361
Views
0
CrossRef citations to date
0
Altmetric
Review

Health Promoting and Functional Activities of Peptides from Vigna Bean and Common Bean Hydrolysates: Process to Increase Activities and Challenges

&

References

  • de Fátima Garcia, B.; de Barros, M.; de Souza Rocha, T. Bioactive Peptides from Beans with the Potential to Decrease the Risk of Developing Noncommunicable Chronic Diseases. Crit. Rev. Food Sci. Nutr. 2021, 61(12), 2003–2021. DOI: 10.1080/10408398.2020.1768047.
  • Sangsukiam, T.; Duangmal, K. A Comparative Study of Physico-Chemical Properties and Antioxidant Activity of Freeze-Dried Mung Bean (Vigna radiata) and Adzuki Bean (Vigna angularis) Sprout Hydrolysate Powders. Int J. Food Sci. Tech. 2017, 52(9), 1971–1982. DOI: 10.1111/ijfs.13469.
  • Durak, A.; Baraniak, B.; Jakubczyk, A.; Świeca, M. Biologically Active Peptides Obtained by Enzymatic Hydrolysis of Adzuki Bean Seeds. Food Chem. 2013, 141(3), 2177–2183. DOI: 10.1016/j.foodchem.2013.05.012.
  • Betancur-Ancona, D.; Sosa-Espinoza, T.; Ruiz-Ruiz, J.; Segura-Campos, M.; Chel-Guerrero, L. Enzymatic Hydrolysis of Hard-To-Cook Bean (Phaseolus Vulgaris L.) Protein Concentrates and Its Effects on Biological and Functional Properties. Int.J.food Sci.Tech. 2014, 49(1), 2–8. DOI: 10.1111/ijfs.12267.
  • Gómez, A.; Gay, C.; Tironi, V.; Victoria, A. M. Structural and Antioxidant Properties of Cowpea Protein Hydrolysates. Food Biosci. 2021, 41, 101074. DOI: 10.1016/j.fbio.2021.101074.
  • Hou, D.; Yousaf, L.; Xue, Y.; Hu, J.; Wu, J.; Hu, X.; Feng, N., and Shen, Q. Mung Bean (Vigna Radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients. 2019, 11(6), 1238. DOI: 10.3390/nu11061238.
  • Bessada, S. M. F.; Barreira, J. C. M.; Oliveira, M. B. P. P. Pulses and Food Security: Dietary Protein, Digestibility, Bioactive and Functional Properties. Trends Food Sci. Tech. 2019, 93, 53–68. DOI: 10.1016/j.tifs.2019.08.022.
  • Karami, Z.; Akbari-Adergani, B. Bioactive Food Derived Peptides: A Review on Correlation Between Structure of Bioactive Peptides and Their Functional Properties. J. Food Sci. Tech. 2019, 56(2), 535–547. DOI: 10.1007/s13197-018-3549-4.
  • Wen, C.; Zhang, J.; Zhang, H.; Duan, Y.; Ma, H. Plant Protein-Derived Antioxidant Peptides: Isolation, Identification, Mechanism of Action and Application in Food Systems: A Review. Trends Food Sci. Tech. 2020, 105, 308–322. DOI: 10.1016/j.tifs.2020.09.019.
  • Kamran, F.; Reddy, N. Bioactive Peptides from Legumes: Functional and Nutraceutical Potential. Recent Adv. Food Sci. 2018, 1, 134–149.
  • Tavano, O. L.; Berenguer-Murcia, A.; Secundo, F.; Fernandez-Lafuente, R. Biotechnological Applications of Proteases in Food Technology. Compr.Rev.food Sci.Food Saf. 2018, 17(2), 412–436. DOI: 10.1111/1541-4337.12326.
  • Mune Mune, M. A.; Minka, S. R.; Henle, T. Investigation on Antioxidant, Angiotensin Converting Enzyme and Dipeptidyl Peptidase IV Inhibitory Activity of Bambara Bean Protein Hydrolysates. Food Chem. 2018, 250, 162–169. DOI: 10.1016/j.foodchem.2018.01.001.
  • Gupta, N.; Srivastava, N.; Bhagyawant, S. S. Vicilin-A Major Storage Protein of Mungbean Exhibits Antioxidative Potential, Antiproliferative Effects and ACE Inhibitory Activity. PLoS One. 2018, 13(2), e0191265. DOI: 10.1371/journal.pone.0191265.
  • Xie, J.; Du, M.; Shen, M.; Wu, T.; Lin, L. Physico-Chemical Properties, Antioxidant Activities and Angiotensin-I Converting Enzyme Inhibitory of Protein Hydrolysates from Mung Bean (Vigna radiate). Food Chem. 2019, 270, 243–250. DOI: 10.1016/j.foodchem.2018.07.103.
  • Guerra, A. M.; Murillo, W.; Mendez, A.; J, J. Antioxidant Potential Use of Bioactive Peptides Derived from Mung Bean Hydrolysates (Vigna Radiata). Afr. J. Food Sci. 2017, 11(3), 67–73. DOI: 10.5897/AJFS2016.1511.
  • Torruco-Uco, J.; Chel-Guerrero, L.; Martínez-Ayala, A.; Dávila-Ortíz, G.; Betancur-Ancona, D. Angiotensin-I Converting Enzyme Inhibitory and Antioxidant Activities of Protein Hydrolysates from Phaseolus Lunatus and Phaseolus Vulgaris Seeds. LWT - Food Sci. Tech. 2009, 42(10), 1597–1604. DOI: 10.1016/j.lwt.2009.06.006.
  • Li, G. H.; Le, G. W.; Liu, H.; Shi, Y. H. Mung-Bean Protein Hydrolysates Obtained with Alcalase Exhibit Angiotensin I-Converting Enzyme Inhibitory Activity. Food Sci. Tech. Int. 2005, 11(4), 281–287. DOI: 10.1177/1082013205056781.
  • Chai, K. F.; Voo, A. Y. H.; Chen, W. N. Bioactive Peptides from Food Fermentation: A Comprehensive Review of Their Sources, Bioactivities, Applications, and Future Development. Compr. Rev. Food Sci. Food Saf. 2020, 19(6), 3825–3885. DOI: 10.1111/1541-4337.12651.
