521
Views
1
CrossRef citations to date
0
Altmetric
Review

Recent Advances in the Pharmacological Actions of Apigenin, Its Complexes, and Its Derivatives

, , , & ORCID Icon

References

  • Ferner, R.; Pucci, M. Adverse Drug Reactions. Medicine (United Kingdom). 2020, 443–449. DOI: 10.1016/j.mpmed.2020.04.010.
  • Perucca, P.; Gilliam, F. G. Adverse Effects of Antiepileptic Drugs. Lancet Neurol. 2012, 11(9), 792–802. DOI: 10.1016/S1474-4422(12)70153-9.
  • Edwards, I. R.; Aronson, J. K. Adverse Drug Reactions: Definitions, Diagnosis, and Management. Lancet. 2000, 356(9237), 1255–1259. DOI: 10.1016/S0140-6736(00)02799-9.
  • Kong, L. L.; Wang, J. H.; Du, G. H. Morphine. In Natural Small Molecule Drugs from Plants; 2018; pp 295–302. DOI: 10.1007/978-981-10-8022-7_49.
  • Wen, L.; Yuan, Y. H.; Kong, L. L.; Chen, N. H. Quinine. In Natural Small Molecule Drugs from Plants; 2018; pp 613–618. DOI: 10.1007/978-981-10-8022-7_100.
  • Chen, Y.; Sun, L.; Du, G. H. Digoxin. In Natural Small Molecule Drugs from Plants; 2018; pp 49–58. DOI:10.1007/978-981-10-8022-7_8.
  • Kang, D.; Liu, A. L.; Wang, J. H.; Du, G. H. Camptothecin. In Natural Small Molecule Drugs from Plants; 2018; pp 491–496. DOI: 10.1007/978-981-10-8022-7_81.
  • Agrawal, K. Vincristine. In xPharm: The Comprehensive Pharmacology Reference; 2007; pp 1–4. DOI: 10.1016/B978-008055232-3.62853-3.
  • Lahlou, M. The Success of Natural Products in Drug Discovery. Pharmacol. Pharm. 2013, 4(03), 17–31. DOI: 10.4236/pp.2013.43a003.
  • Desborough, M. J. R.; Keeling, D. M. The Aspirin Story – from Willow to Wonder Drug. Br. J. Haematol. 2017, 177(5), 674–683. DOI: 10.1111/bjh.14520.
  • Dhami, N. Trends in Pharmacognosy: A Modern Science of Natural Medicines. J. Herb. Med. 2013, 3(4), 123–131. DOI: 10.1016/j.hermed.2013.06.001.
  • Sarker, S. D.; Nahar, L. An Introduction to Natural Products Isolation. Methods Mol. Biol. 2012, 864, 1–25. DOI: 10.1007/978-1-61779-624-1_1.
  • Viegas, C.; Da Silva Bolzani, V.; Barreiro, E. J. The Natural Products and the Modern Medicinal Chemistry. Quim. Nova. 2006, 29(2), 326–337. DOI: 10.1590/s0100-40422006000200025.
  • Tillhon, M.; Guamán Ortiz, L. M.; Lombardi, P.; Scovassi, A. I. Berberine: New Perspectives for Old Remedies. Biochem Pharmacol. 2012, 84(10), 1260–1267. DOI: 10.1016/J.BCP.2012.07.018.
  • Luo, J.; Song, W.; Yang, G.; Xu, H.; Chen, K. Compound Danshen (Salvia Miltiorrhiza) Dripping Pill for Coronary Heart Disease: An Overview of Systematic Reviews. Am. J. Chin. Med. 2015, 43(1), 25–43. DOI: 10.1142/S0192415X15500020.
  • Hahn, F. E.; Ciak, J. Berberine. In Mech. Action Antimicrob. Antitumor Agents; 1975; pp 577–584. doi:10.1007/978-3-642-46304-4_38.
  • Huang, Q.; Yu, H.; Ru, Q. Bioavailability and Delivery of Nutraceuticals Using Nanotechnology. J. Food Sci. 2010, 75(1), R50–R57. DOI: 10.1111/J.1750-3841.2009.01457.X.
  • López-Hortas, L.; Pérez-Larrán, P.; González-Muñoz, M. J.; Falqué, E.; Domínguez, H. Recent Developments on the Extraction and Application of Ursolic Acid. A Review. Food. Res. Int. 2018, 103, 130–149. DOI: 10.1016/J.FOODRES.2017.10.028.
  • Panja, P. Green Extraction Methods of Food Polyphenols from Vegetable Materials. Curr. Opin. Food Sci. 2018, 23, 173–182. DOI: 10.1016/J.COFS.2017.11.012.
  • Kadiri, O., and Olawoye, B. Underutilized Indigenous Vegetable (Uiv) in Nigeria : A Rich Source of Nutrient and Antioxidants-A Review Underutilized Indigenous Vegetable (Uiv) in Nigeria : A Rich Source of Nutrient and Antioxidants- a Review. Ann Food Sci Technol. 2015,16(2), 236–247.
  • Khulakpam, N. S.; Singh, V.; Rana, D. K. Medicinal Importance of Cucurbitaceous Crops. Int. Res. J. Biol. Sci. 2015, 4(6), 1–3.
  • Jana, J. C. Use of Traditional and Underutilized Leafy Vegetables of Sub-Himalayan Terai Region of West Bengal. Acta Hortic. 2007, 752(752), 571–575. DOI: 10.17660/ActaHortic.2007.752.107.
  • Zhang, Q.; Zhou, M. M.; Chen, P. L.; Cao, Y. Y., and Tan, X. L. Optimization of Ultrasonic-Assisted Enzymatic Hydrolysis for the Extraction of Luteolin and Apigenin from Celery. J. Food Sci. 2011, 76(5), C680–C685. DOI: 10.1111/j.1750-3841.2011.02174.x.
  • Crozier, A.; Lean, M. E. J.; McDonald, M. S.; Black, C. Quantitative Analysis of the Flavonoid Content of Commercial Tomatoes, Onions, Lettuce, and Celery. J. Agric. Food. Chem. 1997, 45(3), 590–595. DOI: 10.1021/jf960339y.
  • Miean, K. H.; Mohamed, S. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. J. Agric. Food. Chem. 2001, 49(6), 3106–3112. DOI: 10.1021/jf000892m.
  • Hostetler, G. L.; Riedl, K. M.; Schwartz, S. J. Effects of Food Formulation and Thermal Processing on Flavones in Celery and Chamomile. Food Chem. 2013, 141(2), 1406–1411. DOI: 10.1016/j.foodchem.2013.04.051.
  • Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E. B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20(6), 1305.
  • Xu, Y.; Chen, L.; Zhang, D. Inhibitory Effects of Ethyl Acetate Component of Hedyotis Diffusa-Scutellaria Barbata Drug Pair on Osteoclast Differentiation. Chin. Tradit. Pat. Med. 2019, 41(1), 44–50. DOI: 10.3969/j.issn.1001-1528.2019.01.010.
  • Hostetler, G. L.; Ralston, R. A.; Schwartz, S. J. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. Adv Nutr. 2017, 8(3), 423. DOI: 10.3945/an.116.012948.
