437
Views
0
CrossRef citations to date
0
Altmetric
Review

A Review on Buckwheat and Its Hypoglycemic Bioactive Components in Food Systems

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Ogurtsova, K.; da Rocha Fernandes, J. D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N. H.; Cavan, D.; Shaw, J. E.; Makaroff, L. E. IDF Diabetes Atlas: Global Estimates for the Prevalence of Diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. DOI: 10.1016/j.diabres.2017.03.024.
  • Tuo, Y.; Xiang, M. mTor: A Double-Edged Sword for Diabetes. J. Leukocyte Biol. 2019, 106(2), 385–395. DOI: 10.1002/JLB.3MR0317-095RR.
  • Priyadi, A.; Muhtadi, A.; Suwantika, A. A.; Sumiwi, S. A. An Economic Evaluation of Diabetes Mellitus Management in South East Asia. J. Adv Pharm Edu Res. 2019, 9(2), 53–74.
  • Unnikrishnan, R.; Pradeepa, R.; Joshi, S. R.; Mohan, V. Type 2 Diabetes: Demystifying the Global Epidemic. Diabetes. 2017, 66(6), 1432–1442. DOI: 10.2337/db16-0766.
  • Wu, W.; Xie, W.; Tan, Q.; Wu, L.; Zhu, S.; Zhu, H.; Qiu, J.; Hamid, N.; Zhou, S. Advance on Anti-Diabetic Effects of Protein Hydrolysates and Peptides Derived from Cereals and Pseudocereals. 3S Web Conf. 2020, 189, 02030. DOI: 10.1051/e3sconf/202018902030.
  • Pv, N. P.; Joye, I. J. Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients. 2020, 12(10), 3045.
  • Raguindin, P. F.; Adam Itodo, O.; Stoyanov, J.; Dejanovic, G. M.; Gamba, M.; Asllanaj, E.; Minder, B.; Bussler, W.; Metzger, B.; Muka, T., et al. A Systematic Review of Phytochemicals in Oat and Buckwheat. Food Chem. 2021, 338, 127982. DOI: 10.1016/j.foodchem.2020.127982.
  • Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal Grains: Nutritional Value, Health Benefits and Current Applications for the Development of Gluten-Free Foods. Food Chem. Toxicol. 2020, 137, 111178. DOI: 10.1016/j.fct.2020.111178.
  • Mir, N. A.; Riar, C. S.; Singh, S. Nutritional Constituents of Pseudo Cereals and Their Potential Use in Food Systems: A Review. Trends in Food Sci. Technol. 2018, 75, 170–180. DOI: 10.1016/j.tifs.2018.03.016.
  • Tömösközi, S., and Langó, B. Chapter 7 - Buckwheat: Its Unique Nutritional and Health-Promoting Attributes. In Gluten-Free Ancient Grains; Taylor, J.R.N.; Taylor, J.R.N., Eds.; Duxford, United Kingdom: Woodhead Publishing, 2017; pp. 161–177.
  • Pirzadah, B. T.; Malik, B.; Tahir, I.; Ul Rehman, R. Buckwheat Journey to Functional Food Sector. Current Nutr. Food Sci. 2020, 16(2), 134–141.
  • Babu, S.; Yadav, G.; Singh, R.; Avasthe, R.; Das, A.; Mohapatra, K. P.; Tahashildar, M.; Kumar, K.; Thoithoi, M.; Devi Rana, D., et al. Production Technology and Multifarious Uses of Buckwheat (Fagopyrum Spp.): A Review. Indian J. Agron. 2019, 63, 415–427.
  • Giménez-Bastida, J. A.; Piskuła, M. K.; Zieliński, H. Recent Advances in Processing and Development of Buckwheat Derived Bakery and Non-Bakery Products – a Review. Pol. J. Food Nutr. Sci. 2015, 65(1), 9–20. DOI: 10.1515/pjfns-2015-0005.
  • Rocchetti, G.; Lucini, L.; Rodriguez, J. M. L.; Barba, F. J.; Giuberti, G. Gluten-Free Flours from Cereals, Pseudocereals and Legumes: Phenolic Fingerprints and in vitro Antioxidant Properties. Food Chem. 2019, 271, 157–164.
  • Alvarez-Jubete, L.; Arendt, E. K.; Gallagher, E. Nutritive Value and Chemical Composition of Pseudocereals as Gluten-Free Ingredients. Int. J. Food Sci. Nutr. 2009, 60(sup4), 240–257. DOI: 10.1080/09637480902950597.
  • Schoenlechner, R.; Siebenhandl, S., and Berghofer, E. 7 - Pseudocereals. In Gluten-Free Cereal Products and Beverages; Arendt, E.K.; Arendt, E.K., Eds.; Academic Press: San Diego, 2008; 149–190.
  • Górecki, A. R.; Błaszczak, W.; Lewandowicz, J.; Thanh-Blicharz, J. L.; Penkacik, K. Influence of High Pressure or Autoclaving-Cooling Cycles and Pullulanase Treatment on Buckwheat Starch Properties and Resistant Starch Formation. Pol. J. Food Nutr. Sci. 2018, 68(3), 235–242. DOI: 10.1515/pjfns-2018-0001.
  • Capriles, V. D.; Coelho, K. D.; Guerra-Matias, A. C.; Arêas, J. A. G. Effects of Processing Methods on Amaranth Starch Digestibility and Predicted Glycemic Index. J. Food Sci. 2008, 73(7), H160–H164. DOI: 10.1111/j.1750-3841.2008.00869.x.
  • Zhu, Y.; Dong, L.; Huang, L.; Shi, Z.; Dong, J.; Yao, Y.; Shen, R. Effects of Oat β-Glucan, Oat Resistant Starch, and the Whole Oat Flour on Insulin Resistance, Inflammation, and Gut Microbiota in High-Fat-Diet-Induced Type 2 Diabetic Rats. J. Funct. Foods. 2020, 69, 103939. DOI: 10.1016/j.jff.2020.103939.
  • Biel, W.; Bobko, K.; Maciorowski, R. Chemical Composition and Nutritive Value of Husked and Naked Oats Grain. J. Cereal Sci. 2009, 49(3), 413–418. DOI: 10.1016/j.jcs.2009.01.009.
  • Rocchetti, G.; Chiodelli, G.; Giuberti, G.; Masoero, F.; Trevisan, M.; Lucini, L. Evaluation of Phenolic Profile and Antioxidant Capacity in Gluten-Free Flours. Food Chem. 2017, 228, 367–373. DOI: 10.1016/j.foodchem.2017.01.142.