  • Xiao, Y.; Sun, M.; Zhang, Q.; Chen, Y.; Miao, J.; Rui, X.; Dong, M. Effects of Cordyceps Militaris (L.) Fr. Fermentation on the Nutritional, Physicochemical, Functional Properties and Angiotensin I Converting Enzyme Inhibitory Activity of Red Bean (Phaseolus angularis [Willd.] W.F. Wight.) Flour. J. Food Sci. Tech. 2018, 55(4), 1244–1255. DOI: 10.1007/s13197-018-3035-z.
  • Limón, R. I.; Peñas, E.; Torino, M. I.; Martínez-Villaluenga, C.; Dueñas, M.; Frias, J. Fermentation Enhances the Content of Bioactive Compounds in Kidney Bean Extracts. Food Chem. 2015, 172, 343–352. DOI: 10.1016/j.foodchem.2014.09.084.
  • Wu, S.; Lu, S.; Liu, J.; Yang, S.; Yan, Q.; Jiang, Z. Physicochemical Properties and Bioactivities of Rice Beans Fermented by Bacillus Amyloliquefaciens. Engineering. 2021, 7(2), 219–225. DOI: 10.1016/j.eng.2020.10.010.
  • Bao, Z.-J.; Zhao, Y.; Wang, X.-Y.; Chi, Y.-J. Effects of Degree of Hydrolysis (DH) on the Functional Properties of Egg Yolk Hydrolysate with Alcalase. J. Food Sci. Tech. 2017, 54(3), 669–678. DOI: 10.1007/s13197-017-2504-0.
  • Jamdar, S. N.; Rajalakshmi, V.; Pednekar, M. D.; Juan, F.; Yardi, V.; Sharma, A. Influence of Degree of Hydrolysis on Functional Properties, Antioxidant Activity and ACE Inhibitory Activity of Peanut Protein Hydrolysate. Food Chem. 2010, 121(1), 178–184. DOI: 10.1016/j.foodchem.2009.12.027.
  • Evangelho, J. A. D.; Vanier, N. L.; Pinto, V. Z.; Berrios, J. J. D.; Dias, A. R. G.; Zavareze, E. D. R. Black Bean (Phaseolus Vulgaris L.) Protein Hydrolysates: Physicochemical and Functional Properties. Food Chem. 2017, 214, 460–467. DOI: 10.1016/j.foodchem.2016.07.046.
  • Vioque, J.; Sánchez-Vioque, R.; Clemente, A.; Pedroche, J.; Millán, F. Partially Hydrolyzed Rapeseed Protein Isolates with Improved Functional Properties. J. Am. Oil Chem. Soc. 2000, 77(4), 447–450. DOI: 10.1007/s11746-000-0072-y.
  • Zheng, Z.; Li, J., and Liu, Y. J. F. Effects of Partial Hydrolysis on the Structural, Functional and Antioxidant Properties of Oat Protein Isolate. Food Funct . 2020, 11, 3144–3155.
  • Peighambardoust, S. H.; Karami, Z.; Pateiro, M.; Lorenzo, J. M. A Review on Health-Promoting, Biological, and Functional Aspects of Bioactive Peptides in Food Applications. Biomolecules. 2021, 11(5), 631. DOI: 10.3390/biom11050631.
  • Segura-Campos, M. R.; Espinosa-García, L.; Chel-Guerrero, L. A.; Betancur-Ancona, D. A. Effect of Enzymatic Hydrolysis on Solubility, Hydrophobicity, and In Vivo Digestibility in Cowpea (Vigna unguiculata). Int. J. Food. Prop. 2012, 15(4), 770–780. DOI: 10.1080/10942912.2010.501469.
  • Liu, F.-F.; Li, Y.-Q.; Wang, C.-Y.; Liang, Y.; Zhao, X.-Z.; He, J.-X.; Mo, H.-Z. Physicochemical, Functional and Antioxidant Properties of Mung Bean Protein Enzymatic Hydrolysates. Food Chem. 2022, 393, 133397. DOI: 10.1016/j.foodchem.2022.133397.
  • Liang, Z.; Sun, J.; Yang, S.; Wen, R.; Liu, L.; Du, P.; Li, C.; Zhang, G. Fermentation of Mung Bean Milk by Lactococcus lactis: Focus on the Physicochemical Properties, Antioxidant Capacities and Sensory Evaluation. Food Biosci. 2022, 48, 101798. DOI: 10.1016/j.fbio.2022.101798.
  • Liang, Z.; Yi, M.; Sun, J.; Zhang, T.; Wen, R.; Li, C.; Reshetnik, E. I.; Gribanova, S. L.; Liu, L.; Zhang, G. Physicochemical Properties and Volatile Profile of Mung Bean Flour Fermented by Lacticaseibacillus Casei and Lactococcus Lactis. LWT-Food Sci. Tech. 2022, 163, 113565. DOI: 10.1016/j.lwt.2022.113565.
  • Kimura, A.; Fukuda, T.; Zhang, M.; Motoyama, S.; Maruyama, N.; Utsumi, S. Comparison of Physicochemical Properties of 7S and 11S Globulins from Pea, Fava Bean, Cowpea, and French Bean with Those of Soybean—French Bean 7S Globulin Exhibits Excellent Properties. J. Agri. Food Chem. 2008, 56(21), 10273–10279. DOI: 10.1021/jf801721b.
  • Zhang, Y.; Romero, H. M. Exploring the Structure-Function Relationship of Great Northern and Navy Bean (Phaseolus Vulgaris L.) Protein Hydrolysates: A Study on the Effect of Enzymatic Hydrolysis. Int. J. Biol. Macromol. 2020, 162, 1516–1525. DOI: 10.1016/j.ijbiomac.2020.08.019.
  • Segura-Campos, M. R.; Chel-Guerrero, L. A.; Betancur-Ancona, D. A. Purification of Angiotensin I-Converting Enzyme Inhibitory Peptides from a Cowpea (Vigna unguiculata) Enzymatic Hydrolysate. Process Biochem. 2011, 46(4), 864–872. DOI: 10.1016/j.procbio.2010.12.008.
