407
Views
0
CrossRef citations to date
0
Altmetric
Review

Impact of processing on bioaccessibility of phytochemicals in nuts

, , , ORCID Icon, & ORCID Icon

References

  • Bolling, B. W.; Chen, C. Y. O.; McKay, D. L.; Blumberg, J. B. Tree Nut Phytochemicals: Composition, Antioxidant Capacity, Bioactivity, Impact Factors. A Systematic Review of Almonds, Brazils, Cashews, Hazelnuts, Macadamias, Pecans, Pine Nuts, Pistachios and Walnuts. Nutr. Res. Rev. 2011, 24, 244–275. DOI: 10.1017/S095442241100014X.
  • Bodoira, R.; Maestri, D. Phenolic Compounds from Nuts: Extraction, Chemical Profiles, and Bioactivity. J. Agric. Food Chem. 2020, 68, 927–942. DOI: 10.1021/acs.jafc.9b07160.
  • The International Nut and Dried Fruit Council (INC), Nuts and Dried Fruits Statistical Yearbook 2019/2020. (Tarragona, Spain). 2019, pp. 1–77. https://www.nutfruit.org/files/tech/1587539172_INC_Statistical_Yearbook_2019-2020.pdf
  • Schlörmann, W.; Birringer, M.; Böhm, V.; Löber, K.; Jahreis, G.; Lorkowski, S.; Müller, A.; Schöne, F.; Glei, M. Influence of Roasting Conditions on Health-Related Compounds in Different Nuts. Food. Chem. 2015, 180, 77–85. DOI: 10.1016/j.foodchem.2015.02.017.
  • Chang, S. K.; Alasalvar, C.; Bolling, B. W.; Shahidi, F. Nuts and Their Co-Products: The Impact of Processing (Roasting) on Phenolics, Bioavailability, and Health Benefits–a Comprehensive Review. J. Funct. Foods. 2016, 26, 88–122. DOI: 10.1016/j.jff.2016.06.029.
  • Alamprese, C.; Ratti, S.; Rossi, M. Effects of Roasting Conditions on Hazelnut Characteristics in a Two-Step Process. J. Food Eng. 2009, 95, 272–279. DOI: 10.1016/j.jfoodeng.2009.05.001.
  • Taş, N. G. N. O. L.; Vural, G. K. Phenolic Compounds in Natural and Roasted Nuts and Their Skins: A Brief Review. Curr. Opin. Food Sci. 2017, 14, 103–109. DOI: 10.1016/j.cofs.2017.03.001.
  • Minh, N. P.; Pham, V. T.; Da, V. T.; Vinh, T. Q.; Thuan, L. Q. Effect of Drying, Roasting and Preservation on Antioxidant of Cashew (Anacardium Occidentale) Nut. J.Pharm.sci. Res. 2019, 11, 930–934.
  • Blomhoff, R.; Carlsen, M. H.; Andersen, L. F.; Jacobs, D. R. Health Benefits of Nuts: Potential Role of Antioxidants. Br. J. Nutr. 2006, 96, S52–S60. DOI: 10.1017/BJN20061864.
  • Quirós-Sauceda, A.; Palafox-Carlos, H.; Sáyago-Ayerdi, S.; Ayala-Zavala, J.; Bello-Perez, L. A.; Alvarez-Parrilla, E.; De La Rosa, L.; González-Córdova, A.; González-Aguilar, G. Dietary Fiber and Phenolic Compounds as Functional Ingredients: Interaction and Possible Effect After Ingestion. Food & Function. 2014, 5, 1063–1072. DOI: 10.1039/C4FO00073K.
  • Rocchetti, G.; Chiodelli, G.; Giuberti, G.; Lucini, L. Bioaccessibility of Phenolic Compounds Following in vitro Large Intestine Fermentation of Nuts for Human Consumption. Food . Chem. 2018, 245, 633–640. DOI: 10.1016/j.foodchem.2017.10.146.