  • Akin-Idowu, P.; Ademoyegun, O.; Olagunju, Y.; Aduloju, A.; Adebo, G. Phytochemical Content and Antioxidant Activity of Five Grain Amaranth Species. American J. Food Sci. Technol. 2017, 5, 249–255.
  • Han, Y.; Chi, J.; Zhang, M.; Zhang, R.; Fan, S.; Huang, F.; Xue, K.; Liu, L. Characterization of Saponins and Phenolic Compounds: Antioxidant Activity and Inhibitory Effects on α-Glucosidase in Different Varieties of Colored Quinoa (Chenopodium Quinoa Willd). Biosci., Biotechnol., Biochem. 2019, 83(11), 2128–2139.
  • Liu, Y.; Cai, C.; Yao, Y.; Xu, B. Alteration of Phenolic Profiles and Antioxidant Capacities of Common Buckwheat and Tartary Buckwheat Produced in China Upon Thermal Processing. J. Sci. Food Agric. 2019, 99(12), 5565–5576. DOI: 10.1002/jsfa.9825.
  • Ibrahim, M. S.; Ahmad, A.; Sohail, A.; Asad, M. J. Nutritional and Functional Characterization of Different Oat (Avena Sativa L.) Cultivars. Int. J. Food Prop. 2020, 23(1), 1373–1385.
  • Menkovska, M.; Damjanovski, D.; Levkov, V.; Gjorgovska, N.; Knezevic, D., and Nikolova, N. Content of Β–glucan in Cereals Grown by Organic and Conventional Farming. Banat’s J. Biotechnol. 2017, VIII, 39–47.
  • Tosh, S. M.; Bordenave, N. Emerging Science on Benefits of Whole Grain Oat and Barley and Their Soluble Dietary Fibers for Heart Health, Glycemic Response, and Gut Microbiota. Nutr. Rev. 2020, 78(Supplement_1), 13–20. DOI: 10.1093/nutrit/nuz085.
  • Kim, H. K.; Kim, M. J.; Cho, H. Y.; Kim, E.-K.; Shin, D. H. Antioxidative and Anti-Diabetic Effects of Amaranth (Amaranthus Esculantus) in Streptozotocin-Induced Diabetic Rats. Cell Biochem. Functon. 2006, 24(3), 195–199. DOI: 10.1002/cbf.1210.
  • Barba de la Rosa, A.; Gómez-Cardona, E.; Hernández-Domínguez, E.; Huerta-Ocampo, J.; Jiménez-Islas, H.; Díaz-Gois, A.; Velarde-Salcedo, A.; Barrera-Pacheco, A.; Goñi-Ochoa, A. Effect of Amaranth Consumption on Diabetes-Related Biomarkers in Patients with Diabetes. Diabetes, Obesity Metab. Disords. Open Access. 2017, 3, 5–10.
  • Obaroakpo, J. U.; Nan, W.; Hao, L.; Liu, L.; Zhang, S.; Lu, J.; Pang, X.; Lv, J. The Hyperglycemic Regulatory Effect of Sprouted Quinoa Yoghurt in High-Fat-Diet and Streptozotocin-Induced Type 2 Diabetic Mice via Glucose and Lipid Homeostasis. Food & Funct. 2020, 11(9), 8354–8368.
  • Ng, C. Y.; Wang, M. The Functional Ingredients of Quinoa (Chenopodium Quinoa) and Physiological Effects of Consuming Quinoa: A Review. Food Front. 2021, 2(3), 329–356.
  • Park, B. I.; Kim, J.; Lee, K.; Lim, T.; Hwang, K. T. Flavonoids in Common and Tartary Buckwheat Hull Extracts and Antioxidant Activity of the Extracts Against Lipids in Mayonnaise. J. Food Sci. Technol. 2019, 56(5), 2712–2720.
  • Wu, W.; Wang, L.; Qiu, J.; Li, Z. The Analysis of Fagopyritols from Tartary Buckwheat and Their Anti-Diabetic Effects in KK-Ay Type 2 Diabetic Mice and HepG2 Cells. J. Funct. Foods. 2018, 50, 137–146. DOI: 10.1016/j.jff.2018.09.032.
  • Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z.-G. Green and Efficient Extraction of Rutin from Tartary Buckwheat Hull by Using Natural Deep Eutectic Solvents. Food Chem. 2017, 221, 1400–1405. DOI: 10.1016/j.foodchem.2016.11.013.
  • Cho, Y. J.; Bae, I. Y.; Inglett, G. E.; Lee, S. Utilization of Tartary Buckwheat Bran as a Source of Rutin and Its Effect on the Rheological and Antioxidant Properties of Wheat-Based Products. Ind. Crops Prod. 2014, 61, 211–216. DOI: 10.1016/j.indcrop.2014.07.003.
  • Cho, Y. J.; Lee, S. Extraction of Rutin from Tartary Buckwheat Milling Fractions and Evaluation of Its Thermal Stability in an Instant Fried Noodle System. Food Chem. 2015, 176, 40–44. DOI: 10.1016/j.foodchem.2014.12.020.
  • Kalinová, J.; Dadáková, E. Varietal and Year Variation of Rutin Content in Common Buckwheat (Fagopyrum Esculentum Moench). Cereal Res. Commun. 2006, 34(4), 1315–1321.
  • Yao, Y.; Shan, F.; Bian, J.; Chen, F.; Wang, M.; Ren, G. D-Chiro-Inositol-Enriched Tartary Buckwheat Bran Extract Lowers the Blood Glucose Level in KK-Ay Mice. J. Agric. Food Chem. 2008, 56(21), 10027–10031.
  • Dziadek, K.; Kopeć, A.; Pastucha, E.; Piątkowska, E.; Leszczyńska, T.; Pisulewska, E.; Witkowicz, R.; Francik, R. Basic Chemical Composition and Bioactive Compounds Content in Selected Cultivars of Buckwheat Whole Seeds, Dehulled Seeds and Hulls. J. Cereal Sci. 2016, 69, 1–8. DOI: 10.1016/j.jcs.2016.02.004.
  • Wang, F.; Yu, G.; Zhang, Y.; Zhang, B.; Fan, J. Dipeptidyl Peptidase IV Inhibitory Peptides Derived from Oat (Avena Sativa L.), Buckwheat (Fagopyrum Esculentum), and Highland Barley (Hordeum Vulgare Trifurcatum (L.) Trofim) Proteins. J. Agric. Food Chem. 2015, 63(43), 9543–9549.