  • Zhou, X.; Wang, F.; Zhou, R.; Song, X.; Xie, M. Apigenin: A Current Review on Its Beneficial Biological Activities. J. Food Biochem. 2017, 41(4), e12376. DOI: 10.1111/jfbc.12376.
  • Rathee, P.; Chaudhary, H.; Rathee, S.; Rathee, D.; Kumar, V.; Kohli, K. Mechanism of Action of Flavonoids as Anti-Inflammatory Agents: A Review. Inflamm. Allergy Drug Targets. 2009, 8(3), 229–235. DOI: 10.2174/187152809788681029.
  • Madunić, J.; Madunić, I.V.; Gajski, G.; Popić, J.; Garaj-Vrhovac, V. Apigenin: A Dietary Flavonoid with Diverse Anticancer Properties. Cancer Lett. 2018, 413, 11–22. DOI: 10.1016/j.canlet.2017.10.041.
  • Nabavi, S.F.; Khan, H.; D’Onofrio, G.; Šamec, D., and Shirooie, S. Apigenin as Neuroprotective Agent: Of Mice and Men. Pharmacol. Res. Off. J. Ital. Pharmacol. Soc. 2018, 128, 359–365.
  • Bandyopadhyay, S.; Lion, J. M.; Mentaverri, R.; Ricupero, D. A.; Kamel, S.; Romero, J. R.; Chattopadhyay, N. Attenuation of Osteoclastogenesis and Osteoclast Function by Apigenin. Biochem Pharmacol. 2006, 72(2), 184–197. DOI: 10.1016/j.bcp.2006.04.018.
  • Svobodova, A. Natural Phenolics in the Prevention of UV-Induced Skin Damage. A Review. Biomed. Pap. 2003, 147(2), 137–145. DOI: 10.5507/bp.2003.019.
  • Zhang, J.; Liu, D.; Huang, Y.; Gao, Y.; Qian, S. Biopharmaceutics Classification and Intestinal Absorption Study of Apigenin. Int. J. Pharm. 2012, 436(1–2), 311–317. DOI: 10.1016/j.ijpharm.2012.07.002.
  • Meyer, H.; Bolarinwa, A.; Wolfram, G.; Linseisen, J. Bioavailability of Apigenin from Apiin-Rich Parsley in Humans. Ann. Nutr. Metab. 2006, 50(3), 167–172. DOI: 10.1159/000090736.
  • Gradolatto, A.; Basly, J. P.; Berges, R.; Teyssier, C.; Canivenc-Lavier, M. C. Pharmacokinetic and Metabolism of Apigenin in Female and Male Rats After a Single Oral Administration. Drug Metab. Dispos. 2005, 33(1), 49–54. DOI: 10.1124/dmd.104.000893.
  • Nielsen, S. E.; Breinholt, V. M.; Justesen, U.; Cornett, C.; Dragsted, L. O. In vitro Biotransformation of Flavonoids by Rat Liver Microsomes. Xenobiotica. 1998, 28(4), 389–401. DOI: 10.1080/004982598239498.
  • Hanske, L.; Loh, G.; Sczesny, S.; Blaut, M.; Braune, A. The Bioavailability of Apigenin-7-Glucoside is Influenced by Human Intestinal Microbiota in Rats. J. Nutr. 2009, 139(6), 1095–1102. DOI: 10.3945/jn.108.102814.
  • Lago, J.; Toledo-Arruda, A.; Mernak, M.; Barrosa, K.; Martins, M.; Tibério, I.; Prado, C. Structure-Activity Association of Flavonoids in Lung Diseases. 2014.
  • Theoharides, T. C.; Alexandrakis, M.; Kempuraj, D.; Lytinas, M. Anti-Inflammatory Actions of Flavonoids and Structural Requirements for New Design. Int. J. Immunopathol. Pharmacol. 2001, 14(3), 119–127.
  • Wang, Y. In vitro Evaluation of Anti-Inflammatory Activity of Apigenin on Mice Lung Injury. J. Anim. Sci. Vet. Med. 2018, 37(2), 1–5. CNKI:SUN:XMSZ.0.2018-02-001.
  • Nicholas, C.; Batra, S.; Vargo, M. A.; Voss, O. H.; Gavrilin, M. A.; Wewers, M. D.; Guttridge, D. C.; Grotewold, E.; Doseff, A. I. Apigenin Blocks Lipopolysaccharide-Induced Lethality in vivo and Proinflammatory Cytokines Expression by Inactivating NF-KappaB Through the Suppression of P65 Phosphorylation. J. Immunol. 2007, 179(10), 7121–7127. DOI: 10.4049/jimmunol.179.10.7121.
  • Wang, J.; Liu, Y. T.; Xiao, L.; Zhu, L.; Wang, Q.; Yan, T. Anti-Inflammatory Effects of Apigenin in Lipopolysaccharide-Induced Inflammatory in Acute Lung Injury by Suppressing COX-2 and NF-KB Pathway. Inflammation. 2014, 37(6), 2085–2090. DOI: 10.1007/s10753-014-9942-x.
  • Wang, J.; Liao, Y.; Fan, J.; Ye, T.; Sun, X.; Dong, S. Apigenin Inhibits the Expression of IL-6, IL-8, and Icam-1 in Dehp-Stimulated Human Umbilical Vein Endothelial Cells and in vivo. Inflammation. 2012, 35(4), 1466–1476. DOI: 10.1007/s10753-012-9460-7.
  • Lampropoulos, P.; Lambropoulou, M.; Papalois, A.; Basios, N.; Manousi, M.; Simopoulos, C.; Tsaroucha, A. K. The Role of Apigenin in an Experimental Model of Acute Pancreatitis. J. Surg. Res. 2013, 183(1), 129–137. DOI: 10.1016/J.JSS.2012.11.053.
  • Charalabopoulos, A.; Davakis, S.; Lambropoulou, M.; Papalois, A.; Tsaroucha, A. Apigenin Exerts Anti-Inflammatory Effects in an Experimental Model of Acute Pancreatitis by Down-Regulating TNF-α. Vivo (Brooklyn). 2019, 33(4), 1133–1141. DOI: 10.21873/invivo.11583.
  • Basios, N.; Lampropoulos, P.; Papalois, A.; Lambropoulou, M.; Pitiakoudis, M. K.; Kotini, A.; Simopoulos, C.; Tsaroucha, A. K. Apigenin Attenuates Inflammation in Experimentally Induced Acute Pancreatitis-Associated Lung Injury. J. Invest. Surg. 2015, 29(3), 121–127. DOI: 10.3109/08941939.2015.1088603.
  • Apostolos, S.; Panagoula, O.; Eirini, N.; Maria, L.; Fotini, P.; Apostolos, P.; Christos, T.; Alexandra, T. K. An Experimental Rat Model of Acute Pancreatitis and the Effect of Apigenin. New Horizons Med. Med. Res. 2022, 11, 103–118. DOI: 10.9734/BPI/NHMMR/V11/6125F.
  • Mrazek, A. A.; Porro, L. J.; Bhatia, V.; Falzon, M.; Spratt, H.; Zhou, J.; Chao, C.; Hellmich, M. R. Apigenin Inhibits Pancreatic Stellate Cell Activity in Pancreatitis. J. Surg. Res. 2015, 196(1), 8–16. DOI: 10.1016/J.JSS.2015.02.032.