  • Luna-Vital, D.; González de Mejía, E. Peptides from Legumes with Antigastrointestinal Cancer Potential: Current Evidence for Their Molecular Mechanisms. Curr. Opin. Food Sci. 2018, 20, 13–18. DOI: 10.1016/j.cofs.2018.02.012.
  • Ajibola, C. F.; Fashakin, J. B.; Fagbemi, T. N.; Aluko, R. E. Renin and Angiotensin Converting Enzyme Inhibition with Antioxidant Properties of African Yam Bean Protein Hydrolysate and Reverse-Phase HPLC-Separated Peptide Fractions. Food. Res. Int. 2013, 52(2), 437–444. DOI: 10.1016/j.foodres.2012.12.003.
  • Castañeda-Pérez, E.; Jiménez-Morales, K.; Quintal-Novelo, C.; Moo-Puc, R.; Chel-Guerrero, L.; Betancur-Ancona, D. Enzymatic Protein Hydrolysates and Ultrafiltered Peptide Fractions from Cowpea Vigna Unguiculata L. Bean with In Vitro Antidiabetic Potential. J. Iran. Chem. Soc. 2019, 16(8), 1773–1781. DOI: 10.1007/s13738-019-01651-0.
  • Lapsongphon, N.; Yongsawatdigul, J. Production and Purification of Antioxidant Peptides from a Mungbean Meal Hydrolysate by Virgibacillus Sp. SK37 Proteinase. Food Chem. 2013, 141(2), 992–999. DOI: 10.1016/j.foodchem.2013.04.054.
  • Oseguera-Toledo, M. E.; Gonzalez de Mejia, E.; Amaya-Llano, S. L. Hard-To-Cook Bean (Phaseolus Vulgaris L.) Proteins Hydrolyzed by Alcalase and Bromelain Produced Bioactive Peptide Fractions That Inhibit Targets of Type-2 Diabetes and Oxidative Stress. Food Res. Inter. 2015, 76, 839–851. DOI: 10.1016/j.foodres.2015.07.046.
  • Ngoh, Y. Y.; Gan, C. Y. Enzyme-Assisted Extraction and Identification of Antioxidative and α-Amylase Inhibitory Peptides from Pinto Beans (Phaseolus Vulgaris Cv. Pinto). Food Chem. 2016, 190, 331–337. DOI: 10.1016/j.foodchem.2015.05.120.
  • Sinsuwan, S.; Rodtong, S.; Yongsawatdigul, J. Purification and Characterization of a Salt-Activated and Organic Solvent-Stable Heterotrimer Proteinase from Virgibacillus Sp. SK33 Isolated from Thai Fish Sauce. J. Agri. Food Chem. 2010, 58(1), 248–256. DOI: 10.1021/jf902479k.
  • Carrasco-Castilla, J.; Hernández-Álvarez, A. J.; Jiménez-Martínez, C.; Jacinto-Hernández, C.; Alaiz, M.; Girón-Calle, J.; Vioque, J.; Dávila-Ortiz, G. Antioxidant and Metal Chelating Activities of Peptide Fractions from Phaseolin and Bean Protein Hydrolysates. Food Chem. 2012, 135(3), 1789–1795. DOI: 10.1016/j.foodchem.2012.06.016.
  • Karami, Z.; Peighambardoust, S. H.; Hesari, J.; Akbari-Adergani, B.; Andreu, D. Antioxidant, Anticancer and ACE-Inhibitory Activities of Bioactive Peptides from Wheat Germ Protein Hydrolysates. Food Biosci. 2019, 32, 100450. DOI: 10.1016/j.fbio.2019.100450.
  • Zhuang, H.; Tang, N.; Yuan, Y. Purification and Identification of Antioxidant Peptides from Corn Gluten Meal. J. Funct. Foods. 2013, 5(4), 1810–1821. DOI: 10.1016/j.jff.2013.08.013.
  • Sonklin, C.; Alashi, A. M.; Laohakunjit, N., and Aluko, R. E. Functional Characterization of Mung Bean Meal Protein-Derived Antioxidant Peptides. Molecules. 2021, 26(6), 1515. DOI: 10.3390/molecules26061515.
  • Ortiz-Martinez, M.; Winkler, R.; García-Lara, S. Preventive and Therapeutic Potential of Peptides from Cereals Against Cancer. J. Proteomics. 2014, 111, 165–183. DOI: 10.1016/j.jprot.2014.03.044.
  • Li, M.; Zhang, Y.; Xia, S.; Ding, X. Finding and Isolation of Novel Peptides with Anti-Proliferation Ability of Hepatocellular Carcinoma Cells from Mung Bean Protein Hydrolysates. J. Of Funct. Foods. 2019, 62, 103557. DOI: 10.1016/j.jff.2019.103557.
  • Deng, Z.; Yang, Z., and Peng, J. Role of Bioactive Peptides Derived from Food Proteins in Programmed Cell Death to Treat Inflammatory Diseases and Cancer. Crit. Rev. Food Sci. Nutr. 2022. DOI: 10.1080/10408398.2021.1992606.
  • Li, Z.; Zhao, C.; Li, Z.; Zhao, Y.; Shan, S.; Shi, T.; Li, J. Reconstructed Mung Bean Trypsin Inhibitor Targeting Cell Surface GRP78 Induces Apoptosis and Inhibits Tumor Growth in Colorectal Cancer. Int. J. Biochem. Cell Biol. 2014, 47, 68–75. DOI: 10.1016/j.biocel.2013.11.022.
  • Luna Vital, D. A.; González de Mejía, E.; Dia, V. P.; Loarca-Piña, G. Peptides in Common Bean Fractions Inhibit Human Colorectal Cancer Cells. Food Chem. 2014, 157, 347–355. DOI: 10.1016/j.foodchem.2014.02.050.