  • Tao, T.; Pan, D.; Zheng, Y. Y.; Ma, T. J. Optimization of Hydrolyzed Crude Extract from Tartary Buckwheat Protein and Analysis of Its Hypoglycemic Activity in vitro. IOP Conf. Ser: Earth and Environ. Sci. 2019, 295(3), 032065. DOI: 10.1088/1755-1315/295/3/032065.
  • Ninomiya, K.; Ina, S.; Hamada, A.; Yamaguchi, Y.; Akao, M.; Shinmachi, F.; Kumagai, H.; Kumagai, H. Suppressive Effect of the α-Amylase Inhibitor Albumin from Buckwheat (Fagopyrum Esculentum Moench) on Postprandial Hyperglycaemia. Nutr. 2018, 10, 10.
  • Zhang, D.; Wang, L.; Tan, B.; Zhang, W. Dietary Fibre Extracted from Different Types of Whole Grains and Beans: A Comparative Study. Int. J. Food Sci.Technol. 2020, 55(5), 2188–2196. DOI: 10.1111/ijfs.14472.
  • Wang, X.-T.; Zhu, Z.-Y.; Zhao, L.; Sun, H.-Q.; Meng, M.; Zhang, J.-Y.; Zhang, Y.-M. Structural Characterization and Inhibition on α-D-Glucosidase Activity of Non-Starch Polysaccharides from Fagopyrum Tartaricum. Carbohydr. Polym. 2016, 153, 679–685.
  • Zhou, Y.; Zhao, S.; Jiang, Y.; Wei, Y.; Zhou, X. Regulatory Function of Buckwheat-Resistant Starch Supplementation on Lipid Profile and Gut Microbiota in Mice Fed with a High-Fat Diet. J. Food Sci. 2019, 84(9), 2674–2681. DOI: 10.1111/1750-3841.14747.
  • Gao, L.; Xia, M.; Li, Z.; Wang, M.; Wang, P.; Yang, P.; Gao, X.; Gao, J. Common Buckwheat-Resistant Starch as a Suitable Raw Material for Food Production: A Structural and Physicochemical Investigation. Int. J. Biol. Macromol. 2020, 145, 145–153. DOI: 10.1016/j.ijbiomac.2019.12.116.
  • Shreeja, K.; Devi, S.; Suneetha, W. J., and Boga, N. Effect of Germination on Nutritional Composition of Common Buckwheat (Fagopyrum Esculentum Moench). Int. Res. J. Pure Appl. Chem. 2021, 22(1), 1–7.
  • Yu, K.; Ke, M. Y.; Li, W. H.; Zhang, S. Q.; Fang, X. C. The Impact of Soluble Dietary Fibre on Gastric Emptying, Postprandial Blood Glucose and Insulin in Patients with Type 2 Diabetes. Asia Pac. J. Clin. Nutr. 2014, 23(2), 210–218.
  • Barber, T. M.; Kabisch, S.; Pfeiffer, A. F. H.; Weickert, M. O. The Health Benefits of Dietary Fibre. Nutr. 2020, 12, 10.
  • Phillips, K. M.; Haytowitz, D. B.; Pehrsson, P. R. Implications of Two Different Methods for Analyzing Total Dietary Fiber in Foods for Food Composition Databases. J. Food Compost. Anal. 2019, 84, 103253. DOI: 10.1016/j.jfca.2019.103253.
  • Zhu, F. Dietary Fiber Polysaccharides of Amaranth, Buckwheat and Quinoa Grains: A Review of Chemical Structure, Biological Functions and Food Uses. Carbohydr. Polym. 2020, 248, 116819. DOI: 10.1016/j.carbpol.2020.116819.
  • Ninfali, P.; Panato, A.; Bortolotti, F.; Valentini, L.; Gobbi, P. Morphological Analysis of the Seeds of Three Pseudocereals by Using Light Microscopy and ESEM-EDS. Eur J. Histochem. 2020, 64, 1.
  • Lu, L.; Murphy, K.; Baik, B.-K. Genotypic Variation in Nutritional Composition of Buckwheat Groats and Husks. Cereal Chem. 2013, 90(2), 132–137.
  • Wang, J.; Hu, S.; Nie, S.; Yu, Q.; Xie, M. Reviews on Mechanisms of in vitro Antioxidant Activity of Polysaccharides. Oxid. Med. Cell. Longev. 2016, 2016, 5692852.
  • Wu, W.; Li, Z.; Qin, F.; Qiu, J. Anti-Diabetic Effects of the Soluble Dietary Fiber from Tartary Buckwheat Bran in Diabetic Mice and Their Potential Mechanisms. Food & Nutr. Res. 2021, 65. DOI: 10.29219/fnr.v65.4998.
  • den Besten, G.; Gerding, A.; van Dijk, T. H.; Ciapaite, J.; Bleeker, A.; van Eunen, K.; Havinga, R.; Groen, A. K.; Reijngoud, D.-J.; Bakker, B. M. Protection Against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1. PLoS One. 2015, 10(8), e0136364. DOI: 10.1371/journal.pone.0136364.
  • Rosado, C. P.; Rosa, V. H. C.; Martins, B. C.; Soares, A. C.; Santos, I. B.; Monteiro, E. B.; Moura-Nunes, N.; da Costa, C. A.; Mulder, A. D. R. P.; Daleprane, J. B. Resistant Starch from Green Banana (Musa Sp.) Attenuates Non-Alcoholic Fat Liver Accumulation and Increases Short-Chain Fatty Acids Production in High-Fat Diet-Induced Obesity in Mice. Int. J. Biol. Macromol. 2020, 145, 1066–1072.
  • Shtriker, M. G.; Hahn, M.; Taieb, E.; Nyska, A.; Moallem, U.; Tirosh, O.; Madar, Z. Fenugreek Galactomannan and Citrus Pectin Improve Several Parameters Associated with Glucose Metabolism and Modulate Gut Microbiota in Mice. Nutrition. 2018, 46, 134–142.e3.
  • Morrison, D. J.; Preston, T. Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes. 2016, 7(3), 189–200. DOI: 10.1080/19490976.2015.1134082.
  • Li, Q.; Wu, T.; Liu, R.; Zhang, M.; Wang, R. Soluble Dietary Fiber Reduces Trimethylamine Metabolism via Gut Microbiota and Co-Regulates Host AMPK Pathways. Molecular Nutr. Food Res. 2017, 61(12), 1700473. DOI: 10.1002/mnfr.201700473.