  • Mrazek, A. A.; Bhatia, V.; Falzon, M.; Spratt, H.; Hellmich, M. R. Apigenin Decreases Acinar Cell Damage in Pancreatitis. Pancreas. 2019, 48(5), 711–718. DOI: 10.1097/MPA.0000000000001310.
  • Feng, W. M.; Guo, H. H.; Xue, T.; Wang, X.; Tang, C. W.; Ying, B.; Gong, H.; Cui, G. Anti-Inflammation and Anti-Fibrosis with Pegylated, Apigenin Loaded PLGA Nanoparticles in Chronic Pancreatitis Disease. RSC Adv. 2015, 5(102), 83628–83635. DOI: 10.1039/C5RA17686G.
  • Cho, C.; Kang, L. J.; Jang, D.; Jeon, J.; Lee, H.; Choi, S.; Han, S. J.; Oh, E.; Nam, J.; Kim, C. S.; et al. Cirsium Japonicum Var. Maackii and Apigenin Block Hif-2α-Induced Osteoarthritic Cartilage Destruction. J. Cell Mol. Med. 2019, 23(8), 5369–5379.
  • Piao, C.; Jiang, Z.; Jin, J. Composition Containing Apigenin as Cartilage Regeneration Agent for Treating Osteoarthritis: CN1897932A. 2007.
  • Park, J. S.; Kim, D. K.; Shin, H. D.; Lee, H. J.; Jo, H. S.; Jeong, J. H.; Choi, Y. L.; Lee, C. J.; Hwang, S. C. Apigenin Regulates Interleukin-1β-Induced Production of Matrix Metalloproteinase Both in the Knee Joint of Rat and in Primary Cultured Articular Chondrocytes. Biomol. Ther. 2016, 24(2), 163. DOI: 10.4062/BIOMOLTHER.2015.217.
  • Alabarse, P. G.; Oliveria, P.; Nguyen, N.; Liu-Bryan, R. Inhibition of CD38 by Apigenin Limits Injury-Induced Osteoarthritis Development and Associated Pain in Mice. Osteoarthr. Cartil. 2021, 29, S373–S374. DOI: 10.1016/J.JOCA.2021.02.485.
  • Liu-Bryan, R.; Chen, L.-Y.; Ucsd, V. /. Dysregulation of the Nadase CD38 Impairs Articular Chondrocyte Homeostasis. Osteoarthr. Cartil. 2018, 26, S13. DOI: 10.1016/J.JOCA.2018.02.043.
  • Estakhri, F.; Panjehshahin, M. R.; Tanideh, N.; Gheisari, R.; Mahmoodzadeh, A.; Azarpira, N.; Gholijani, N. The Effect of Kaempferol and Apigenin on Allogenic Synovial Membrane-Derived Stem Cells Therapy in Knee Osteoarthritic Male Rats. Knee. 2020, 27(3), 817–832. DOI: 10.1016/J.KNEE.2020.03.005.
  • Estakhri, F.; Panjehshahin, M. R.; Tanideh, N.; Gheisari, R.; Azarpira, N.; Gholijani, N. Efficacy of Combination Therapy with Apigenin and Synovial Membrane-Derived Mesenchymal Stem Cells on Knee Joint Osteoarthritis in a Rat Model. Iran. J. Med. Sci. 2021, 46(5), 383. DOI: 10.30476/IJMS.2020.83686.1301.
  • Shin, G. C.; Kim, C.; Lee, J. M.; Cho, W. S.; Lee, S. G.; Jeong, M.; Cho, J.; Lee, K. Apigenin-Induced Apoptosis is Mediated by Reactive Oxygen Species and Activation of ERK1/2 in Rheumatoid Fibroblast-Like Synoviocytes. Chem. Biol. Interact. 2009, 182(1), 29–36. DOI: 10.1016/J.CBI.2009.07.016.
  • Kumazawa, Y.; Kawaguchi, K.; Takimoto, H. Immunomodulating Effects of Flavonoids on Acute and Chronic Inflammatory Responses Caused by Tumor Necrosis Factor α Curr. Pharm. Des. 2006, 12(32), 4271–4279. DOI: 10.2174/138161206778743565.
  • Li, Y.; Yang, B.; Bai, J. Y.; Xia, S.; Mao, M.; Li, X.; Li, N.; Chen, L. The Roles of Synovial Hyperplasia, Angiogenesis and Osteoclastogenesis in the Protective Effect of Apigenin on Collagen-Induced Arthritis. Int. Immunopharmacol. 2019, 73(May), 362–369. DOI: 10.1016/j.intimp.2019.05.024.
  • Zhang, J.; Liu, W.; Zhu, X.; Zhou, M.; Zhu, X. Effect of Acupuncture Combined with Apigenin on Th1/th2 Cell Subsets in Mice with Collagen-Induced Arthritis. Chin. J. Gerontol. 2015, (5), 1353–1355. DOI: 10.3969/j.issn.1005-9202.2015.05.094.
  • Ha, S. K.; Lee, P.; Park, J. A.; Oh, H. R.; Lee, S. Y.; Park, J. H.; Lee, E. H.; Ryu, J. H.; Lee, K. R.; Kim, S. Y. Apigenin Inhibits the Production of NO and PGE2 in Microglia and Inhibits Neuronal Cell Death in a Middle Cerebral Artery Occlusion-Induced Focal Ischemia Mice Model. Neurochem. Int. 2008, 52(4–5), 878–886. DOI: 10.1016/J.NEUINT.2007.10.005.
  • Balez, R.; Steiner, N.; Engel, M.; Muñoz, S. S.; Lum, J. S.; Wu, Y.; Wang, D.; Vallotton, P.; Sachdev, P.; O’Connor, M.; et al. Neuroprotective Effects of Apigenin Against Inflammation, Neuronal Excitability and Apoptosis in an Induced Pluripotent Stem Cell Model of Alzheimer’s Disease. Sci. Rep. 2016, 6(August), 1–16.
  • Dourado, N. S.; Souza, C. D. S.; de Almeida, M. M. A.; Bispo da Silva, A.; dos Santos, B. L.; Silva, V. D. A.; De Assis, A. M.; da Silva, J. S.; Souza, D. O.; Costa, M. D. F. D.; et al. Neuroimmunomodulatory and Neuroprotective Effects of the Flavonoid Apigenin in in vitro Models of Neuroinflammation Associated with Alzheimer’s Disease. Front. Aging Neurosci. 2020, 12, 119. DOI: 10.3389/FNAGI.2020.00119/BIBTEX.
  • Chesworth, R.; Gamage, R.; Ullah, F.; Sonego, S.; Millington, C.; Fernandez, A.; Liang, H.; Karl, T.; Münch, G.; Niedermayer, G.; et al. Spatial Memory and Microglia Activation in a Mouse Model of Chronic Neuroinflammation and the Anti-Inflammatory Effects of Apigenin. Front. Neurosci. 2021, 15, 917. DOI: 10.3389/FNINS.2021.699329/BIBTEX.
  • Anusha, C.; Sumathi, T.; Joseph, L. D. Protective Role of Apigenin on Rotenone Induced Rat Model of Parkinson’s Disease: Suppression of Neuroinflammation and Oxidative Stress Mediated Apoptosis. Chem. Biol. Interact. 2017, 269, 67–79. DOI: 10.1016/J.CBI.2017.03.016.