  • Wang, H.; Tu, Z.; Luo, Y.; Wang, H.; Ye, Y.; Zhang, L.; Sha, X., and Xie, Y. Contents of Polyphenols and Triterpenoids in Seven Types of Nuts and Their Antioxidant Activities. Food and Fermentation Industries , 2019, 6, 219–224. DOI: 10.13995/j.cnki.11-1802/ts.018274.
  • Stevens-Barrón, J. C.; de la Rosa, L. A.; Wall-Medrano, A.; Álvarez-Parrilla, E.; Rodríguez-Ramirez, R.; Robles-Zepeda, R. E.; Astiazaran-García, H. Chemical Composition and in vitro Bioaccessibility of Antioxidant Phytochemicals from Selected Edible Nuts. Nutrients. 2019, 11, 2303. DOI: 10.3390/nu11102303.
  • Carbonell-Capella, J. M.; Buniowska, M.; Barba, F. J.; Esteve, M. J.; Frígola, A. Analytical Methods for Determining Bioavailability and Bioaccessibility of Bioactive Compounds from Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 155–171. DOI: 10.1111/1541-4337.12049.
  • Dong, R.; Liu, S.; Xie, J.; Chen, Y.; Zheng, Y.; Zhang, X.; Zhao, E.; Wang, Z.; Xu, H.; Yu, Q. The Recovery, Catabolism and Potential Bioactivity of Polyphenols from Carrot Subjected to in vitro Simulated Digestion and Colonic Fermentation. Food Res. Int. 2021, 143, 110263. DOI: 10.1016/j.foodres.2021.110263.
  • Yu, Y.; Zhang, B.; Xia, Y.; Li, H.; Shi, X.; Wang, J.; Deng, Z. Bioaccessibility and Transformation Pathways of Phenolic Compounds in Processed Mulberry (Morus Alba L.) Leaves After in vitro Gastrointestinal Digestion and Faecal Fermentation. J. Funct. Foods. 2019, 60, 103406. DOI: 10.1016/j.jff.2019.06.008.
  • Mandalari, G.; Tomaino, A.; Rich, G.; Curto, R. L.; Arcoraci, T.; Martorana, M.; Bisignano, C.; Saija, A.; Parker, M.; Waldron, K. Polyphenol and Nutrient Release from Skin of Almonds During Simulated Human Digestion. Food. Chem. 2010, 122, 1083–1088. DOI: 10.1016/j.foodchem.2010.03.079.
  • Mandalari, G.; Bisignano, C.; Filocamo, A.; Chessa, S.; Sarò, M.; Torre, G.; Faulks, R. M.; Dugo, P. Bioaccessibility of Pistachio Polyphenols, Xanthophylls, and Tocopherols During Simulated Human Digestion. Nutrition. 2013, 29, 338–344. DOI: 10.1016/j.nut.2012.08.004.
  • Brufau, G.; Boatella, J.; Rafecas, M. Nuts: Source of Energy and Macronutrients. Br. J. Nutr. 2006, 96, S24–S28. DOI: 10.1017/BJN20061860.
  • Ghazzawi, H. A.; Al-Ismail, K. A Comprehensive Study on the Effect of Roasting and Frying on Fatty Acids Profiles and Antioxidant Capacity of Almonds, Pine, Cashew, and Pistachio. J. Food Qual. 2017, 2017, 1–8. DOI: 10.1155/2017/9038257.
  • Lloyd-Jones, D. M.; Hong, Y.; Labarthe, D.; Mozaffarian, D.; Appel, L. J.; Van Horn, L.; Greenlund, K.; Daniels, S.; Nichol, G.; Tomaselli, G. F. Defining and Setting National Goals for Cardiovascular Health Promotion and Disease Reduction: The American Heart Association’s Strategic Impact Goal Through 2020 and Beyond. Circulation. 2010, 121, 586–613. DOI: 10.1161/CIRCULATIONAHA.109.192703.