  • Zheng, Y.; Wang, Q.; Huang, J.; Fang, D.; Zhuang, W.; Luo, X.; Zou, X.; Zheng, B.; Cao, H. Hypoglycemic Effect of Dietary Fibers from Bamboo Shoot Shell: An in vitro and in vivo Study. Food Chem. Toxicol. 2019, 127, 120–126. DOI: 10.1016/j.fct.2019.03.008.
  • Arzami, A. N.; Ho, T. M.; Mikkonen, K. S. Valorization of Cereal By-Product Hemicelluloses: Fractionation and Purity Considerations. Food Res. Int. 2022, 151, 110818. DOI: 10.1016/j.foodres.2021.110818.
  • Liu, J.; Song, Y.; Zhao, Q.; Wang, Y.; Li, C.; Zou, L.; Hu, Y. Effects of Tartary Buckwheat Protein on Gut Microbiome and Plasma Metabolite in Rats with High-Fat Diet. Foods. 2021, 10(10), 2457. DOI: 10.3390/foods10102457.
  • Wang, J.; Jin, W.; Zhang, W.; Hou, Y.; Zhang, H.; Zhang, Q. Hypoglycemic Property of Acidic Polysaccharide Extracted from Saccharina Japonica and Its Potential Mechanism. Carbohydr. Polym. 2013, 95(1), 143–147. DOI: 10.1016/j.carbpol.2013.02.076.
  • Wang, K.-P.; Zhang, Q.-L.; Liu, Y.; Wang, J.; Cheng, Y.; Zhang, Y. Structure and Inducing Tumor Cell Apoptosis Activity of Polysaccharides Isolated from Lentinus Edodes. J. Agric. Food Chem. 2013, 61(41), 9849–9858.
  • Huda, M. N.; Lu, S.; Jahan, T.; Ding, M.; Jha, R.; Zhang, K.; Zhang, W.; Georgiev, M. I.; Park, S. U.; Zhou, M. Treasure from Garden: Bioactive Compounds of Buckwheat. Food Chem. 2021, 335, 127653. DOI: 10.1016/j.foodchem.2020.127653.
  • Jin, J.; Ohanenye, I. C., and Udenigwe, C. C. Buckwheat Proteins: Functionality, Safety, Bioactivity, and Prospects as Alternative Plant-Based Proteins in the Food Industry. Crit. Rev. Food Sci. Nutr. 2020, 62(7), 1–13.
  • Ahmed, A.; Khalid, N.; Ahmad, A.; Abbasi, N.; Latif, M.; Randhawa, M. Phytochemicals and Biofunctional Properties of Buckwheat: A Review. J. Agric. Sci. 2014, 152(3), 349–369. DOI: 10.1017/S0021859613000166.
  • Mattila, P. H.; Pihlava, J.-M.; Hellström, J.; Nurmi, M.; Eurola, M.; Mäkinen, S.; Jalava, T.; Pihlanto, A. Contents of Phytochemicals and Antinutritional Factors in Commercial Protein-Rich Plant Products. Food Qual. Saf. 2018, 2(4), 213–219.
  • Zhu, F. Buckwheat Proteins and Peptides: Biological Functions and Food Applications. Trends in Food Sci. Technol. 2021, 110, 155–167. DOI: 10.1016/j.tifs.2021.01.081.
  • Thakur, P.; Kumar, K.; Ahmed, N.; Chauhan, D.; Eain Hyder Rizvi, Q. U.; Jan, S.; Singh, T. P.; Dhaliwal, H. S. Effect of Soaking and Germination Treatments on Nutritional, Anti-Nutritional, and Bioactive Properties of Amaranth (Amaranthus Hypochondriacus L.), Quinoa (Chenopodium Quinoa L.), and Buckwheat (Fagopyrum Esculentum L.). Current Res. Food Sci. 2021, 4, 917–925. DOI: 10.1016/j.crfs.2021.11.019.
  • Liu, R.; Cheng, J.; Wu, H. Discovery of Food-Derived Dipeptidyl Peptidase IV Inhibitory Peptides: A Review. Int. J. Mol. Sci. 2019, 20(3), 463.
  • Kaur, N.; Kumar, V.; Nayak, S. K.; Wadhwa, P.; Kaur, P.; Sahu, S. K. Alpha-Amylase as Molecular Target for Treatment of Diabetes Mellitus: A Comprehensive Review. Chem. Biolog. Drug Des. 2021, 98(4), 539–560. DOI: 10.1111/cbdd.13909.
  • Hossain, U.; Das, A. K.; Ghosh, S.; Sil, P. C. An Overview on the Role of Bioactive α-Glucosidase Inhibitors in Ameliorating Diabetic Complications. Food Chem. Toxicol. 2020, 145, 111738. DOI: 10.1016/j.fct.2020.111738.
  • Lin, A.; Lee, B.-H.; Chang, W.-J. Small Intestine Mucosal α-Glucosidase: A Missing Feature of in vitro Starch Digestibility. Food Hydrocolloids. 2015, 53, 163–171.
  • Bai, C. Z.; Feng, M. L.; Hao, X. L.; Zhong, Q. M.; Tong, L. G.; Wang, Z. H. Rutin, Quercetin, and Free Amino Acid Analysis in Buckwheat (Fagopyrum) Seeds from Different Locations. Gen. Mol. Res : GMR. 2015, 14(4), 19040–19048. DOI: 10.4238/2015.December.29.11.
  • Patel, K., and Patel, D. K. Chapter 26 - the Beneficial Role of Rutin, a Naturally Occurring Flavonoid in Health Promotion and Disease Prevention: A Systematic Review and Update. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, Second Ed.; Watson, R.R.; Watson, R.R., Eds.; London, United Kingdom: Academic Press, 2019; pp. 457–479.
  • Baliga, M. S.; Saxena, A.; Kaur, K.; Kalekhan, F.; Chacko, A.; Venkatesh, P.; Fayad, R. Chapter 50 - Polyphenols in the Prevention of Ulcerative Colitis: Past, Present and Future. In Polyphenols in Human Health and Disease; Watson, R.R.; Preedy, V.R.; Zibadi, S., Eds.; Academic Press: San Diego, 2014; pp. 655–663.
  • Gunawardena, D.; Govindaraghavan, S.; Münch, G. Chapter 30 - Anti-Inflammatory Properties of Cinnamon Polyphenols and Their Monomeric Precursors. In Polyphenols in Human Health and Disease; Watson, R.R.; Preedy, V.R.; Zibadi, S., Eds.; Academic Press: San Diego, 2014; pp. 409–425.