  • Yarim, G. F.; Kazak, F.; Yarim, M.; Sozmen, M.; Genc, B.; Ertekin, A.; Gokceoglu, A. Apigenin Alleviates Neuroinflammation in a Mouse Model of Parkinson’s Disease. 2022, 1–10. DOI: 10.1080/00207454.2022.2089136.
  • Ginwala, R.; McTish, E.; Raman, C.; Singh, N.; Nagarkatti, M.; Nagarkatti, P.; Sagar, D.; Jain, P.; Khan, Z. K. Apigenin, a Natural Flavonoid, Attenuates EAE Severity Through the Modulation of Dendritic Cell and Other Immune Cell Functions. J. Neuroimmune Pharmacol. 2016, 11(1), 36–47. DOI: 10.1007/S11481-015-9617-X/FIGURES/11.
  • Liang, H.; Sonego, S.; Gyengesi, E.; Rangel, A.; Niedermayer, G.; Karl, T.; Münch, G. Anti-Inflammatory and Neuroprotective Effect of Apigenin: Studies in the GFAP-IL6 Mouse Model of Chronic Neuroinflammation. Free Radic Biol Med. 2017, 108, S10. DOI: 10.1016/J.FREERADBIOMED.2017.04.064.
  • Chen, L.; Xie, W.; Xie, W.; Zhuang, W.; Jiang, C.; Liu, N. Apigenin Attenuates Isoflurane-Induced Cognitive Dysfunction via Epigenetic Regulation and Neuroinflammation in Aged Rats. Arch. Gerontol. Geriatr. 2017, 73, 29–36. DOI: 10.1016/J.ARCHGER.2017.07.004.
  • Zhao, F.; Dang, Y.; Zhang, R.; Jing, G.; Liang, W.; Xie, L.; Li, Z. Apigenin Attenuates Acrylonitrile-Induced Neuro-Inflammation in Rats: Involved of Inactivation of the TLR4/NF-ΚB Signaling Pathway. Int. Immunopharmacol. 2019, 75, 105697. DOI: 10.1016/J.INTIMP.2019.105697.
  • Ginwala, R.; Bhavsar, R.; Moore, P.; Bernui, M.; Singh, N.; Bearoff, F.; Nagarkatti, M.; Khan, Z. K.; Jain, P. Apigenin Modulates Dendritic Cell Activities and Curbs Inflammation via RelB Inhibition in the Context of Neuroinflammatory Diseases. J. Neuroimmune Pharmacol. 2021, 16(2), 403–424. DOI: 10.1007/S11481-020-09933-8/FIGURES/8.
  • Che, D. N.; Cho, B. O.; Shin, J. Y.; Kang, H. J.; Kim, J. S.; Oh, H.; Kim, Y. S.; Jang, S. I. Apigenin Inhibits IL-31 Cytokine in Human Mast Cell and Mouse Skin Tissues. Molecules. 2019, 24(7), 1290. DOI: 10.3390/molecules24071290.
  • Che, D. N.; Cho, B. O.; Shin, J. Y.; Kang, H. J.; Kim, J. S.; Choi, J.; Jang, S. I. Anti-Atopic Dermatitis Effects of Hydrolyzed Celery Extract in Mice. J. Food Biochem. 2020, 44(6), e13198. DOI: 10.1111/JFBC.13198.
  • Yano, S.; Umeda, D.; Yamashita, S.; Yamada, K.; Tachibana, H. Dietary Apigenin Attenuates the Development of Atopic Dermatitis-Like Skin Lesions in Nc/nga Mice. J. NUTR BIOCHEM. 2009, 20(11), 876–881. DOI: 10.1016/J.JNUTBIO.2008.08.002.
  • Man, M. Q.; Hupe, M.; Sun, R.; Man, G.; Mauro, T. M.; Elias, P. M. Topical Apigenin Alleviates Cutaneous Inflammation in Murine Models. Evidence-Based Complement. Altern. Med. 2012, 2012, 1–7. DOI: 10.1155/2012/912028.
  • Hou, M.; Sun, R.; Hupe, M.; Kim, P. L.; Park, K.; Crumrine, D.; Lin, T. K.; Santiago, J. L.; Mauro, T. M.; Elias, P. M.; et al. Topical Apigenin Improves Epidermal Permeability Barrier Homoeostasis in Normal Murine Skin by Divergent Mechanisms. Exp. Dermatol. 2013, 22(3), 210–215.
  • Park, C. H.; Min, S. Y.; Yu, H. W.; Kim, K.; Kim, S.; Lee, H. J.; Kim, J. H.; Park, Y. J. Effects of Apigenin on RBL-2H3, RAW264.7, and HaCat Cells: Anti-Allergic, Anti-Inflammatory, and Skin-Protective Activities. Int. J. Mol. Sci. 2020, 21(13), 4620. DOI: 10.3390/IJMS21134620.
  • Miao, Y.; Ishfaq, M.; Liu, Y.; Wu, Z.; Wang, J.; Li, R.; Qian, F.; Ding, L.; Li, J. Baicalin Attenuates Endometritis in a Rabbit Model Induced by Infection with Escherichia Coli and Staphylococcus Aureus via NF-ΚB and JNK Signaling Pathways. Domest. Anim. Endocrinol. 2021, 74, 106508. DOI: 10.1016/J.DOMANIEND.2020.106508.
  • Jiang, P. Y.; Zhu, X. J.; Zhang, Y. N.; Zhou, F. F.; Yang, X. F. Protective Effects of Apigenin on LPS-Induced Endometritis via Activating Nrf2 Signaling Pathway. Microb. Pathog. 2018, 123(June), 139–143. DOI: 10.1016/j.micpath.2018.06.031.
  • Gurunathan, S.; Choi, Y. J.; Kim, J. H. Antibacterial Efficacy of Silver Nanoparticles on Endometritis Caused by Prevotella Melaninogenica and Arcanobacterum Pyogenes in Dairy Cattle. Int. J. Mol. Sci. 2018, 19(4), 1210. DOI: 10.3390/IJMS19041210.
  • Zhang, Q.; Peng, X.; Deng, L. Advance in Anti-Tumor Mechanism of Apigenin. J. Guangdong Med. Coll. 2018, 36(5), 484–489. DOI: 10.3969/j.issn.1005-4057.2018.05.002.
  • Yan, X.; Qi, M.; Li, P.; Zhan, Y.; Shao, H. Apigenin in Cancer Therapy: Anti-Cancer Effects and Mechanisms of Action. Cell Biosci. 2017, 7(1), 1–16. DOI: 10.1186/s13578-017-0179-x.
  • Li, Y. W.; Xu, J.; Zhu, G. Y.; Huang, Z. J.; Lu, Y.; Li, X. Q.; Wang, N., and Zhang, F. X. Apigenin Suppresses the Stem Cell-Like Properties of Triple-Negative Breast Cancer Cells by Inhibiting YAP/TAZ Activity. Cell Death Discov. 2018, 4(1), 1–9. DOI: 10.1038/s41420-018-0124-8.