  • Anderson, T. J.; Grégoire, J.; Hegele, R. A.; Couture, P.; Mancini, G. J.; McPherson, R.; Francis, G. A.; Poirier, P.; Lau, D. C.; Grover, S. 2012 Update of the Canadian Cardiovascular Society Guidelines for the Diagnosis and Treatment of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult. Can. J. Cardiol. 2013, 29, 151–167. DOI: 10.1016/j.cjca.2012.11.032.
  • Herbello-Hermelo, P.; Lamas, J. P.; Lores, M.; Domínguez-González, R.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Polyphenol Bioavailability in Nuts and Seeds by an in vitro Dialyzability Approach. Food. Chem. 2018, 254, 20–25. DOI: 10.1016/j.foodchem.2018.01.183.
  • Hoffman, R.; Gerber, M., Hoffman, R., Gerber, M. Guide to the Composition of Mediterranean Plant Foods. Med. Diet. 2011, 94–136. DOI: 10.1002/9781118785027.ch5.
  • Reboul, E.; Richelle, M.; Perrot, E.; Desmoulins-Malezet, C.; Pirisi, V.; Borel, P. Bioaccessibility of Carotenoids and Vitamin E from Their Main Dietary Sources. J. Agric. Food Chem. 2006, 54, 8749–8755. DOI: 10.1021/jf061818s.
  • Suo, J.; Tong, K.; Wu, J.; Ding, M.; Chen, W.; Yang, Y.; Lou, H.; Hu, Y.; Yu, W.; Song, L. Comparative Transcriptome Analysis Reveals Key Genes in the Regulation of Squalene and β-Sitosterol Biosynthesis in Torreya Grandis. Ind. Crops Prod. 2019, 131, 182–193. DOI: 10.1016/j.indcrop.2019.01.035.
  • Trautwein, E. A.; Vermeer, M. A.; Hiemstra, H.; Ras, R. T. LDL-Cholesterol Lowering of Plant Sterols and Stanols-Which Factors Influence Their Efficacy? Nutrients. 2018, 10. DOI: 10.3390/nu10091262.
  • Cabral, C. E.; Klein, M. Phytosterols in the Treatment of Hypercholesterolemia and Prevention of Cardiovascular Diseases. Arq. Bras. Cardiol. 2017, 109, 475–482. DOI: 10.5935/abc.20170158.
  • Ubeyitogullari, A.; Ciftci, O. N. In vitro Bioaccessibility of Novel Low-Crystallinity Phytosterol Nanoparticles in Non-Fat and Regular-Fat Foods. Food Res. Int. 2019, 123, 27–35. DOI: 10.1016/j.foodres.2019.04.014.
  • Mohammadi, M.; Jafari, S. M.; Hamishehkar, H.; Ghanbarzadeh, B. Phytosterols as the Core or Stabilizing Agent in Different Nanocarriers. Trends in Food Sci & Techno. 2020, 101, 73–88. DOI: 10.1016/j.tifs.2020.05.004.
  • Rodriguez-Amaya, D. B. Update on Natural Food Pigments-A Mini-Review on Carotenoids, Anthocyanins, and Betalains. Food Res. Int. 2019, 124, 200–205. DOI: 10.1016/j.foodres.2018.05.028.
  • Liu, Z.; Feist, A. M.; Dragone, G.; Mussatto, S. I. Lipid and Carotenoid Production from Wheat Straw Hydrolysates by Different Oleaginous Yeasts. J. Cleaner Prod. 2020, 249, 119308. DOI: 10.1016/j.jclepro.2019.119308.
  • Squillace, P.; Adani, F.; Scaglia, B. Supercritical CO2 Extraction of Tomato Pomace: Evaluation of the Solubility of Lycopene in Tomato Oil as Limiting Factor of the Process Performance. Food. Chem. 2020, 315, 126224. DOI: 10.1016/j.foodchem.2020.126224.
  • Ribeiro, M. L. F. F.; Roos, Y. H.; Ribeiro, A. P. B.; Nicoletti, V. R. Effects of Maltodextrin Content in Double-Layer Emulsion for Production and Storage of Spray-Dried Carotenoid-Rich Microcapsules. Food Bioprod. Process. 2020, 124, 208–221. DOI: 10.1016/j.fbp.2020.09.004.