  • Koley, H.; Howlader, D. R., and Bhaumik, U. Chapter 21 - Assessment of Antimicrobial Activity of Different Phytochemicals Against Enteric Diseases in Different Animal Models. In New Look to Phytomedicine; Ahmad Khan, M.S.; Ahmad Khan, M.S.; Ahmad Khan, M.S., Eds.; London, United Kingdom: Academic Press, 2019; pp. 563–580.
  • Nishimura, M.; Ohkawara, T.; Sato, Y.; Satoh, H.; Suzuki, T.; Ishiguro, K.; Noda, T.; Morishita, T.; Nishihira, J. Effectiveness of Rutin-Rich Tartary Buckwheat (Fagopyrum Tataricum Gaertn.) ‘Manten-Kirari’ in Body Weight Reduction Related to Its Antioxidant Properties: A Randomised, Double-Blind, Placebo-Controlled Study. J. Funct. Foods. 2016, 26, 460–469.
  • Ghorbani, A. Mechanisms of Antidiabetic Effects of Flavonoid Rutin. Biomed. Pharmacother. 2017, 96, 305–312. DOI: 10.1016/j.biopha.2017.10.001.
  • Lee, C. C.; Hsu, W. H.; Shen, S. R.; Cheng, Y. H.; Wu, S. C. Fagopyrum Tataricum (Buckwheat) Improved High-Glucose-Induced Insulin Resistance in Mouse Hepatocytes and Diabetes in Fructose-Rich Diet-Induced Mice. Exp. Diabetes Res. 2012, 2012, 375673.
  • Lee, D. G.; Jang, I. S.; Yang, K. E.; Yoon, S. J.; Baek, S.; Lee, J. Y.; Suzuki, T.; Chung, K. Y.; Woo, S. H.; Choi, J. S. Effect of Rutin from Tartary Buckwheat Sprout on Serum Glucose-Lowering in Animal Model of Type 2 Diabetes. Acta Pharm. (Zagreb, Croatia). 2016, 66(2), 297–302.
  • Lee, L.-C.; Hou, Y.-C.; Hsieh, Y.-Y.; Chen, Y.-H.; Shen, Y.-C.; Lee, I. J.; Monica Shih, M.-C.; Hou, W.-C.; Liu, H.-K. Dietary Supplementation of Rutin and Rutin-Rich Buckwheat Elevates Endogenous Glucagon-Like Peptide 1 Levels to Facilitate Glycemic Control in Type 2 Diabetic Mice. J. Funct. Foods. 2021, 85, 104653.
  • Ikeda, K.; Ishida, Y.; Ikeda, S.; Asami, Y.; Lin, R. Tartary, but Not Common, Buckwheat Inhibits α-Glucosidase Activity: Its Nutritional Implications. Fagopyrum. 2017, 34, 13–18. DOI: 10.3986/fag0002.
  • Cosme, P.; Rodríguez, A. B.; Espino, J.; Garrido, M. Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications. Antioxids. 2020, 9, 12.
  • Gullón, B.; Lú-Chau, T. A.; Moreira, M. T.; Lema, J. M.; Eibes, G. Rutin: A Review on Extraction, Identification and Purification Methods, Biological Activities and Approaches to Enhance Its Bioavailability. Trends in Food Sci. Technol. 2017, 67, 220–235. DOI: 10.1016/j.tifs.2017.07.008.
  • Acevedo-Fani, A.; Ochoa-Grimaldo, A.; Loveday, S. M.; Singh, H. Digestive Dynamics of Yoghurt Structure Impacting the Release and Bioaccessibility of the Flavonoid Rutin. Food Hydrocolloids. 2021, 111, 106215. DOI: 10.1016/j.foodhyd.2020.106215.
  • Jang, D.; Jung, Y. S.; Seong, H.; Kim, M.-S.; Rha, C.-S.; Nam, T. G.; Han, N. S.; Kim, D.-O. Stability of Enzyme-Modified Flavonoid C- and O-Glycosides from Common Buckwheat Sprout Extracts During in vitro Digestion and Colonic Fermentation. J. Agric. Food Chem. 2021, 69(20), 5764–5773.
  • Owczarczyk-Saczonek, A.; Lahuta, L. B.; Ligor, M.; Placek, W.; Górecki, R. J.; Buszewski, B. The Healing-Promoting Properties of Selected Cyclitols—a Review. Nutrients. 2018, 10, 12.
  • Suzuki, T.; Noda, T.; Morishita, T.; Ishiguro, K.; Otsuka, S.; Brunori, A. Present Status and Future Perspectives of Breeding for Buckwheat Quality. Breed. Sci. 2020, 70(1), 48–66.
  • Obendorf, R. L.; Horbowicz, M.; Ueda, T., and Steadman, K. J. Fagopyritols. Biotechnology, Fagopyritols: Occurrence, Biosynthesis, Analyses and Possible Role. 2012, 6(2), 27–36.
  • Nam, H.; Hwang, I.; Jung, H.; Seung-Hae, K.; Park, O. K., and Suh, J. Fagopyritol, a Derivative of D-Chiro-Inositol, Induces GLUT4 Translocation via Actin Filament Remodeling in L6-Glut4myc Skeletal Muscle Cells. J. Life Sci. 2013, 23, 1163–1169.
  • Hu, Y.; Zhao, Y.; Ren, D.; Guo, J.; Luo, Y.; Yang, X. Hypoglycemic and Hepatoprotective Effects of D-Chiro-Inositol-Enriched Tartary Buckwheat Extract in High Fructose-Fed Mice. Food & Funct. 2015, 6(12), 3760–3769.
  • Gabrial, S. G. N.; Shakib, M.-C.-R.; Gabrial, G. N. Effect of Pseudocereal-Based Breakfast Meals on the First and Second Meal Glucose Tolerance in Healthy and Diabetic Subjects. Open Access Maced. J. Med. Sci. 2016, 4(4), 565–573.
  • Jordan, S. D.; Könner, A. C.; Brüning, J. C. Sensing the Fuels: Glucose and Lipid Signaling in the CNS Controlling Energy Homeostasis. Cell. Mol. Life Sci. 2010, 67(19), 3255–3273. DOI: 10.1007/s00018-010-0414-7.
  • Rowland, A. F.; Fazakerley, D. J.; James, D. E. Mapping Insulin/glut4 Circuitry. Traffic. 2011, 12(6), 672–681. DOI: 10.1111/j.1600-0854.2011.01178.x.