  • Lecomte, S.; Demay, F.; Pham, T. H.; Moulis, S.; Efstathiou, T.; Chalmel, F.; Pakdel, F. Deciphering the Molecular Mechanisms Sustaining the Estrogenic Activity of the Two Major Dietary Compounds Zearalenone and Apigenin in ER-Positive Breast Cancer Cell Lines. Nutrients. 2019, 11(2), 237. DOI: 10.3390/nu11020237.
  • Lee, H. H.; Jung, J.; Moon, A.; Kang, H., and Cho, H. Antitumor and Anti-Invasive Effect of Apigenin on Human Breast Carcinoma Through Suppression of IL-6 Expression. Int. J. Mol. Sci. 2019, 20(13), 3143. DOI: 10.3390/ijms20133143.
  • Huan, H. L.; Hyosun, C. Anti-Cancer Effect of Apigenin on Human Breast Carcinoma MDA-MB-231 Through Cell Cycle Arrest and Apoptosis. Korean J Microbiol Biotechnol. 2019, 47(1), 34–42. DOI: 10.4014/mbl.1809.09006.
  • Zhang, Y.; Cao, Y.; Zhang, L.; Feng, C.; Zhou, G.; Wen, G. Apigenin Inhibits C5a-Induced Proliferation of Human Nasopharyngeal Carcinoma Cells Through Down-Regulation of C5ar. Biosci. Rep. 2018, 38(3), 1–8. DOI: 10.1042/BSR20180456.
  • Gilardini Montani, M. S.; Cecere, N.; Granato, M.; Romeo, M. A.; Falcinelli, L.; Ciciarelli, U.; D’Orazi, G.; Faggioni, A.; Cirone, M. Mutant P53, Stabilized by Its Interplay with HSP90, Activates a Positive Feed-Back Loop Between NRF2 and P62 That Induces Chemo-Resistance to Apigenin in Pancreatic Cancer Cells. Cancers (Basel). 2019, 11(5), 703. DOI: 10.3390/cancers11050703.
  • Tong, J.; Shen, Y.; Zhang, Z.; Hu, Y.; Zhang, X.; Han, L. Apigenin Inhibits Epithelial-Mesenchymal Transition of Human Colon Cancer Cells Through NF-Κb/snail Signaling Pathway. Biosci. Rep. 2019, 39(5), 1–11. DOI: 10.1042/BSR20190452.
  • Chen, X.; Xu, H.; Yu, X.; Wang, X.; Zhu, X.; Xu, X. Apigenin Inhibits in vitro and in vivo Tumorigenesis in Cisplatin-Resistant Colon Cancer Cells by Inducing Autophagy, Programmed Cell Death and Targeting M-Tor/pi3k/akt Signalling Pathway. J. Balk. Union Oncol. 2019, 24, 488–493.
  • Chien, M. H.; Lin, Y. W.; Wen, Y. C.; Yang, Y. C.; Hsiao, M.; Chang, J. L.; Huang, H. C.; Lee, W. J. Targeting the SPOCK1-Snail/slug Axis-Mediated Epithelial-To-Mesenchymal Transition by Apigenin Contributes to Repression of Prostate Cancer Metastasis. J. Exp. Clin. Cancer Res. 2019, 38(1), 1–17. DOI: 10.1186/s13046-019-1247-3.
  • Pasha, A.; Vignoli, M.; Subbiani, A.; Nocentini, A.; Selleri, S.; Gratteri, P.; Dabraio, A.; Casini, T.; Filippi, L.; Fotzi, I. Β3-Adrenoreceptor Activity Limits Apigenin Efficacy in Ewing Sarcoma Cells: A Dual Approach to Prevent Cell Survival. Int. J. Mol. Ences. 2019, 20(9), 2149. DOI: 10.3390/ijms20092149.
  • Guo, B.; Zhang, Y.; Hui, Q.; Chang, P.; Tao, K. Apigenin Inhibits the Proliferation of A375 Cells by Suppressing the Src Pathway. J. China Med. Univ. 2016, 45(9), 813–817. DOI: 10.12007/j.issn.0258-4646.2016.09.011.
  • Ghițu, A.; Schwiebs, A.; Radeke, H. H.; Avram, S.; Zupko, I.; Bor, A.; Pavel, I. Z.; Dehelean, C. A.; Oprean, C.; Bojin, F. A Comprehensive Assessment of Apigenin as an Antiproliferative, Proapoptotic, Antiangiogenic and Immunomodulatory Phytocompound. Nutrients. 2019, 11(4), 858. DOI: 10.3390/nu11040858.
  • Zhou, R. Protective Effect of Apigenin on D-GaIn/lps-Induced Acute Liver Injury and Its Possible Mechanisms; Soochow University, 2018. CNKI:CDMD:2.1018.102545.
  • Cui, Y.; Chen, A.; Xu, C.; Cao, J.; Xiang, H.; Zhang, J. Inhibition of Spheroid Formation and STAT3 Phosphorylation Through Up-Regulating Expression of SHP-1 by Apigenin in Human Liver Cancer MHCC97H Cells. J. Hunan Norm. Univ. Sci. 2018, 15(5), 1–4. DOI: 10.3969/j.issn.1673-016X.2018.05.001.
  • Wang, Y.; Wang, B.; Yin, X.; Fu, C.; Xuan, H. Study on Anti-Tumor Active Ingredients of Chinese Propolis Water Extract. Jiangsu Agric. Sci. 2018, 46(12), 153–156. DOI: 10.15889/j.issn.1002-1302.2018.12.038.
  • Huang, Z.; Wu, N.; Tang, M.; Sun, H.; Li, Y.; He, S.; Liu, H.; Gao, S. Study of Extraction and Purification and Antioxidant Activity of Apigenin in Water Dropwort. AEM RODUCTS ROCESSING. 2019, 472(2), 10–16. DOI: 10.16693/j.cnki.1671-9646(X).2019.01.036.
  • Zhang, P.; Liu, C.; Dong, Y.; Shi, G. Study on the Extraction Technology of Apigenin from Waste Celery and Its Anti-Free Radical Activity. Gansu Sci. Technol. 2019, 035(1), 62–67. DOI: 10.3969/j.issn.1000-0952.2019.01.022.
  • Kim, M.; Jung, J.; Jeong, N. Y.; Chung, H. J. The Natural Plant Flavonoid Apigenin is a Strong Antioxidant That Effectively Delays Peripheral Neurodegenerative Processes. Anat. Sci. Int. 2019, 94(4), 285–294. DOI: 10.1007/s12565-019-00486-2.
  • Tjermin, L.; Ehrich, I. N.; Napiah, A.; Girsang, E. Antioxidant and Inhibition of Elastase Effect of Scutellarein and Apigenin. Am. Sci. Res. J. Eng. Technol. Sci. 2019, 55, 104–110.
  • Huang, C.; Li, A.; Li, J.; Wang, X. Bioactive Components of Hibiscus Flower and Their Antioxidant Activity. Food Sci. 2019, 40(3), 51–56. DOI: 10.7506/spkx1002-6630-20180107-069.
  • Xu, W.; Lei, Y.; Wei, X.; Lv, S.; Luo, F. Study on the Stability of Scavenging DPPH Free Radical by Viola Philippica Apigenin. J. Food Saf. Qual. 2018, 9(11), 2775–2779. DOI: 10.3969/j.issn.2095-0381.2018.11.038.