  • Jang, A.; Jo, C.; Kang, K.-S.; Lee, M. Antimicrobial and Human Cancer Cell Cytotoxic Effect of Synthetic Angiotensin-Converting Enzyme (ACE) Inhibitory Peptides. Food Chem. 2008, 107(1), 327–336. DOI: 10.1016/j.foodchem.2007.08.036.
  • Lam, S. K.; Ng, T. B. Apoptosis of Human Breast Cancer Cells Induced by Hemagglutinin from Phaseolus Vulgaris Cv. Legumi Secchi. Food Chem. 2011, 126(2), 595–602. DOI: 10.1016/j.foodchem.2010.11.049.
  • Mahgoub, S.; Alagawany, M.; Nader, M.; Omar, S. M.; Abd El-Hack, M. E.; Swelum, A.; Elnesr, S. S.; Khafaga, A. F.; Taha, A. E.; Farag, M. R., et al. Recent Development in Bioactive Peptides from Plant and Animal Products and Their Impact on the Human Health. Food Rev. Int. 2021, 1–26. DOI:10.1080/87559129.2021.1923027.
  • Tam, J. P.; Wang, S.; Wong, K. H.; Tan, W. L. Antimicrobial Peptides from Plants. Pharmaceuticals. 2015, 8(4), 711–757. DOI: 10.3390/ph8040711.
  • Tang, S.-S.; Prodhan, Z. H.; Biswas, S. K.; Le, C.-F.; Sekaran, S. D. Antimicrobial Peptides from Different Plant Sources: Isolation, Characterisation, and Purification. Phytochem. 2018, 154, 94–105. DOI: 10.1016/j.phytochem.2018.07.002.
  • Zhu, B.; He, H.; Hou, T. A Comprehensive Review of Corn Protein-Derived Bioactive Peptides: Production, Characterization, Bioactivities, and Transport Pathways. Compr.Rev.food Sci.Food Saf. 2019, 18(1), 329–345. DOI: 10.1111/1541-4337.12411.
  • Perez Espitia, P. J.; de Fátima Ferreira Soares, N.; dos Reis Coimbra, J. S.; de Andrade, N. J.; Souza Cruz, R.; Alves Medeiros, E. A. Bioactive Peptides: Synthesis, Properties, and Applications in the Packaging and Preservation of Food. Compr. Rev. Food Sci. Food Saf. 2012, 11(2), 187–204. DOI: 10.1111/j.1541-4337.2011.00179.x.
  • Verma, A. K.; Chatli, M. K.; Mehta, N.; Kumar, P. Assessment of Physico-Chemical, Antioxidant and Antimicrobial Activity of Porcine Blood Protein Hydrolysate in Pork Emulsion Stored Under Aerobic Packaging Condition at 4±1℃$. LWT-Food Sci. Tech. 2018, 88, 71–79. DOI: 10.1016/j.lwt.2017.10.002.
  • Luna-Vital, D. A.; Mojica, L.; González de Mejía, E.; Mendoza, S.; Loarca-Piña, G. Biological Potential of Protein Hydrolysates and Peptides from Common Bean (Phaseolus Vulgaris L.): A Review. Food. Res. Int. 2015, 76, 39–50. DOI: 10.1016/j.foodres.2014.11.024.
  • Sitohy, M.; Osman, A. Antimicrobial Activity of Native and Esterified Legume Proteins Against Gram-Negative and Gram-Positive Bacteria. Food Chem. 2010, 120(1), 66–73. DOI: 10.1016/j.foodchem.2009.09.071.
  • Xue, L.; Yin, R.; Howell, K.; Zhang, P. Activity and Bioavailability of Food Protein-Derived Angiotensin-I-Converting Enzyme–inhibitory Peptides. Compr.Rev.food Sci.Food Saf. 2021, 20(2), 1150–1187. DOI: 10.1111/1541-4337.12711.
  • Wu, J.; Liao, W.; Udenigwe, C. C. Revisiting the Mechanisms of ACE Inhibitory Peptides from Food Proteins. Trends Food Sci. Tech. 2017, 69, 214–219. DOI: 10.1016/j.tifs.2017.07.011.
  • Li, G. H.; Wan, J. Z.; Le, G. W.; Shi, Y. H. Novel Angiotensin I-Converting Enzyme Inhibitory Peptides Isolated from Alcalase Hydrolysate of Mung Bean Protein. J. Pept Sci. 2006, 12(8), 509–514. DOI: 10.1002/psc.758.
  • Garcia-Mora, P.; Peñas, E.; Frias, J.; Zieliński, H.; Wiczkowski, W.; Zielińska, D.; Martínez-Villaluenga, C. High-Pressure-Assisted Enzymatic Release of Peptides and Phenolics Increases Angiotensin Converting Enzyme I Inhibitory and Antioxidant Activities of Pinto Bean Hydrolysates. J. Agric. Food. Chem. 2016, 64(8), 1730–1740. DOI: 10.1021/acs.jafc.5b06080.
  • Cheung, H. S.; Wang, F. L.; Ondetti, M. A.; Sabo, E. F.; Cushman, D. W. Binding of Peptide Substrates and Inhibitors of Angiotensin-Converting Enzyme: Importance of the COOH-Terminal Dipeptide Sequence. J. Biol. Chem. 1980, 255(2), 401–407. DOI: 10.1016/S0021-9258(19)86187-2.
  • Rui, X.; Boye, J. I.; Simpson, B. K.; Prasher, S. O. Purification and Characterization of Angiotensin I-Converting Enzyme Inhibitory Peptides of Small Red Bean (Phaseolus vulgaris) Hydrolysates. J. Funct. Foods. 2013, 5(3), 1116–1124. DOI: 10.1016/j.jff.2013.03.008.
  • Barati, M.; Javanmardi, F.; Mousavi Jazayeri, S. M. H.; Jabbari, M.; Rahmani, J.; Barati, F.; Nickho, H.; Davoodi, S. H.; Roshanravan, N.; Mousavi Khaneghah, A. Techniques, Perspectives, and Challenges of Bioactive Peptide Generation: A Comprehensive Systematic Review. Compr.Rev.food Sci. Food Saf. 2020, 19(4), 1488–1520. DOI: 10.1111/1541-4337.12578.