  • Kwon, E.-B.; Kang, M.-J.; Ryu, H. W.; Lee, S.; Lee, J.-W.; Lee, M. K.; Lee, H.-S.; Lee, S. U.; Oh, S. R.; Kim, M. O. Acacetin Enhances Glucose Uptake Through Insulin-Independent GLUT4 Translocation in L6 Myotubes. Phytomed. 2020, 68, 153178.
  • Lin, A. H.; Lee, B. H.; Nichols, B. L.; Quezada-Calvillo, R.; Rose, D. R.; Naim, H. Y.; Hamaker, B. R. Starch Source Influences Dietary Glucose Generation at the Mucosal α-Glucosidase Level. J. Biol. Chem. 2012, 287(44), 36917–36921.
  • Qin, P.; Wei, A.; Zhao, D.; Yao, Y.; Yang, X.; Dun, B.; Ren, G. Low Concentration of Sodium Bicarbonate Improves the Bioactive Compound Levels and Antioxidant and α-Glucosidase Inhibitory Activities of Tartary Buckwheat Sprouts. Food Chem. 2017, 224, 124–130. DOI: 10.1016/j.foodchem.2016.12.059.
  • Thakur, P.; Kumar, K. J. J. A. E. F. T. Nutritional Importance and Processing Aspects of Pseudo-Cereals. J. Agri Eng. Food Technol. 2019, 6(2), 155–160.
  • Zieliński, H.; Honke, J.; Bączek, N.; Majkowska, A.; Wronkowska, M. Bioaccessibility of D-Chiro-Inositol from Water Biscuits Formulated from Buckwheat Flours Fermented by Lactic Acid Bacteria and Fungi. LWT. 2019, 106, 37–43. DOI: 10.1016/j.lwt.2019.02.065.
  • Baljeet, S. Y.; Ritika, B. Y.; Roshan, L. Y. Studies on Functional Properties and Incorporation of Buckwheat Flour for Biscuit Making. Int. Food Res. J. 2010, 17, 1067–1076.
  • Wang, X.; Fan, D.; Zhang, T. Effects of Hydrothermal Processing on Rutin Retention and Physicochemical Properties of Tartary Buckwheat Enriched Dough and Chinese Steamed Bread. Int. J. Food Sci. Technol. 2017, 52(10), 2180–2190.
  • Sun, X.; Li, W.; Hu, Y.; Zhou, X.; Ji, M.; Yu, D.; Fujita, K.; Tatsumi, E.; Luan, G. Comparison of Pregelatinization Methods on Physicochemical, Functional and Structural Properties of Tartary Buckwheat Flour and Noodle Quality. J. Cereal Sci. 2018, 80, 63–71. DOI: 10.1016/j.jcs.2018.01.016.
  • Sharma, P.; Gujral, H. S. Effect of Sand Roasting and Microwave Cooking on Antioxidant Activity of Barley. Food Res. Int. 2011, 44(1), 235–240. DOI: 10.1016/j.foodres.2010.10.030.
  • Stevenson, D. G.; Jane, J.-L.; Inglett, G. E. Structure and Physicochemical Properties of Starches from Sieve Fractions of Oat Flour Compared with Whole and Pin-Milled Flour. Cereal Chem. 2007, 84(6), 533–539.
  • Roy, M.; Dutta, H.; Jaganmohan, R.; Choudhury, M.; Kumar, N.; Kumar, A. Effect of Steam Parboiling and Hot Soaking Treatments on Milling Yield, Physical, Physicochemical, Bioactive and Digestibility Properties of Buckwheat (Fagopyrum Esculentum L.). J. Food Sci. Technol. 2019, 56(7), 3524–3533. DOI: 10.1007/s13197-019-03849-9.
  • Christa, K.; Soral-Śmietana, M.; Lewandowicz, G. Buckwheat Starch: Structure, Functionality and Enzyme in vitro Susceptibility Upon the Roasting Process. Int. J. Food Sci. Nutr. 2009, 60(sup4), 140–154.
  • Hung, P. V.; Maeda, T.; Morita, N. Buckwheat Starch : Structure and Characteristics a Review. Eur. J Plant Sci. Biotechnol. 2009, 3(1), 23–28.
  • Inan Eroglu, E.; Buyuktuncer, Z. The Effect of Various Cooking Methods on Resistant Starch Content of Foods. Nutr. Food Sci. 2017, 47(4), 522–533. DOI: 10.1108/NFS-10-2016-0154.
  • Liu, H.; Guo, X.; Li, Y.; Li, H.; Fan, H.; Wang, M. In vitro Digestibility and Changes in Physicochemical and Textural Properties of Tartary Buckwheat Starch Under High Hydrostatic Pressure. J. Food Eng. 2016, 189, 64–71.
  • Deng, Y.; Padilla-Zakour, O.; Zhao, Y.; Tao, S. Influences of High Hydrostatic Pressure, Microwave Heating, and Boiling on Chemical Compositions, Antinutritional Factors, Fatty Acids, Vitro Protein Digestibility, and Microstructure of Buckwheat. Food and Bioprocess Technol. 2015, 8(11), 2235–2245.
  • Chen, X.-W.; Luo, D.-Y.; Chen, Y.-J.; Wang, J.-M.; Guo, J.; Yang, X.-Q. Dry Fractionation of Surface Abrasion for Polyphenol-Enriched Buckwheat Protein Combined with Hydrothermal Treatment. Food Chem. 2019, 285, 414–422. DOI: 10.1016/j.foodchem.2019.01.182.
  • Kemppainen, K.; Rommi, K.; Holopainen, U.; Kruus, K. Steam Explosion of Brewer’s Spent Grain Improves Enzymatic Digestibility of Carbohydrates and Affects Solubility and Stability of Proteins. Appl. Biochem. Biotechnol. 2016, 180(1), 94–108. DOI: 10.1007/s12010-016-2085-9.
  • Ge, R. H.; Wang, H. Nutrient Components and Bioactive Compounds in Tartary Buckwheat Bran and Flour as Affected by Thermal Processing. Int. J. Food Prop. 2020, 23(1), 127–137. DOI: 10.1080/10942912.2020.1713151.
  • Zhang, M.; Chen, H.; Li, J.; Pei, Y.; Liang, Y. Antioxidant Properties of Tartary Buckwheat Extracts as Affected by Different Thermal Processing Methods. LWT - Food Sci. Technol. 2010, 43(1), 181–185. DOI: 10.1016/j.lwt.2009.06.020.