  • Li, L.; Li, M.; Xu, S.; Chen, H.; Chen, X.; Gu, H. Apigenin Restores Impairment of Autophagy and Downregulation of Unfolded Protein Response Regulatory Proteins in Keratinocytes Exposed to Ultraviolet B Radiation. J. Photochem. Photobiol. B Biol. 2019, 194(November 2018), 84–95. DOI: 10.1016/j.jphotobiol.2019.03.010.
  • Sánchez-Marzo, N.; Pérez-Sánchez, A.; Ruiz-Torres, V.; Martínez-Tébar, A.; Castillo, J.; Herranz-López, M.; Barrajón-Catalán, E. Antioxidant and Photoprotective Activity of Apigenin and Its Potassium Salt Derivative in Human Keratinocytes and Absorption in Caco-2 Cell Monolayers. Int. J. Mol. Sci. 2019, 20(9), 2148. DOI: 10.3390/ijms20092148.
  • Righini, S.; Rodriguez, E. J.; Berosich, C.; Grotewold, E.; Casati, P.; Falcone Ferreyra, M. L. Apigenin Produced by Maize Flavone Synthase I and II Protects Plants Against UV-B-Induced Damage. Plant Cell Environ. 2019, 42(2), 495–508. DOI: 10.1111/pce.13428.
  • García Forero, A.; Villamizar Mantilla, D. A.; Núñez, L. A.; Ocazionez, R. E.; Stashenko, E. E.; Fuentes, J. L. Photoprotective and Antigenotoxic Effects of the Flavonoids Apigenin, Naringenin and Pinocembrin. Photochem. Photobiol. 2019, 95(4), 1010–1018. DOI: 10.1111/php.13085.
  • Weng, L.; Guo, X.; Li, Y.; Yang, X.; Han, Y. Apigenin Reverses Depression-Like Behavior Induced by Chronic Corticosterone Treatment in Mice. Eur. J. Pharmacol. 2016, 774, 50–54. DOI: 10.1016/J.EJPHAR.2016.01.015.
  • Nakazawa, T.; Yasuda, T.; Ueda, J.; Ohsawa, K. Antidepressant-Like Effects of Apigenin and 2,4,5-Trimethoxycinnamic Acid from Perilla Frutescens in the Forced Swimming Test. Biol. Pharm. Bull. 2003, 26(4), 474–480. DOI: 10.1248/BPB.26.474.
  • Al-Yamani, M. J.; Asdaq, S. M. B.; Alamri, A. S.; Alsanie, W. F.; Alhomrani, M.; Alsalman, A. J.; Al Mohaini, M.; Al Hawaj, M. A.; Alanazi, A. A.; Alanzi, K. D.; et al. The Role of Serotonergic and Catecholaminergic Systems for Possible Antidepressant Activity of Apigenin. Saudi J. Biol. Sci. 2022, 29(1), 11–17.
  • Zhang, X.; Bu, H.; Jiang, Y.; Sun, G.; Jiang, R.; Huang, X.; Duan, H.; Zhiheng Huan, G.; Wu, Q. The Antidepressant Effects of Apigenin are Associated with the Promotion of Autophagy via the MTOR/AMPK/ULK1 Pathway. Mol. Med. Rep. 2019, 20(3), 2867–2874. DOI: 10.3892/MMR.2019.10491/HTML.
  • Yi, L. T.; Li, J. M.; Li, Y. C.; Pan, Y.; Xu, Q.; Kong, L. D. Antidepressant-Like Behavioral and Neurochemical Effects of the Citrus-Associated Chemical Apigenin. Life Sci. 2008, 82(13–14), 741–751. DOI: 10.1016/J.LFS.2008.01.007.
  • Losi, G.; Puia, G.; Garzon, G.; De Vuono, M. C.; Baraldi, M. Apigenin Modulates Gabaergic and Glutamatergic Transmission in Cultured Cortical Neurons. Eur. J. Pharmacol. 2004, 502(1–2), 41–46. DOI: 10.1016/J.EJPHAR.2004.08.043.
  • Nunes, S. O. V.; Vargas, H. O.; Prado, E.; Barbosa, D. S.; de Melo, L. P.; Moylan, S.; Dodd, S.; Berk, M. The Shared Role of Oxidative Stress and Inflammation in Major Depressive Disorder and Nicotine Dependence. Neurosci. Biobehav. Rev. 2013, 37(8), 1336–1345. DOI: 10.1016/J.NEUBIOREV.2013.04.014.
  • Li, R.; Zhao, D.; Qu, R.; Fu, Q.; Ma, S. The Effects of Apigenin on Lipopolysaccharide-Induced Depressive-Like Behavior in Mice. Neurosci. Lett. 2015, 594, 17–22. DOI: 10.1016/J.NEULET.2015.03.040.
  • Li, R.; Wang, X.; Qin, T.; Qu, R.; Ma, S. Apigenin Ameliorates Chronic Mild Stress-Induced Depressive Behavior by Inhibiting Interleukin-1β Production and NLRP3 Inflammasome Activation in the Rat Brain. Behav. Brain Res. 2016, 296, 318–325. DOI: 10.1016/J.BBR.2015.09.031.
  • Wang, P.; Sun, J.; Lv, S.; Xie, T.; Wang, X. Apigenin Alleviates Myocardial Reperfusion Injury in Rats by Downregulating MiR-15b. Med. Sci. Monit. 2019, 25, 2764–2776. DOI: 10.12659/MSM.912014.
  • Huang, H.; Lai, S.; Luo, Y.; Wan, Q.; Wu, Q.; Wan, L.; Qi, W.; Liu, J. Nutritional Preconditioning of Apigenin Alleviates Myocardial Ischemia/reperfusion Injury via the Mitochondrial Pathway Mediated by Notch1/hes1. OXID. MED. CELL LONGEV. 2019, 2019, 1–15. DOI: 10.1155/2019/7973098.
  • Zhang, Y. Effect of Apigenin-Loaded Nanoliposomes on Myocardial Cells Apoptosis Induced by Diabetic Cardiomyopathy. Her. Med. 2019, 38(5), 555–559. DOI: 10.3870/j.issn.1004-0781.2019.05.004.
  • Ren, K.; Jiang, T.; Zhou, H. F.; Liang, Y.; Zhao, G. J. Apigenin Retards Atherogenesis by Promoting ABCA1-Mediated Cholesterol Efflux and Suppressing Inflammation. Cell. Physiol. Biochem. 2018, 47(5), 2170–2184. DOI: 10.1159/000491528.
  • Guo, P.; Liu, Y.; Jing, Y.; Song, Q.; Dong, M.; Dong, L.; Zhang, M. Effect of Apigenin on the Vasodilatory of Basilar Artery in Rats and It Mechanism. Chin. J. Clin. Pharmacol. 2018, 34(9), 94–98. DOI: 10.13699/j.cnki.1001-6821.2018.09.026.
  • Zhu, Z. Y.; Wang, F.; Jia, C. H.; Xie, M. L. Apigenin-Induced HIF-1α Inhibitory Effect Improves Abnormal Glucolipid Metabolism in Angⅱ/hypoxia-Stimulated or HIF-1α-Overexpressed H9c2 Cells. Phytomedicine. 2019, 62(199), 152713. DOI: 10.1016/j.phymed.2018.10.010.