  • Acquah, C.; Dzuvor, C. K. O.; Tosh, S., and Agyei, D. Anti-Diabetic Effects of Bioactive Peptides: Recent Advances and Clinical Implications. Crit. Rev. Food Sci. Nutr. 2022, 62, 2158–2171.
  • de Souza Rocha, T.; Hernandez, L. M. R.; Chang, Y. K.; de Mejía, E. G. Impact of Germination and Enzymatic Hydrolysis of Cowpea Bean (Vigna unguiculata) on the Generation of Peptides Capable of Inhibiting Dipeptidyl Peptidase IV. Food. Res. Int. 2014, 64, 799–809. DOI: 10.1016/j.foodres.2014.08.016.
  • Kehinde, B. A.; Sharma, P. Recently Isolated Antidiabetic Hydrolysates and Peptides from Multiple Food Sources: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60(2), 322–340.
  • Power, O.; Nongonierma, A. B.; Jakeman, P.; FitzGerald, R. J. Food Protein Hydrolysates as a Source of Dipeptidyl Peptidase IV Inhibitory Peptides for the Management of Type 2 Diabetes. Proc. Nutr. Soc. 2014, 73(1), 34–46. DOI: 10.1017/S0029665113003601.
  • Mojica, L.; Chen, K.; de Mejía, E. G. Impact of Commercial Precooking of Common Bean (Phaseolus vulgaris) on the Generation of Peptides, After Pepsin–pancreatin Hydrolysis, Capable to Inhibit Dipeptidyl Peptidase-IV. J. Food Sci. 2015, 80(1), H188–H198. DOI: 10.1111/1750-3841.12726.
  • Sonklin, C.; Alashi, M. A.; Laohakunjit, N.; Kerdchoechuen, O.; Aluko, R. E. Identification of Antihypertensive Peptides from Mung Bean Protein Hydrolysate and Their Effects in Spontaneously Hypertensive Rats. J. Funct. Foods. 2020, 64, 103635. DOI: 10.1016/j.jff.2019.103635.
  • Mj, B.; Fo, U.; Uruakpa, F. O. In Influence of Cowpea (Vigna unguiculata) Peptides on Insulin Resistance. J. Nutr. Health. Food.Sci. 2015, 3, 1–3.
  • Escobedo, A.; Rivera-León, E. A.; Luévano-Contreras, C.; Urías-Silvas, J. E.; Luna-Vital, D. A.; Morales-Hernández, N.; Mojica, L. Common Bean Baked Snack Consumption Reduces Apolipoprotein B-100 Levels: A Randomized Crossover Trial. Nutrients. 2021, 13(11), 3898. DOI: 10.3390/nu13113898.
  • Ariza-Ortega, T. D. J.; Zenón-Briones, E. Y.; Castrejón-Flores, J. L.; Yáñez-Fernández, J.; Gómez-Gómez, Y. D. L. M.; Oliver-Salvador, M. D. C. Angiotensin-I-Converting Enzyme Inhibitory, Antimicrobial, and Antioxidant Effect of Bioactive Peptides Obtained from Different Varieties of Common Beans (Phaseolus Vulgaris L.) with In Vivo Antihypertensive Activity in Spontaneously Hypertensive Rats. Eur. Food Res. Tech. 2014, 239(5), 785–794. DOI: 10.1007/s00217-014-2271-3.
  • Li, G.; Shi, Y.-H.; Liu, H.; Le, G. J. E. F. R. Antihypertensive Effect of Alcalase Generated Mung Bean Protein Hydrolysates in Spontaneously Hypertensive Rats. Eur.Food Res. Tech. 2006, 222(5–6), 733–736. DOI: 10.1007/s00217-005-0147-2.
  • Rui, X.; Boye, J. I.; Simpson, B. K.; Prasher, S. O. Angiotensin I-Converting Enzyme Inhibitory Properties of Phaseolus Vulgaris Bean Hydrolysates: Effects of Different Thermal and Enzymatic Digestion Treatments. Food. Res. Int. 2012, 49(2), 739–746. DOI: 10.1016/j.foodres.2012.09.025.
  • Tagliazucchi, D.; Martini, S.; Bellesia, A.; Conte, A. Identification of ACE-Inhibitory Peptides from Phaseolus Vulgaris After In Vitro Gastrointestinal Digestion. Int. J. Food Sci. Nutr. 2015, 66(7), 774–782. DOI: 10.3109/09637486.2015.1088940.
  • Murai, N.; Kemp, J. D.; Sutton, D. W.; Murray, M. G.; Slightom, J. L.; Merlo, D. J.; Reichert, N. A.; Sengupta-Gopalan, C.; Stock, C. A.; Barker, R. F., et al. Phaseolin Gene from Bean is Expressed After Transfer to Sunflower via Tumor-Inducing Plasmid Vectors. Science. 1983, 222(4623), 476–482. DOI: 10.1126/science.222.4623.476.
  • Bustos, M. M.; Kalkan, F. A.; VandenBosch, K. A.; Hall, T. C. Differential Accumulation of Four Phaseolin Glycoforms in Transgenic Tobacco. Plant Mol. Biol. 1991, 16(3), 381–395. DOI: 10.1007/BF00023990.
  • Bagga, S.; Sutton, D.; Kemp, J. D.; Sengupta-Gopalan, C. Constitutive Expression of the Beta-Phaseolin Gene in Different Tissues of Transgenic Alfalfa Does Not Ensure Phaseolin Accumulation in Non-Seed Tissue. Plant Mol. Biol. 1992, 19(6), 951–958. DOI: 10.1007/BF00040527.
  • Zheng, Z.; Sumi, K.; Tanaka, K.; Murai, N. The Bean Seed Storage Protein [Beta]-Phaseolin is Synthesized, Processed, and Accumulated in the Vacuolar Type-II Protein Bodies of Transgenic Rice Endosperm. Plant Physiol. 1995, 109(3), 777–786. DOI: 10.1104/pp.109.3.777.
  • Montoya, C. A.; Lallès, J.-P.; Beebe, S.; Leterme, P. Phaseolin Diversity as a Possible Strategy to Improve the Nutritional Value of Common Beans (Phaseolus vulgaris). Food. Res. Int. 2010, 43(2), 443–449. DOI: 10.1016/j.foodres.2009.09.040.