  • Saini, R. K.; Nile, S. H.; Park, S. W. Carotenoids from Fruits and Vegetables: Chemistry, Analysis, Occurrence, Bioavailability and Biological Activities. Food Res. Int. 2015, 76, 735–750. DOI: 10.1016/j.foodres.2015.07.047.
  • Koop, B. L.; da Silva, M. N.; da Silva, F. D.; dos Santos Lima, K. T.; Soares, L. S.; de Andrade, C. J.; Valencia, G. A.; Monteiro, A. R. Flavonoids, Anthocyanins, Betalains, curcumin, and Carotenoids: Sources, Classification and Enhanced Stabilization by Encapsulation and Adsorption. Food Res. Int. 2022, 110929. DOI:10.1016/j.foodres.2021.110929.
  • Tyssandier, V.; Reboul, E.; Dumas, J.-F.; Bouteloup-Demange, C.; Armand, M.; Marcand, J.; Sallas, M.; Borel, P. Processing of Vegetable-Borne Carotenoids in the Human Stomach and Duodenum. Am. J. Physiol. Gastrointest. Liver Physiol. 2003, 284, G913–G923. DOI: 10.1152/ajpgi.00410.2002.
  • Russell, W., and Duthie, G., Plant Secondary Metabolites and Gut Health: The Case for Phenolic Acids. Proceedings of the Nutrition Society, 2011. 70, 389–396 DOI: 10.1017/S0029665111000152.
  • Bolling, B. W. Almond Polyphenols: Methods of Analysis, Contribution to Food Quality, and Health Promotion. Compr. Rev. Food Sci. Food Saf. 2017, 16, 346–368. DOI: 10.1111/1541-4337.12260.
  • Jia, X.; Luo, H.; Xu, M.; Zhai, M.; Guo, Z.; Qiao, Y.; Wang, L. Dynamic Changes in Phenolics and Antioxidant Capacity During Pecan (Carya Illinoinensis) Kernel Ripening and Its Phenolics Profiles. Molecules. 2018, 23, 435. DOI: 10.3390/molecules23020435.
  • John, J. A.; Shahidi, F. Phenolic Compounds and Antioxidant Activity of Brazil Nut (Bertholletia Excelsa). J. Funct. Foods. 2010, 2, 196–209. DOI: 10.1016/j.jff.2010.04.008.
  • Bodoira, R.; Velez, A.; Rovetto, L.; Ribotta, P.; Maestri, D.; Martínez, M. Subcritical Fluid Extraction of Antioxidant Phenolic Compounds from Pistachio (Pistacia Vera L.) Nuts: Experiments, Modeling, and Optimization. J. Food Sci. 2019, 84, 963–970. DOI: 10.1111/1750-3841.14507.
  • Čolić, S. D.; Akšić, M. M. F.; Lazarević, K. B.; Zec, G. N.; Gašić, U. M.; Zagorac, D. Č. D.; Natić, M. M. Fatty Acid and Phenolic Profiles of Almond Grown in Serbia. Food. Chem. 2017, 234, 455–463. DOI: 10.1016/j.foodchem.2017.05.006.
  • Mandalari, G.; Genovese, T.; Bisignano, C.; Mazzon, E.; Wickham, M.; Di Paola, R.; Bisignano, G.; Cuzzocrea, S. Neuroprotective Effects of Almond Skins in Experimental Spinal Cord Injury. Clin. Nutr. 2011, 30, 221–233. DOI: 10.1016/j.clnu.2010.08.002.
  • Dias, G. P.; Cocks, G.; Do Nascimento Bevilaqua, M. C.; Nardi, A. E., and Thuret, S. Resveratrol: A Potential Hippocampal Plasticity Enhancer. Oxid. Med. Cell. Longev. 2016, 2016. DOI: 10.1155/2016/9651236.
