Mediated Uric Acid Uptake. J. Cell Mol. Med. 2017, 21(10), 2553–2562.
  • Benedetta, R.; Fabiana, P.; Ilaria, M.; Simona, F. Flavonoids and Insulin-Resistance: From Molecular Evidences to Clinical Trials. Int. J. Mol. Sci. 2019, 20(9), 2061. DOI: 10.3390/ijms20092061.
  • Wang, X. Y.; Ma, X. H.; Li, W.; Chu, Y.; Guo, J. H.; Li, S. M., Wang, J.-M., Zhang, H.-C., Zhou, S.-P., Zhu, Y.-H. Simultaneous Determination of Five Phenolic Components and Paeoniflorin in Rat Plasma by Liquid Chromatography–tandem Mass Spectrometry and Pharmacokinetic Study After Oral Administration of Cerebralcare Granule®. J. Pharm. Biomed. Anal. 2013, 86, 82–91. DOI: 10.1016/j.jpba.2013.07.042.
  • Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79(5), 727–747. DOI: 10.1093/ajcn/79.5.727.
  • Mather, A.; Pollock, C. Renal Glucose Transporters: Novel Targets for Hyperglycemia Management. Nat. Rev. Nephrol. 2010, 6(5), 307–311. DOI: 10.1038/nrneph.2010.38.
  • Crespy, V.; Aprikian, O.; Morand, C.; Besson, C.; Manach, C.; Demigne, C.; Rémésy, C. Bioavailability of Phloretin and Phloridzin in Rats. J. Nutr. 2001, 131(12), 3227–3230.
  • Wang, S. W.; Chen, J.; Jia, X.; Tam, V. H.; Hu, M. Disposition of Flavonoids via Enteric Recycling: Structural Effects and Lack of Correlations Between in vitro and in situ Metabolic Properties. Drug Metab. Dispos: Boil. Fate Chem. 2006, 34(11), 1837–1848. DOI: 10.1124/dmd.106.009910.
  • Guo, D. Y.; Dang, J. L.; Yang, H.; Fan, Y.; Cheng, J. X.; Shi, Y. J., Zhang, X., Zou, J. Simultaneous Determination of Four Flavonoids in Rat Plasma After Oral Administration of Malus Hupehensis (Pamp.) Rehd. Extracts by UPLC-MS/MS and Its Application to a Pharmacokinetics Study. J. Pharm. Biomed. Anal. 2020, 177, 112869. DOI: 10.1016/j.jpba.2019.112869.
  • Wang, T. Y.; Xiao, J.; Hou, H. P. Development of an Ultra-Fast Liquid Chromatography–tandem Mass Spectrometry Method for Simultaneous Determination of Seven Flavonoids in Rat Plasma: Application to a Comparative Pharmacokinetic Investigation of Ginkgo Biloba Extract and Single Pure Ginkgo Flavonoids After Oral Administration. J. Chromatogr. B. 2017, 1060, 173–181.
  • Xu, S. Transcriptome Profiling in Systems Vascular Medicine. Front Pharmacol. 2017, 8, 563. DOI: 10.3389/fphar.2017.00563.
  • Chen, S. J.; Cui, M. C. Systematic Understanding of the Mechanism of Salvianolic Acid a via Computational Target Fishing. Molecules. 2017, 22(4), 644. DOI: 10.3390/molecules22040644.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.