  • Dyer, J. M.; Nelson, J. W.; Murai, N. Strategies for Selecting Mutation Sites for Methionine Enhancement in the Bean Seed Storage Protein Phaseolin. J. Protein Chem. 1993, 12(5), 545–560. DOI: 10.1007/BF01025119.
  • Bellucci, M.; De Marchis, F.; Nicoletti, I.; Arcioni, S. Zeolin is a Recombinant Storage Protein with Different Solubility and Stability Properties According to Its Localization in the Endoplasmic Reticulum or in the Chloroplast. J. Biotechnol. 2007, 131(2), 97–105. DOI: 10.1016/j.jbiotec.2007.06.004.
  • Khattab, R. Y.; Arntfield, S. D.; Nyachoti, C. M. Nutritional Quality of Legume Seeds as Affected by Some Physical Treatments, Part 1: Protein Quality Evaluation. LWT - Food Sci. Tech. 2009, 42(6), 1107–1112. DOI: 10.1016/j.lwt.2009.02.008.
  • Xu, B.; Chang, S. K. C. Total Phenolic, Phenolic Acid, Anthocyanin, Flavan-3-Ol, and Flavonol Profiles and Antioxidant Properties of Pinto and Black Beans (Phaseolus Vulgaris L.) as Affected by Thermal Processing. J. Agri. Food Chem. 2009, 57(11), 4754–4764. DOI: 10.1021/jf900695s.
  • Akıllıoğlu, H. G.; Karakaya, S. Effects of Heat Treatment and In Vitro Digestion on the Angiotensin Converting Enzyme Inhibitory Activity of Some Legume Species. Eur. Food Res. Tech. 2009, 229(6), 915–921. DOI: 10.1007/s00217-009-1133-x.
  • de Souza Rocha, T.; Hernandez, L. M. R.; Mojica, L.; Johnson, M. H.; Chang, Y. K.; González de Mejía, E. Germination of Phaseolus Vulgaris and Alcalase Hydrolysis of Its Proteins Produced Bioactive Peptides Capable of Improving Markers Related to Type-2 Diabetes In Vitro. Food. Res. Int. 2015, 76, 150–159. DOI: 10.1016/j.foodres.2015.04.041.
  • Sritongtae, B.; Sangsukiam, T.; Morgan, M. R. A.; Duangmal, K. Effect of Acid Pretreatment and the Germination Period on the Composition and Antioxidant Activity of Rice Bean (Vigna umbellata). Food Chem. 2017, 227, 280–288. DOI: 10.1016/j.foodchem.2017.01.103.
  • Maleki, S.; Razavi, S. H. Pulses’ Germination and Fermentation: Two Bioprocessing Against Hypertension by Releasing ACE Inhibitory Peptides. Crit. Rev. Food Sci. Nutr. 2021, 61(17), 2876–2893. DOI: 10.1080/10408398.2020.1789551.
  • Yu, W.; Zhang, G.; Wang, W.; Jiang, C.; Cao, L. Identification and Comparison of Proteomic and Peptide Profiles of Mung Bean Seeds and Sprouts. BMC Chem. 2020, 14(1), 46. DOI: 10.1186/s13065-020-00700-7.
  • Mamilla, R. K.; Mishra, V. K. Effect of Germination on Antioxidant and ACE Inhibitory Activities of Legumes. LWT-Food Sci. Tech. 2017, 75, 51–58. DOI: 10.1016/j.lwt.2016.08.036.
  • Van Hung, P.; Hoang Yen, N. T.; Lan Phi, N. T.; Ha Tien, N. P.; Thu Trung, N. T. Nutritional Composition, Enzyme Activities and Bioactive Compounds of Mung Bean (Vigna Radiata L.) Germinated Under Dark and Light Conditions. LWT-Food Sci. Tech. 2020, 133, 110100. DOI: 10.1016/j.lwt.2020.110100.
  • Peyrano, F.; de Lamballerie, M.; Avanza, M. V.; Speroni, F. Gelation of Cowpea Proteins Induced by High Hydrostatic Pressure. Food Hydrocoll. 2021, 111, 106191. DOI: 10.1016/j.foodhyd.2020.106191.
  • Bandyopadhyay, M.; Guha, S.; Naldrett, M. J.; Alvarez, S.; Majumder, K. Evaluating the Effect of High-Pressure Processing in Contrast to Boiling on the Antioxidant Activity from Alcalase Hydrolysate of Great Northern Beans (Phaseolus vulgaris). J. Food Biochem. 2021, 45(12), e14004. DOI: 10.1111/jfbc.14004.
  • Gharibzahedi, S. M. T.; Smith, B. Effects of High Hydrostatic Pressure on the Quality and Functionality of Protein Isolates, Concentrates, and Hydrolysates Derived from Pulse Legumes: A Review. Trends Food Sci. Tech. 2021, 107, 466–479. DOI: 10.1016/j.tifs.2020.11.016.
  • Izadi, A.; Khedmat, L.; Mojtahedi, S. Y. Nutritional and Therapeutic Perspectives of Camel Milk and Its Protein Hydrolysates: A Review on Versatile Biofunctional Properties. J. Funct. Foods. 2019, 60, 103441. DOI: 10.1016/j.jff.2019.103441.
  • Al-Ruwaih, N.; Ahmed, J.; Mulla, M. F.; Arfat, Y. A. High-Pressure Assisted Enzymatic Proteolysis of Kidney Beans Protein Isolates and Characterization of Hydrolysates by Functional, Structural, Rheological and Antioxidant Properties. LWT-Food Sci.Tech. 2019, 100, 231–236. DOI: 10.1016/j.lwt.2018.10.074.
  • Umego, E. C.; He, R.; Ren, W.; Xu, H.; Ma, H. Ultrasonic-Assisted Enzymolysis: Principle and Applications. Process Biochem. 2021, 100, 59–68. DOI: 10.1016/j.procbio.2020.09.033.