  • Zupančič, Š.; Lavrič, Z.; Kristl, J. Stability and Solubility of Trans-Resveratrol are Strongly Influenced by pH and Temperature. Eur. J. Pharm. Biopharm. 2015, 93, 196–204. DOI: 10.1016/j.ejpb.2015.04.002.
  • Chen, C.; Blumberg, J. Phytochemical Composition of Nuts. Asia Pac. J. Clin. Nutr. 2008, 17, 329–332.
  • Karak, P. Biological Activities of Flavonoids: An Overview. Int. J. Pharm. Sci. Res. 2019, 10, 1567–1574.
  • Romani, A.; Campo, M.; Urciuoli, S.; Marrone, G.; Noce, A.; Bernini, R. An Industrial and Sustainable Platform for the Production of Bioactive Micronized Powders and Extracts Enriched in Polyphenols from Olea Europaea L. And Vitis Vinifera L. Wastes. Front. Nutrit. 2020, 7, 120. DOI: 10.3389/fnut.2020.00120.
  • Gu, L.; Kelm, M. A.; Hammerstone, J. F.; Beecher, G.; Holden, J.; Haytowitz, D.; Gebhardt, S.; Prior, R. L. Concentrations of Proanthocyanidins in Common Foods and Estimations of Normal Consumption. J. Nutr. 2004, 134, 613–617. DOI: 10.1093/jn/134.3.613.
  • Deprez, S.; Mila, I.; Huneau, J.-F.; Tome, D.; Scalbert, A. Transport of Proanthocyanidin Dimer, Trimer, and Polymer Across Monolayers of Human Intestinal Epithelial Caco-2 Cells. Antioxid. Redox Signaling. 2001, 3, 957–967. DOI: 10.1089/152308601317203503.
  • Spencer, J. P.; Chaudry, F.; Pannala, A. S.; Srai, S. K.; Debnam, E.; Rice-Evans, C. Decomposition of Cocoa Procyanidins in the Gastric Milieu. Biochem. Biophys. Res. Commun. 2000, 272, 236–241. DOI: 10.1006/bbrc.2000.2749.
  • Serra, A.; Macia, A.; Romero, M.-P.; Valls, J.; Bladé, C.; Arola, L.; Motilva, M.-J. Bioavailability of Procyanidin Dimers and Trimers and Matrix Food Effects in in vitro and in vivo Models. Br. J. Nutr. 2010, 103, 944–952. DOI: 10.1017/S0007114509992741.
  • Ou-Yang, C.; Chai, W.; Xu, X.; Song, S.; Wei, Q.; Huang, Q.; Zou, Z. Inhibitory Potential of Proanthocyanidins from the Fruit Pulp of Clausena Lansium (Lour.) Skeels Against α-Glucosidase and Non-Enzymatic Glycation: Activity and Mechanism. Proc. Biochem. 2020, 91, 364–373. DOI: 10.1016/j.procbio.2020.01.006.
  • Wu, T.; Wang, X.; Xiong, H.; Deng, Z.; Peng, X.; Xiao, L.; Jiang, L.; Sun, Y. Bioactives and Their Metabolites from Tetrastigma Hemsleyanum Leaves Ameliorate DSS-Induced Colitis via Protecting the Intestinal Barrier, Mitigating Oxidative Stress and Regulating the Gut Microbiota. Food & Function. 2021, 12, 11760–11776. DOI: 10.1039/D1FO02588K.
  • Masthoff, L. J.; Hoff, R.; Verhoeckx, K. C. M.; van Os-Medendorp, H.; Michelsen-Huisman, A.; Baumert, J. L.; Pasmans, S. G.; Meijer, Y.; Knulst, A. C. A Systematic Review of the Effect of Thermal Processing on the Allergenicity of Tree Nuts. Allergy. 2013, 68, 983–993. DOI: 10.1111/all.12185.
  • Aydar, E. F.; Tutuncu, S.; Ozcelik, B. Plant-Based Milk Substitutes: Bioactive Compounds, Conventional and Novel Processes, Bioavailability Studies, and Health Effects. J. Funct. Foods. 2020, 70, 103975. DOI: 10.1016/j.jff.2020.103975.