  • Kreft, I.; Fabjan, N.; Yasumoto, K. Rutin Content in Buckwheat (Fagopyrum Esculentum Moench) Food Materials and Products. Food Chem. 2006, 98(3), 508–512. DOI: 10.1016/j.foodchem.2005.05.081.
  • Zhang, Z.-L.; Zhou, M.-L.; Tang, Y.; Li, F.-L.; Tang, Y. X.; Shao, J.-R.; Xue, W.-T.; Wu, Y.-M. Bioactive Compounds in Functional Buckwheat Food. Food Res. Int. 2012, 49(1), 389–395.
  • Ferruzzi, M. G.; Peterson, D. G.; Singh, R. P.; Schwartz, S. J.; Freedman, M. R. Nutritional Translation Blended with Food Science: 21st Century Applications. Adv. Nutr. 2012, 3(6), 813–819. DOI: 10.3945/an.112.003202.
  • Zou, L.; Wu, D.; Ren, G.; Hu, Y.; Peng, L.; Zhao, J.; Garcia-Perez, P.; Carpena, M.; Prieto, M. A.; Cao, H., et al. Bioactive Compounds, Health Benefits, and Industrial Applications of Tartary Buckwheat (Fagopyrum Tataricum). Crit. Rev. Food Sci. Nutr. 2021, 1–17.
  • Bączek, N.; Jarmułowicz, A.; Wronkowska, M.; Haros, C. M. Assessment of the Glycaemic Index, Content of Bioactive Compounds, and Their in vitro Bioaccessibility in Oat-Buckwheat Breads. Food Chem. 2020, 330, 127199. DOI: 10.1016/j.foodchem.2020.127199.
  • Wolter, A.; Hager, A.-S.; Zannini, E.; Arendt, E. K. In vitro Starch Digestibility and Predicted Glycaemic Indexes of Buckwheat, Oat, Quinoa, Sorghum, Teff and Commercial Gluten-Free Bread. J. Cereal Sci. 2013, 58(3), 431–436.
  • Molinari, R.; Costantini, L.; Timperio, A. M.; Lelli, V.; Bonafaccia, F.; Bonafaccia, G.; Merendino, N. Tartary Buckwheat Malt as Ingredient of Gluten-Free Cookies. J. Cereal Sci. 2018, 80, 37–43. DOI: 10.1016/j.jcs.2017.11.011.
  • Bae, I. Y.; Lee, H. I.; Ko, A.; Lee, H. G. Substituting Whole Grain Flour for Wheat Flour: Impact on Cake Quality and Glycemic Index. Food Sci. Biotechnol. 2013, 22(5), 1–7. DOI: 10.1007/s10068-013-0216-4.
  • Bae, I. Y.; Choi, A. S.; Lee, H. G. Impact of Buckwheat Flavonoids on in vitro Starch Digestibility and Noodle-Making Properties. Cereal Chem. 2016, 93(3), 299–305.
  • Skrabanja, V.; Liljeberg Elmståhl, H. G. M.; Kreft, I.; Björck, I. M. E. Nutritional Properties of Starch in Buckwheat Products: Studies in vitro and in vivo. J. Agric. Food Chem. 2001, 49(1), 490–496.
  • Stringer, D. M.; Taylor, C. G.; Appah, P.; Blewett, H.; Zahradka, P. Consumption of Buckwheat Modulates the Post-Prandial Response of Selected Gastrointestinal Satiety Hormones in Individuals with Type 2 Diabetes Mellitus. Metab.: Clin. Exp. 2013, 62(7), 1021–1031. DOI: 10.1016/j.metabol.2013.01.021.
  • Zieliński, H.; Ciesarová, Z.; Kukurová, K.; Zielinska, D.; Szawara-Nowak, D.; Starowicz, M.; Wronkowska, M. Effect of Fermented and Unfermented Buckwheat Flour on Functional Properties of Gluten-Free Muffins. J. Food Sci. Technol. 2017, 54(6), 1425–1432.
  • Jia, B.; Yao, Y.; Liu, J.; Guan, W.; Brennan, C. S.; Brennan, M. A. Physical Properties and in vitro Starch Digestibility of Noodles Substituted with Tartary Buckwheat Flour. Starch - Stärke. 2019, 71(5–6), 1800314.
  • Liu, W.; Brennan, M.; Serventi, L.; Brennan, C. Buckwheat Flour Inclusion in Chinese Steamed Bread: Potential Reduction in Glycemic Response and Effects on Dough Quality. Eur. Food Res. Technol. 2017, 243(5), 727–734. DOI: 10.1007/s00217-016-2786-x.
  • Lee, D.-G.; Jang, I. S.; Yang, K. E.; Yoon, S.-J.; Baek, S.; Lee, J. Y.; Suzuki, T.; Chung, K.-Y.; Woo, S.-H.; Choi, J.-S. Effect of Rutin from Tartary Buckwheat Sprout on Serum Glucose-Lowering in Animal Model of Type 2 Diabetes. Acta Pharm. 2016, 66(2), 297–302. DOI: 10.1515/acph-2016-0021.
  • Peng, L.; Zhang, Q.; Zhang, Y.; Yao, Z.; Song, P.; Wei, L.; Zhao, G.; Yan, Z. Effect of Tartary Buckwheat, Rutin, and Quercetin on Lipid Metabolism in Rats During High Dietary Fat Intake. Food Sci. Nutr. 2019, 8(1), 199–213.
  • Lee, Y. A.; Cho, E. J.; Tanaka, T.; Yokozawa, T. Inhibitory Activities of Proanthocyanidins from Persimmon Against Oxidative Stress and Digestive Enzymes Related to Diabetes. J. Nutr. Sci. Vitaminol. 2007, 53(3), 287–292. DOI: 10.3177/jnsv.53.287.
  • Yıldız, G.; Bilgiçli, N. J. Q. A.; Crops, S. O. Foods, Utilisation of Buckwheat Flour in Leavened and Unleavened Turkish Flat Breads. Quality Assur. Saf. of Crops Foods. 2015, 7(2), 207–215.
  • Verardo, V.; Glicerina, V.; Cocci, E.; Frenich, A. G.; Romani, S.; Caboni, M. F. Determination of Free and Bound Phenolic Compounds and Their Antioxidant Activity in Buckwheat Bread Loaf, Crust and Crumb. LWT. 2018, 87, 217–224. DOI: 10.1016/j.lwt.2017.08.063.