  • Zou, Y.; Yang, H.; Li, P. P.; Zhang, M. H.; Zhang, X. X.; Xu, W. M.; Wang, D. Y. Effect of Different Time of Ultrasound Treatment on Physicochemical, Thermal, and Antioxidant Properties of Chicken Plasma Protein. Poult. Sci. 2019, 98(4), 1925–1933. DOI: 10.3382/ps/pey502.
  • Li, S.; Nan, J.; Gao, F. Hydraulic Characteristics and Performance Modeling of a Modified Anaerobic Baffled Reactor (MABR). Chem. Eng. J. 2016, 284, 85–92. DOI: 10.1016/j.cej.2015.08.129.
  • Zhang, Y.; Wang, B.; Zhou, C.; Atungulu, G. G.; Xu, K.; Ma, H.; Ye, X.; Abdualrahman, M. A. Y. Surface Topography, Nano-Mechanics and Secondary Structure of Wheat Gluten Pretreated by Alternate Dual-Frequency Ultrasound and the Correlation to Enzymolysis. Ultrason. Sonochem. 2016, 31, 267–275. DOI: 10.1016/j.ultsonch.2015.11.010.
  • Liu, F.-F.; Li, Y.-Q.; Sun, G.-J.; Wang, C.-Y.; Liang, Y.; Zhao, X.-Z.; He, J.-X.; Mo, H.-Z. Influence of Ultrasound Treatment on the Physicochemical and Antioxidant Properties of Mung Bean Protein Hydrolysate. Ultrason. Sonochem. 2022, 84, 105964. DOI: 10.1016/j.ultsonch.2022.105964.
  • Zhang, L.; Pan, Z.; Shen, K.; Cai, X.; Zheng, B.; Miao, S. Influence of Ultrasound-Assisted Alkali Treatment on the Structural Properties and Functionalities of Rice Protein. J.Cereal Sci. 2018, 79, 204–209. DOI: 10.1016/j.jcs.2017.10.013.
  • Kang, D.-C.; Zou, Y.-H.; Cheng, Y.-P.; Xing, L.-J.; Zhou, G.-H.; Zhang, W.-G. Effects of Power Ultrasound on Oxidation and Structure of Beef Proteins During Curing Processing. Ultrason. Sonochem. 2016, 33, 47–53. DOI: 10.1016/j.ultsonch.2016.04.024.
  • Ashraf, J.; Liu, L.; Awais, M.; Xiao, T.; Wang, L.; Zhou, X.; Tong, L.-T.; Zhou, S. Effect of Thermosonication Pre-Treatment on Mung Bean (Vigna radiata) and White Kidney Bean (Phaseolus vulgaris) Proteins: Enzymatic Hydrolysis, Cholesterol Lowering Activity and Structural Characterization. Ultrason. Sonochem. 2020, 66, 105121. DOI: 10.1016/j.ultsonch.2020.105121.
  • Wang, Y.-Y.; Wang, C.-Y.; Wang, S.-T.; Li, Y.-Q.; Mo, H.-Z.; He, J.-X. Physicochemical Properties and Antioxidant Activities of Tree Peony (Paeonia Suffruticosa Andr.) Seed Protein Hydrolysates Obtained with Different Proteases. Food Chem. 2021, 345, 128765. DOI: 10.1016/j.foodchem.2020.128765.
  • Loi, C. C.; Eyres, G. T.; Birch, E. J. Effect of Milk Protein Composition on Physicochemical Properties, Creaming Stability and Volatile Profile of a Protein-Stabilised Oil-In-Water Emulsion. Food. Res. Int. 2019, 120, 83–91. DOI: 10.1016/j.foodres.2019.02.026.
  • Palman, Y.; De Leo, R.; Pulvirenti, A.; Green, S. J.; Hayouka, Z. Antimicrobial Peptide Cocktail Activity in Minced Turkey Meat. Food Microb. 2020, 92, 103580. DOI: 10.1016/j.fm.2020.103580.
  • Lafarga, T.; Hayes, M. Bioactive Protein Hydrolysates in the Functional Food Ingredient Industry: Overcoming Current Challenges. Food Rev. Int. 2017, 33(3), 217–246. DOI: 10.1080/87559129.2016.1175013.
  • Jie, Y.; Zhao, H.; Sun, X.; Lv, X.; Zhang, Z.; Zhang, B. Isolation of Antioxidative Peptide from the Protein Hydrolysate of Caragana Ambigua Seeds and Its Mechanism for Retarding Lipid Auto-Oxidation. J.Sci.food Agric. 2019, 99(6), 3078–3085. DOI: 10.1002/jsfa.9521.
  • Shen, Y.; Hu, R.; Li, Y. Antioxidant and Emulsifying Activities of Corn Gluten Meal Hydrolysates in Oil-In-Water Emulsions. J. Am.Oil. Chem. Soc. 2020, 97(2), 175–185. DOI: 10.1002/aocs.12286.
  • Yuan, H.; Gong, J.; Tang, K.; Huang, J.; Xiao, G.; Lv, J. Milk Oligopeptide Inhibition of (α)-Tocopherol Fortified Linoleic Acid Oxidation. Int. J. Food. Prop. 2019, 22(1), 1576–1593. DOI: 10.1080/10942912.2019.1657888.
  • Rivero-Pino, F.; Espejo-Carpio, F. J.; Guadix, E. M. Evaluation of the Bioactive Potential of Foods Fortified with Fish Protein Hydrolysates. Food. Res. Int. 2020, 137, 109572. DOI: 10.1016/j.foodres.2020.109572.
  • Dang, X.; Zheng, X.; Wang, Y.; Wang, L.; Ye, L.; Jiang, J. Antimicrobial Peptides from the Edible Insect Musca Domestica and Their Preservation Effect on Chilled Pork. J. Food Process Preserv. 2020, 44(3), 3. DOI: 10.1111/jfpp.14369.