  • Ahlholm, J.; Helander, M.; Savolainen, J. Genetic and Environmental Factors Affecting the Allergenicity of Birch (Betula Pubescens Ssp. Czerepanovii [Orl.] Hämet-Ahti) Pollen. Clin. Exp. Allergy. 1998, 28, 1384–1388. DOI: 10.1046/j.1365-2222.1998.00404.x.
  • Bryce, M.; Drews, O.; Schenk, M.; Menzel, A.; Estrella, N.; Weichenmeier, I.; Smulders, M.; Buters, J.; Ring, J.; Görg, A. Impact of Urbanization on the Proteome of Birch Pollen and Its Chemotactic Activity on Human Granulocytes. Int. Arch. Allergy Immunol. 2010, 151, 46–55. DOI: 10.1159/000232570.
  • Arinola, S. O.; Adesina, K. Effect of Thermal Processing on the Nutritional, Antinutritional, and Antioxidant Properties of Tetracarpidium Conophorum (African Walnut). J. of Food Proc. 2014, 2014, 1–4. DOI: 10.1155/2014/418380.
  • Averitt, B. J.; Welbaum, G. E.; Li, X.; Prenger, E.; Qin, J.; Zhang, B. Evaluating Genotypes and Seed Treatments to Increase Field Emergence of Low Phytic Acid Soybeans. Agriculture. 2020, 10, 516. DOI: 10.3390/agriculture10110516.
  • Rollán, G. C.; Gerez, C. L.; Leblanc, J. G. Lactic Fermentation as a Strategy to Improve the Nutritional and Functional Values of Pseudocereals. Front. Nutrit. 2019, 6. DOI: 10.3389/fnut.2019.00098.
  • Bongers, A.; van den Heuvel, E. G. H. M. Prebiotics and the Bioavailability of Minerals and Trace Elements. Food Rev. Int. 2003, 19, 397–422. DOI: 10.1081/FRI-120025482.
  • Kumari, S. The Effect of Soaking Almonds and Hazelnuts on Phytate and Mineral Concentrations; Dunedin, New Zealand: University of Otago, 2018.
  • Duduzile Buthelezi, N. M.; Samukelo Magwaza, L.; Zeray Tesfay, S. Postharvest Pre-Storage Processing Improves Antioxidants, Nutritional and Sensory Quality of Macadamia Nuts. Sci. Hortic. 2019, 251, 197–208. DOI: 10.1016/j.scienta.2019.03.026.
  • Santos, J.; Alvarez-Ortí, M.; Sena-Moreno, E.; Rabadán, A.; Pardo, J. E.; Oliveira M, B. P. Effect of Roasting Conditions on the Composition and Antioxidant Properties of Defatted Walnut Flour. J. Sci. Food Agric. 2018, 98, 1813–1820. DOI: 10.1002/jsfa.8657.
  • Pelvan, E.; Olgun, E. Ö.; Karadağ, A.; Alasalvar, C. Phenolic Profiles and Antioxidant Activity of Turkish Tombul Hazelnut Samples (Natural, Roasted, and Roasted Hazelnut Skin). Food. Chem. 2018, 244, 102–108. DOI: 10.1016/j.foodchem.2017.10.011.
  • Król, K.; Gantner, M.; Piotrowska, A.; Hallmann, E. Effect of Climate and Roasting on Polyphenols and Tocopherols in the Kernels and Skin of Six Hazelnut Cultivars (Corylus Avellana L.). Agriculture. 2020, 10, 36. DOI: 10.3390/agriculture10020036.
  • Kita, A.; Figiel, A. Effect of Roasting on Properties of Walnuts. Pol. J. Food Nutr. Sci. 2007, 57, 89–94.
  • Simwaka, J.; Chamba, M.; Huiming, Z.; Masamba, K., and Luo, Y. Effect of Fermentation on Physicochemical and Antinutritional Factors of Complementary Foods from Millet, Sorghum, Pumpkin and Amaranth Seed Flours. Int. Food Res. J. 2017, 24, 1869–1879.