  • Wang, L.; Ye, F.; Li, S.; Wei, F.; Chen, J.; Zhao, G. Wheat Flour Enriched with Oat β-Glucan: A Study of Hydration, Rheological and Fermentation Properties of Dough. J. Cereal Sci. 2017, 75, 143–150.
  • Giuberti, G.; Gallo, A. Reducing the Glycaemic Index and Increasing the Slowly Digestible Starch Content in Gluten-Free Cereal-Based Foods: A Review. Int. J. Food Sci Technol. 2018, 53(1), 50–60. DOI: 10.1111/ijfs.13552.
  • Di Cairano, M.; Galgano, F.; Tolve, R.; Caruso, M. C.; Condelli, N. Focus on Gluten Free Biscuits: Ingredients and Issues. Trends in Food Sci. Technol. 2018, 81, 203–212. DOI: 10.1016/j.tifs.2018.09.006.
  • Singh, V. P.; Bali, A.; Singh, N.; Jaggi, A. S. Advanced Glycation End Products and Diabetic Complications. Korean J. Physiol. Pharmacol. 2014, 18(1), 1–14.
  • Li, M.; Dhital, S.; Wei, Y. Multilevel Structure of Wheat Starch and Its Relationship to Noodle Eating Qualities. Compr. Rev. Food Sci. Food Saf. 2017, 16(5), 1042–1055. DOI: 10.1111/1541-4337.12272.
  • Jang, H.; Bae, I. Y.; Lee, H. In vitro Starch Digestibility of Noodles with Various Cereal Flours and Hydrocolloids. LWT - Food Sci. Technol. 2015, 63, 122–128.
  • Tian, Y.; Li, M.; Tang, A.; Jane, J.-L.; Dhital, S.; Guo, B. RS Content and eGi Value of Cooked Noodles (I): Effect of Cooking Methods. Foods. 2020, 9(3), 328. DOI: 10.3390/foods9030328.
  • Zhu, F. Buckwheat Starch: Structures, Properties, and Applications. Trends in Food Sci. Technol. 2016, 49, 121–135. DOI: 10.1016/j.tifs.2015.12.002.
  • Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, M. A.; Brennan, C. S. Synergistic Effect of Different Dietary Fibres in Pasta on in vitro Starch Digestion? Food Chem. 2015, 172, 245–250. DOI: 10.1016/j.foodchem.2014.09.062.
  • Takahama, U.; Tanaka, M.; Hirota, S. Chapter 13 - Buckwheat Flour and Bread. In Flour and Breads and Their Fortification in Health and Disease Prevention; Preedy, V.R.; Watson, R.R.; Patel, V.B., Eds.; Academic Press: San Diego, 2011; pp. 141–151.
  • Gao, J.; Kreft, I.; Chao, G.; Wang, Y.; Liu, X.; Wang, L.; Wang, P.; Gao, X.; Feng, B. Tartary Buckwheat (Fagopyrum Tataricum Gaertn.) Starch, a Side Product in Functional Food Production, as a Potential Source of Retrograded Starch. Food Chem. 2016, 190, 552–558.
  • Luthar, Z.; Golob, A.; Germ, M.; Vombergar, B.; Kreft, I. Tartary Buckwheat in Human Nutrition. Plants. 2021, 10, 4.
  • Kim, H.-M.; Kim, J. K.; Kang, L.-W.; Jeong, K.-J.; Jung, S. Docking and Scoring of Quercetin and Quercetin Glycosides Against ?-Amylase Receptor. Bull. Korean Chem. Soc. 2010, 31, 461–463.
  • Li, Y.; Gao, F.; Gao, F.; Shan, F.; Bian, J.; Zhao, C. Study on the Interaction Between 3 Flavonoid Compounds and α-Amylase by Fluorescence Spectroscopy and Enzymatic Kinetics. J. Food Sci. 2009, 74(3), C199–C203. DOI: 10.1111/j.1750-3841.2009.01080.x.
  • He, Q.; Lv, Y.; Yao, K. Effects of Tea Polyphenols on the Activities of α-Amylase, Pepsin, Trypsin and Lipase. Food Chem. 2007, 101(3), 1178–1182. DOI: 10.1016/j.foodchem.2006.03.020.
  • Gao, S.; Liu, H.; Sun, L.; Cao, J.; Yang, J.; Lu, M.; Wang, M. Rheological, Thermal and in vitro Digestibility Properties on Complex of Plasma Modified Tartary Buckwheat Starches with Quercetin. Food Hydrocolloids. 2021, 110, 106209. DOI: 10.1016/j.foodhyd.2020.106209.
  • Takahama, U.; Hirota, S. Fatty Acids, Epicatechin-Dimethylgallate, and Rutin Interact with Buckwheat Starch Inhibiting Its Digestion by Amylase: Implications for the Decrease in Glycemic Index by Buckwheat Flour. J. Agric. Food Chem. 2010, 58(23), 12431–12439. DOI: 10.1021/jf102313b.
  • Škrabanja, V., and Kreft, I. Chapter Thirteen - Nutritional Value of Buckwheat Proteins and Starch. In Molecular Breeding and Nutritional Aspects of Buckwheat; Zhou, M.; Zhou, M.; Zhou, M.; Zhou, M.; Zhou, M., Eds.; London, United Kingdom: Academic Press, 2016; pp. 169–176.
  • Bae, I. Y.; Choi, A.; Lee, H. Impact of Buckwheat Flavonoids on in vitro Starch Digestibility and Noodle-Making Properties. Cereal Chem. J. 2015, 93, 299–305.
  • Hooijmans, C. R.; Ritskes-Hoitinga, M. Progress in Using Systematic Reviews of Animal Studies to Improve Translational Research. PLoS Med. 2013, 10(7), e1001482. DOI: 10.1371/journal.pmed.1001482.
  • Schäfer, F.; Jeanne, J.-F. Evaluating the Effects of Food on Health in a World of Evolving Operational Challenges. Contemp Clin. Trials Commun. 2018, 12, 51–54. DOI: 10.1016/j.conctc.2018.09.001.
  • Pirzadah, T. B.; Malik, B. Pseudocereals as Super Foods of 21st Century: Recent Technological Interventions. J. Agric. Food Res. 2020, 2, 100052. DOI: 10.1016/j.jafr.2020.100052.
  • Granato, D.; Barba, F. J.; Bursać Kovačević, D.; Lorenzo, J. M.; Cruz, A. G.; Putnik, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Ann. Rev. Food Sci. Technol. 2020, 11, 93–118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.