  • Ren, B.; Qin, W.; Wu, F.; Wang, S.; Pan, C.; Wang, L.; Zeng, B.; Ma, S.; Liang, J. Apigenin and Naringenin Regulate Glucose and Lipid Metabolism, and Ameliorate Vascular Dysfunction in Type 2 Diabetic Rats. Eur. J. Pharmacol. 2016, 773, 13–23. DOI: 10.1016/J.EJPHAR.2016.01.002.
  • Huang, L.; Liu, T.; Sun, W.; Guo, X.; Li, Y.; Chen, S.; Zhou, P. Effect and Mechanism of Apigenin on Fat Metabolism Disorder AMPK Signaling Way in Obese Mice. Chin. J. Exp. Tradit. Med. Formulae. 2018, 24(10), 107–111. DOI: 10.13422/j.cnki.syfjx.20180816.
  • Lu, J.; Meng, Z.; Cheng, B.; Liu, M.; Tao, S.; Guan, S. Apigenin Reduces the Excessive Accumulation of Lipids Induced by Palmitic Acid via the AMPK Signaling Pathway in HepG2 Cells. Exp. Ther. Med. 2019, 18(4), 2965–2971. DOI: 10.3892/ETM.2019.7905.
  • Sun, Y. S.; Qu, W. Dietary Apigenin Promotes Lipid Catabolism, Thermogenesis, and Browning in Adipose Tissues of HFD-Fed Mice. Food. Chem. Toxicol. 2019, 133, 110780. DOI: 10.1016/J.FCT.2019.110780.
  • Zhou, J.; Sun, C.; Li, F. Research Advances in Mechanism of Active Components of Traditional Chinese Medicine for Reducing Uric Acid. Chin. Pharmacol. Bull. 2018, 34(1), 19–22. DOI: 10.3969/j.issn.1001-1978.2018.01.006.
  • Hao, Y.; Jiao, A.; Yu, M.; Gao, J.; He, X.; Zhang, M.; Jiao, L.; Zhang, J. Activity Screening of Thirty Flavonoids on the Inhibition of Xanthine Oxidase. Chin. Tradit. Pat. Med. 2019, 041(1), 55–59. DOI: 10.3969/j.issn.1001-1528.2019.01.012.
  • Ye, S. The Inhibition Effect of Apigenin on Xanthine Oxidase Activity. Food Res. Dev. 2018, 39(21), 67–71. DOI: 10.3969/j.issn.1005-6521.2018.21.011.
  • Snchez-Gonzlez, P. D.; López-Hernández, F. J.; López-Novoa, J. M.; Morales, A. I. An Integrative View of the Pathophysiological Events Leading to Cisplatin Nephrotoxicity. 2011, 41(10), 803–821. DOI: 10.3109/10408444.2011.602662.
  • He, X.; Li, C.; Wei, Z.; Wang, J.; Kou, J.; Liu, W.; Shi, M.; Yang, Z.; Fu, Y. Protective Role of Apigenin in Cisplatin-Induced Renal Injury. Eur. J. Pharmacol. 2016, 789, 215–221. DOI: 10.1016/J.EJPHAR.2016.07.003.
  • Hassan, S. M.; Khalaf, M. M.; Sadek, S. A.; Abo-Youssef, A. M. Protective Effects of Apigenin and Myricetin Against Cisplatin-Induced Nephrotoxicity in Mice. 2017, 55(1), 766–774. DOI: 10.1080/13880209.2016.1275704.
  • Sahindokuyucu-Kocasari, F.; Akyol, Y.; Ozmen, O.; Erdemli-Kose, S. B.; Garli, S. Apigenin Alleviates Methotrexate-Induced Liver and Kidney Injury in Mice. Hum. Exp. Toxicol. 2021, 40(10), 1721–1731. DOI: 10.1177/09603271211009964.
  • Malik, S.; Suchal, K.; Khan, S. I.; Bhatia, J.; Kishore, K.; Dinda, A. K.; Arya, D. S. Apigenin Ameliorates Streptozotocin-Induced Diabetic Nephropathy in Rats via MAPK-NF-ĸB-TNF-α and TGF-Β1-MAPK-Fibronectin Pathways. Am. J. Physiol. - Ren. Physiol. 2017, 313(2), F414–F422. DOI: 10.1152/AJPRENAL.00393.2016/ASSET/IMAGES/LARGE/ZH20081782840003.JPEG.
  • Haleagrahara, N.; Chakravarthi, S.; Bangra Kulur, A.; Yee, T. M. Plant Flavone Apigenin Protects Against Cyclosporine-Induced Histological and Biochemical Changes in the Kidney in Rats. Biomed. Prev. Nutr. 2014, 4(4), 589–593. DOI: 10.1016/J.BIONUT.2014.07.006.
  • Zamani, F.; Samiei, F.; Mousavi, Z.; Azari, M. R.; Seydi, E.; Pourahmad, J. Apigenin Ameliorates Oxidative Stress and Mitochondrial Damage Induced by Multiwall Carbon Nanotubes in Rat Kidney Mitochondria. J. Biochem. Mol. Toxicol. 2021, 35(6), 1–7. DOI: 10.1002/JBT.22762.
  • Jiang, L.; Liu, Z.; Cui, Y.; Shao, Y.; Tao, Y.; Mei, L. Apigenin from Daily Vegetable Celery Can Accelerate Bone Defects Healing. J. Funct. Foods. 2019, 54(23), 412–421. DOI: 10.1016/j.jff.2019.01.043.
  • Lee, W.; Woo, E. R.; Lee, D. G. Effect of Apigenin Isolated from Aster Yomena Against Candida Albicans: Apigenin-Triggered Apoptotic Pathway Regulated by Mitochondrial Calcium Signaling. J. Ethnopharmacol. 2019, 231(September 2018), 19–28. DOI: 10.1016/j.jep.2018.11.005.
  • Sadraei, H.; Ghanadian, S. M.; Moazeni, S. Inhibitory Effect of Hydroalcoholic and Flavonoids Extracts of Dracocephalum Kotschyi, and Its Components Luteolin, Apigenin and Apigenin-4’-Galactoside on Intestinal Transit in Mice. J. Herbmed Pharmacol. 2019, 8(1), 8–13. DOI: 10.15171/jhp.2019.02.
  • Liu, L.; Wei, D.; Xu, H.; Liu, C. Apigenin Ameliorates Ocular Surface Lesions in a Rat Model of Dry Eye Disease. Eur. J. Inflamm. 2019, 17(1751), 205873921881868. DOI: 10.1177/2058739218818681.
  • Kim, M. A.; Kang, K.; Lee, H. J.; Kim, M.; Kim, C. Y.; Nho, C. W. Apigenin Isolated from Daphne Genkwa Siebold Et Zucc. Inhibits 3T3-L1 Preadipocyte Differentiation Through a Modulation of Mitotic Clonal Expansion. Life Sci. 2014, 101(1–2), 64–72. DOI: 10.1016/J.LFS.2014.02.012.