  • Garrido, I.; Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B. Polyphenols and Antioxidant Properties of Almond Skins: Influence of Industrial Processing. J. Food Sci. 2008, 73, C106–C115. DOI: 10.1111/j.1750-3841.2007.00637.x.
  • Kong, F.; Singh, R. P. Digestion of Raw and Roasted Almonds in Simulated Gastric Environment. Food Biophys. 2009, 4, 365–377. DOI: 10.1007/s11483-009-9135-6.
  • Kornsteiner, M.; Wagner, K.-H.; Elmadfa, I. Tocopherols and Total Phenolics in 10 Different Nut Types. Food. Chem. 2006, 98, 381–387. DOI: 10.1016/j.foodchem.2005.07.033.
  • Oliveira, I.; Meyer, A. S.; Afonso, S.; Sequeira, A.; Vilela, A.; Goufo, P.; Trindade, H., and Gonçalves, B. Effects of Different Processing Treatments on Almond (Prunus Dulcis) Bioactive Compounds, Antioxidant Activities, Fatty Acids, and Sensorial Characteristics. Plants. Basel, Switzerland. 2020, 9, 1627. DOI: 10.3390/plants9111627.
  • Lin, J.-T.; Liu, S.-C.; Hu, C.-C.; Shyu, Y.-S.; Hsu, C.-Y.; Yang, D.-J. Effects of Roasting Temperature and Duration on Fatty Acid Composition, Phenolic Composition, Maillard Reaction Degree and Antioxidant Attribute of Almond (Prunus Dulcis) Kernel. Food. Chem. 2016, 190, 520–528. DOI: 10.1016/j.foodchem.2015.06.004.
  • Lemos, M. R. B.; Siqueira, E. M. D. A.; Arruda, S. F.; Zambiazi, R. C. The Effect of Roasting on the Phenolic Compounds and Antioxidant Potential of Baru Nuts [Dipteryx Alata Vog.]. Food Res. Int. 2012, 48, 592–597. DOI: 10.1016/j.foodres.2012.05.027.
  • Griffin, L.; Dean, L. Nutrient Composition of Raw, Dry-Roasted, and Skin-On Cashew Nuts. J. Food Res. 2017, 6, 13–28. DOI: 10.5539/jfr.v6n6p13.
  • Schmitzer, V.; Slatnar, A.; Veberic, R.; Stampar, F.; Solar, A. Roasting Affects Phenolic Composition and Antioxidative Activity of Hazelnuts (Corylus Avellana L.). J. Food Sci. 2011, 76, S14–S19. DOI: 10.1111/j.1750-3841.2010.01898.x.
  • Fu, M.; Qu, Q.; Yang, X.; Zhang, X. Effect of Intermittent Oven Drying on Lipid Oxidation, Fatty Acids Composition and Antioxidant Activities of Walnut. LWT - Food Sci. Technol. 2016, 65, 1126–1132. DOI: 10.1016/j.lwt.2015.10.002.
  • Seow, C. C.; Gwee, C. N. Coconut Milk: Chemistry and Technology. Int. J. of Food Sci & Techno. 1997, 32, 189–201. DOI: 10.1046/j.1365-2621.1997.00400.x.
  • Vidal-Valverde, C.; Frias, J.; Estrella, I.; Gorospe, M. J.; Ruiz, R.; Bacon, J. Effect of Processing on Some Antinutritional Factors of Lentils. J. Agric. Food Chem. 1994, 42, 2291–2295. DOI: 10.1021/jf00046a039.
  • Jamshed, H.; Arslan, J.; Sultan, F. A. T.; Siddiqi, H. S.; Qasim, M.; Gilani, A. U. H. Almond Protects the Liver in Coronary Artery Disease: A Randomized Controlled Clinical Trial. JPMA. The Journal of the Pakistan Medical Association. 2021, 71, 791. DOI: 10.47391/JPMA.198.