  • Pane, K.; Durante, L.; Crescenzi, O.; Cafaro, V.; Pizzo, E.; Varcamonti, M.; Zanfardino, A.; Izzo, V.; Di Donato, A.; Notomista, E. Antimicrobial Potency of Cationic Antimicrobial Peptides Can Be Predicted from Their Amino Acid Composition: Application to the Detection of “Cryptic” Antimicrobial Peptides. J. Theor. Biol. 2017, 419, 254–265. DOI: 10.1016/j.jtbi.2017.02.012.
  • Saad, A. M.; Sitohy, M. Z.; Ahmed, A. I.; Rabie, N. A.; Amin, S. A.; Aboelenin, S. M.; Soliman, M. M.; El-Saadony, M. T. Biochemical and Functional Characterization of Kidney Bean Protein Alcalase-Hydrolysates and Their Preservative Action on Stored Chicken Meat. Molecules. 2021, 26(15), 4690. DOI: 10.3390/molecules26154690.
  • Sarker, A.; Chakraborty, S.; Roy, M. Dark Red Kidney Bean (Phaseolus Vulgaris L.) Protein Hydrolysates Inhibit the Growth of Oxidizing Substances in Plain Yogurt. J. Agric. Food Res. 2020, 2, 100062. DOI: 10.1016/j.jafr.2020.100062.
  • Yang, M.; Li, N.; Tong, L.; Fan, B.; Wang, L.-L.; Wang, F.; Liu, L. Comparison of Physicochemical Properties and Volatile Flavor Compounds of Pea Protein and Mung Bean Protein-Based Yogurt. LWT - Food Sci. Tech. 2021, 152, 112390. DOI: 10.1016/j.lwt.2021.112390.
  • Schaafsma, G. Safety of Protein Hydrolysates, Fractions Thereof and Bioactive Peptides in Human Nutrition. Eur. J. Clin. Nutr. 2009, 63(10), 1161–1168. DOI: 10.1038/ejcn.2009.56.
  • Rui, X.; Wen, D.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Enrichment of ACE Inhibitory Peptides in Navy Bean (Phaseolus vulgaris) Using Lactic Acid Bacteria. Food Funct. 2015, 6(2), 622–629. DOI: 10.1039/C4FO00730A.
  • Wu, H.; Rui, X.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Mung Bean (Vigna radiata) as Probiotic Food Through Fermentation with Lactobacillus Plantarum B1-6. LWT - Food Sci. Tech. 2015, 63(1), 445–451. DOI: 10.1016/j.lwt.2015.03.011.
  • Wani, I. A.; Sogi, D. S.; Gill, B. S. Physico-Chemical and Functional Properties of Native and Hydrolysed Protein Isolates from Indian Black Gram (Phaseolus Mungo L.) Cultivars. LWT - Food Sci. Tech. 2015, 60(2, 1), 848–854. DOI: 10.1016/j.lwt.2014.10.060.
  • Los, F. G. B.; Demiate, I. M.; Prestes Dornelles, R. C.; Lamsal, B. Enzymatic Hydrolysis of Carioca Bean (Phaseolus Vulgaris L.) Protein as an Alternative to Commercially Rejected Grains. LWT-Food Sci. Tech. 2020, 125, 109191. DOI: 10.1016/j.lwt.2020.109191.
  • Wani, I. A.; Sogi, D. S.; Shivhare, U. S.; Gill, B. S. Physico-Chemical and Functional Properties of Native and Hydrolyzed Kidney Bean (Phaseolus Vulgaris L.) Protein Isolates. Food. Res. Int. 2015, 76, 11–18. DOI: 10.1016/j.foodres.2014.08.027.
  • Mune Mune, M. A.; Minka, S. R. Production and Characterization of Cowpea Protein Hydrolysate with Optimum Nitrogen Solubility by Enzymatic Hydrolysis Using Pepsin. J.Sci.food Agri. 2017, 97(8), 2561–2568. DOI: 10.1002/jsfa.8076.
  • Kusumah, J.; Real Hernandez, L. M.; Gonzalez de Mejia, E. Antioxidant Potential of Mung Bean (Vigna radiata) Albumin Peptides Produced by Enzymatic Hydrolysis Analyzed by Biochemical and In Silico Methods. Foods. 2020, 9, 9. DOI: 10.3390/foods9091241.
  • Wong, J. H.; Ip, D. C. W.; Ng, T. B.; Chan, Y. S.; Fang, F.; Pan, W. L. A Defensin-Like Peptide from Phaseolus Vulgaris Cv. ‘King Pole Bean’. Food Chem. 2012, 135(2), 408–414. DOI: 10.1016/j.foodchem.2012.04.119.
  • Wu, X.; Sun, J.; Zhang, G.; Wang, H.; Ng, T. B. An Antifungal Defensin from Phaseolus Vulgaris Cv. ‘Cloud Bean’. Phytomedicine. 2011, 18(2), 104–109. DOI: 10.1016/j.phymed.2010.06.010.
  • Wong, J. H.; Ng, T. B. Sesquin, a Potent Defensin-Like Antimicrobial Peptide from Ground Beans with Inhibitory Activities Toward Tumor Cells and HIV-1 Reverse Transcriptase. Peptides. 2005, 26(7), 1120–1126. DOI: 10.1016/j.peptides.2005.01.003.
  • Mojica, L.; Luna-Vital, D. A.; González de Mejía, E. Characterization of Peptides from Common Bean Protein Isolates and Their Potential to Inhibit Markers of Type-2 Diabetes, Hypertension and Oxidative Stress. J. Sci. Food Agri. 2017, 97(8), 2401–2410. DOI: 10.1002/jsfa.8053.
  • Mojica, L.; de Mejía, E. G. Optimization of Enzymatic Production of Anti-Diabetic Peptides from Black Bean (Phaseolus Vulgaris L.) Proteins, Their Characterization and Biological Potential. Food Funct. 2016, 7(2), 713–727. DOI: 10.1039/C5FO01204J.
  • López-Barrios, L.; Antunes-Ricardo, M.; Gutiérrez-Uribe, J. A. Changes in Antioxidant and Antiinflammatory Activity of Black Bean (Phaseolus Vulgaris L.) Protein Isolates Due to Germination and Enzymatic Digestion. Food Chem. 2016, 203, 417–424. DOI: 10.1016/j.foodchem.2016.02.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.