  • Sadraei, H.; Sadraei, H.; Asghari, G.; Shahverdi, F. Antidiarrhoeal Assessment of Hydroalcoholic and Hexane Extracts of Dracocephalum Kotschyi Boiss. And Apigenin in Mice. Res. Pharm. Sci. 2016, 11(3), 200.
  • Zhan, Y. Y.; Liang, B. Q.; Gu, E. M.; Hu, X. X.; Lin, D.; Hu, G. X.; Zheng, Z. Q. Inhibitory Effect of Apigenin on Pharmacokinetics of Venlafaxine in vivo and in vitro. Pharmacology. 2015, 96(3–4), 118–123. DOI: 10.1159/000437056.
  • Eumkeb, G.; Chukrathok, S. Synergistic Activity and Mechanism of Action of Ceftazidime and Apigenin Combination Against Ceftazidime-Resistant Enterobacter Cloacae. Phytomedicine. 2013, 20(3–4), 262–269. DOI: 10.1016/j.phymed.2012.10.008.
  • Chen, J. Intestinal Absorption Barricade Network and the Effect of Apigenin Influencing Bioavailability of Raloxifene; Jiangsu University, 2008. DOi: 10.7666/d.y1261911.
  • Liu, B.; Liu, T.; Bai, M.; Wang, W.; Liu, R.; Deng, T.; Zhou, L.; Ba, Y. Apigenin Enhances the Proliferative Inhibition Effect of Aspirin in Colon Cancer Cells by Inhibiting COX-2. Chin. J. Clin. Oncol. 2013, 40(8), 436–439. DOI: 10.3969/j.issn.1000-8179.2013.08.002.
  • Zare, M. F. R.; Rakhshan, K.; Aboutaleb, N.; Nikbakht, F.; Naderi, N.; Bakhshesh, M.; Azizi, Y. Apigenin Attenuates Doxorubicin Induced Cardiotoxicity via Reducing Oxidative Stress and Apoptosis in Male Rats. Life Sci. 2019, 232, 116623. DOI: 10.1016/j.lfs.2019.116623.
  • Korga, A.; Ostrowska, M.; Jozefczyk, A.; Iwan, M.; Wojcik, R.; Zgorka, G.; Herbet, M.; Vilarrubla, G. G.; Dudka, J. Apigenin and Hesperidin Augment the Toxic Effect of Doxorubicin Against HepG2 Cells. BMC Pharmacol. Toxicol. 2019, 20(1), 1–13. DOI: 10.1186/s40360-019-0301-2.
  • Chen, Z. S.; Tian, D.; Liao, X.; Zhang, Y.; Xiao, J.; Chen, W.; Liu, Q.; Chen, Y.; Li, D.; Zhu, L. Apigenin Combined with Gefitinib Blocks Autophagy Flux and Induces Apoptotic Cell Death Through Inhibition of HIF-1α, C-Myc, P-EGFR, and Glucose Metabolism in EGFR L858R+T790M-Mutated H1975 Cells. Front Pharmacol. 2019, 10, 260. DOI: 10.3389/fphar.2019.00260.
  • Xing, Z.; Jiang, J.; Wang, S.; Zhang, X.; Han, W.; Bao, R.; Zhang, X. Synthesis of Apigenin-Gadolinium Complex and Its Anti-Hyperuricemia in Mice. J. Chin. Soc. Rare Earths. 2019, 037(1), 114–120. DOI: 10.11785/S1000-4343.20190116.
  • Xing, Z. H.; Bao, R.; Jiang, J. W.; Wen-Lan, L. I.; Yang, B.; Pharmacy, S. O. Synthesis of Apigenin-Samarium Complex and Its Anti-Hyperuricemia in Mice. Nat. Prod. Res. Dev. 2018, 30(10), 1695–1700. DOI: 10.16333/j.1001-6880.2018.10.006.
  • Martínez Medina, J. J.; Naso, L. G.; Pérez, A. L.; Rizzi, A.; Okulik, N. B.; Ferrer, E. G.; Williams, P. A. M. Apigenin Oxidovanadium(iv) Cation Interactions. Synthesis, Spectral, Bovine Serum Albumin Binding, Antioxidant and Anticancer Studies. J. Photochem. Photobiol. A. 2017, 344, 84–100. DOI: 10.1016/j.jphotochem.2017.05.007.
  • Guo, M.; Zhang, Z.; Li, M.; Guo, K. Application of Spectral Probe on Determination of Trace Lead in Food. Chem. Reagents. 2018, 40(3), 274–276. DOI: 10.13822/j.cnki.hxsj.2018.03.016.
  • Parveen, A.; Sultana, R.; Lee, S. M.; Kim, T. H.; Kim, S. Y. Phytochemicals Against Anti‐diabetic Complications: Targeting the Advanced Glycation End Product Signaling Pathway. Arch. Pharmacal. Res. 2021, 44(4), 378–401. DOI: 10.1007/S12272-021-01323-9.
  • Zhou, Q.; Xu, H.; Yu, W.; Li, E.; Wang, M. Anti-Inflammatory Effect of an Apigenin-Maillard Reaction Product in Macrophages and Macrophage-Endothelial Cocultures. OXID. MED. CELL LONGEV. 2019, 2019, 1–12. DOI: 10.1155/2019/9026456.
  • Lee, Y. M.; Son, E.; Kim, S. H.; Kim, O. S.; Kim, D. S. Anti-Inflammatory and Anti-Osteoarthritis Effect of Mollugo Pentaphylla Extract. 2019, 57(1), 74–81. DOI: 10.1080/13880209.2018.1557700.
  • Tantowi, N. A. C. A.; Mohamed, S.; Lau, S. F.; Hussin, P. Comparison of Diclofenac with Apigenin-Glycosides Rich Clinacanthus Nutans Extract for Amending Inflammation and Catabolic Protease Regulations in Osteoporotic-Osteoarthritis Rat Model. DARU J. Pharm. Sci. 2020, 28(2), 443–453. DOI: 10.1007/S40199-020-00343-Y/FIGURES/6.
  • Qi, Y.; Ding, Z.; Yao, Y.; Ma, D.; Ren, F.; Yang, H.; Chen, A. Novel Triazole Analogs of Apigenin-7-Methyl Ether Exhibit Potent Antitumor Activity Against Ovarian Carcinoma Cells via the Induction of Mitochondrial-Mediated Apoptosis. Exp. Ther. Med. 2018, 17(3), 1670–1676. DOI: 10.3892/etm.2018.7138.
  • Zhang, S.; Xu, S.; Duan, H.; Zhu, Z.; Yang, Z.; Cao, J.; Zhao, Y.; Huang, Z.; Wu, Q.; Duan, J. A. Novel, Highly-Water-Soluble Apigenin Derivative Provides Neuroprotection Following Ischemia in Male Rats by Regulating the Erk/nrf2/ho-1 Pathway. Eur. J. Pharmacol. 2019, 855, 208–215. DOI: 10.1016/j.ejphar.2019.03.024.
  • Luo, Y.; Li, Y.; Lei, Z.; Yuan, Y.; Huang, Y.; Wei, G. Antioxidation Activities in vitro of Vicenin II Isolated from Dendrobii Officinalis Caulis and Effect on HepG2 Cells. Chin. J. Exp. Tradit. Med. Formulae. 2019, 025(1), 43–50. DOI: 10.13422/j.cnki.syfjx.20182210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.