  • Arslan, J.; Ahmed, T.; Gilani, A.-H. Soaked Almonds Exhibit Vitamin E-Dependent Memory Protective Effect in Rodent Models. Int. J. of Pharm. 2017, 13, 448–456. DOI: 10.3923/ijp.2017.448.456.
  • Greiner, R., and Konietzny, U. Phytase for Food Application. Food. Techno & Biotechnol. 2006, 44, 125–140.
  • Dhakal, S. Impact of High Pressure Processing on Immunoreactivity and Some Physico-Chemical Properties of Almond Milk; Ohio, USA,: The Ohio State University, 2013.
  • Cuadrado, C.; Sanchiz, A.; Vicente, F.; Ballesteros, I.; Linacero, R. Changes Induced by Pressure Processing on Immunoreactive Proteins of Tree Nuts. Molecules. 2020, 25, 954. DOI: 10.3390/molecules25040954.
  • Munekata, P. E. S.; Domínguez, R.; Budaraju, S.; Roselló-Soto, E.; Barba, F. J.; Mallikarjunan, K.; Roohinejad, S.; Lorenzo, J. M. Effect of Innovative Food Processing Technologies on the Physicochemical and Nutritional Properties and Quality of Non-Dairy Plant-Based Beverages. Foods. 2020, 9, 288. DOI: 10.3390/foods9030288.
  • Manzoor, M. F.; Zeng, X. A.; Ahmad, N.; Ahmed, Z.; Rehman, A.; Aadil, R. M.; Roobab, U.; Siddique, R.; Rahaman, A. Effect of Pulsed Electric Field and Thermal Treatments on the Bioactive Compounds, Enzymes, Microbial, and Physical Stability of Almond Milk During Storage. J. Food Process. Preserv. 2020, 44. DOI: 10.1111/jfpp.14541.
  • Tan, C. X.; Tan, S. S., and Tan, S. T.; Chapter 52 - Cold Pressed Macadamia Oil. in Cold Pressed Oils 2020, 587–595. DOI: 10.1016/B978-0-12-818188-1.00052-9.
  • Grajzer, M.; Szmalcel, K.; Kuźmiński, Ł.; Witkowski, M.; Kulma, A.; Prescha, A. Characteristics and Antioxidant Potential of Cold-Pressed Oils—possible Strategies to Improve Oil Stability. Foods. 2020, 9, 1630. DOI: 10.3390/foods9111630.
  • Carrillo, W.; Carpio, C.; Morales, D.; Vilcacundo, E.; Alvarez, M. FATTY ACIDS COMPOSITION in MACADAMIA SEDES OIL (MACADAMIA INTEGRIFOLIA) from ECUADOR. Asian J. Pharm. Clin. Res. 2017, 10, 303–306. DOI: 10.22159/ajpcr.2017.v10i2.15618.
  • Kaseke, T.; Fawole, O. A.; Opara, U. L. Chemistry and Functionality of Cold-Pressed Macadamia Nut Oil. Processes. 2021, 56. DOI:10.3390/pr10010056.
  • Cheung, M.; Deutsch, J.; Sherman, R.; Katz, S.; Wise, P. Fermentation on Liking and Phytic Acid Concentration of Millet: A Climate Resistant Grain – a Pilot Study. Current Developments in Nutrition. 2022, 6, 73. DOI: 10.1093/cdn/nzac050.003.
  • Sokrab, A. M.; Mohamed Ahmed, I. A.; Babiker, E. E. Effect of Fermentation on Antinutrients, and Total and Extractable Minerals of High and Low Phytate Corn Genotypes. J. Food Sci. Technol. 2014, 51, 2608–2615. DOI: 10.1007/s13197-012-0787-8.
  • Rekha, C.; Vijayalakshmi, G. Bioconversion of Isoflavone Glycosides to Aglycones, Mineral Bioavailability and Vitamin B Complex in Fermented Soymilk by Probiotic Bacteria and Yeast. J. Appl. Microbiol. 2010, 109, 1198–1208. DOI: 10.1111/j.1365-2672.2010.04745.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.