302
Views
3
CrossRef citations to date
0
Altmetric
Review

Nitric Oxide and Its Donor Sodium-Nitroprusside Regulation of the Postharvest Quality and Oxidative Stress on Fruits: A Systematic Review and Meta-Analysis

, , &

References

  • Xu, T.; Chen, Y.; Kang, H. Melatonin is a Potential Target for Improving Post-Harvest Preservation of Fruits and Vegetables. Front. Plant Sci. 2019, 10, 1388. DOI: 10.3389/fpls.2019.01388.
  • Barrett, D. M.; Lloyd, B. Advanced Preservation Methods and Nutrient Retention in Fruits and Vegetables. J. Sci. Food Agric. 2012, 92(1), 7–22. DOI: 10.1002/jsfa.4718.
  • Kerch, G. Chitosan Films and Coatings Prevent Losses of Fresh Fruit Nutritional Quality: A Review. Trends Food Sci. Technol. 2015, 46(2), 159–166. DOI: 10.1016/j.tifs.2015.10.010.
  • Zhang, W.; Jiang, W. UV Treatment Improved the Quality of Postharvest Fruits and Vegetables by Inducing Resistance. Trends Food Sci. Technol. 2019, 92, 71–80. DOI: 10.1016/j.tifs.2019.08.012.
  • Adeyeye, O.; Sadiku, E.; Selvam, S. P.; Perumal, A.; Nambiar, R. Post-Harvest Preservation of Mango Using Tray and Freeze Drying Methods. OIDA Int. J. Sustain. Dev. 2017, 10(09), 11–20. https://ssrn.com/abstract=3066185.
  • Zhou, H.-W.; Lurie, S.; Lers, A.; Khatchitski, A.; Sonego, L.; Arie, R. B. Delayed Storage and Controlled Atmosphere Storage of Nectarines: Two Strategies to Prevent Woolliness. Postharvest. Biol. Technol. 2000, 18(2), 133–141. DOI: 10.1016/S0925-5214(99)00072-1.
  • Wendehenne, D.; Durner, J.; Klessig, D. F. Nitric Oxide: A New Player in Plant Signalling and Defence Responses. Curr. Opin. Plant Biol. 2004, 7(4), 449–455. DOI: 10.1016/j.pbi.2004.04.002.
  • Wendehenne, D.; Pugin, A.; Klessig, D. F.; Durner, J. Nitric Oxide: Comparative Synthesis and Signaling in Animal and Plant Cells. Trends Plant Sci. 2001, 6(4), 177–183. DOI: 10.1016/s1360-1385(01)01893-3.
  • Klepper, L. Nitric Oxide (NO) and Nitrogen Dioxide (NO2) Emissions from Herbicide-Treated Soybean Plants. Atmos. Environ. (1967). 1979, 13(4), 537–542. DOI: 10.1016/0004-6981(79)90148-3.
  • Leshem, Y.; Wills, R., and Ku, V. In Applications of Nitric Oxide (NO) for Postharvest Control, IV International Conference on Postharvest Science 553, 2000, Jeruselam, Israel, 2000; pp 571–576.
  • Jasid, S.; Simontacchi, M.; Bartoli, C. G.; Puntarulo, S. Chloroplasts as a Nitric Oxide Cellular Source. Effect of Reactive Nitrogen Species on Chloroplastic Lipids and Proteins. Plant Physiol. 2006, 142(3), 1246–1255. DOI: 10.1104/pp.106.086918.
  • Igamberdiev, A. U.; Bykova, N. V.; Shah, J. K.; Hill, R. D. Anoxic Nitric Oxide Cycling in Plants: Participating Reactions and Possible Mechanisms. Physiol. Plant. 2010, 138(4), 393–404. DOI: 10.1111/j.1399-3054.2009.01314.x.
  • Grozeff, G. E. G.; Alegre, M. L.; Senn, M. E.; Chaves, A. R.; Simontacchi, M.; Bartoli, C. G. Combination of Nitric Oxide and 1-MCP on Postharvest Life of the Blueberry (Vaccinium Spp.) Fruit. Postharvest. Biol. Technol. 2017, 133, 72–80. DOI: 10.1016/j.postharvbio.2017.06.012.
  • Lai, T.; Wang, Y.; Li, B.; Qin, G.; Tian, S. Defense Responses of Tomato Fruit to Exogenous Nitric Oxide During Postharvest Storage. Postharvest. Biol. Technol. 2011, 62(2), 127–132. DOI: 10.1016/j.postharvbio.2011.05.011.
  • Singh, S.; Singh, Z.; Swinny, E. Postharvest Nitric Oxide Fumigation Delays Fruit Ripening and Alleviates Chilling Injury During Cold Storage of Japanese Plums (Prunus Salicina Lindell). Postharvest. Biol. Technol. 2009, 53(3), 101–108. DOI: 10.1016/j.postharvbio.2009.04.007.
  • Venkatachalam, K. Exogenous Nitric Oxide Treatment Impacts Antioxidant Response and Alleviates Chilling Injuries in Longkong Pericarp. Sci. Hortic. 2018, 237, 311–317. DOI: 10.1016/j.scienta.2018.04.032.
  • Wang, Y.; Luo, Z.; Du, R. Nitric Oxide Delays Chlorophyll Degradation and Enhances Antioxidant Activity in Banana Fruits After Cold Storage. Acta Physiologiae Plant. 2015, 37(4), 74. DOI: 10.1007/s11738-015-1821-z.
  • Wu, B.; Guo, Q.; Li, Q.; Ha, Y.; Li, X.; Chen, W. Impact of Postharvest Nitric Oxide Treatment on Antioxidant Enzymes and Related Genes in Banana Fruit in Response to Chilling Tolerance. Postharvest. Biol. Technol. 2014, 92, 157–163. DOI: 10.1016/j.postharvbio.2014.01.017.
  • Yan, B.; Zhang, Z.; Zhang, P.; Zhu, X.; Jing, Y.; Wei, J.; Wu, B. Nitric Oxide Enhances Resistance Against Black Spot Disease in Muskmelon and the Possible Mechanisms Involved. Sci. Hortic. 2019, 256, 108650. DOI: 10.1016/j.scienta.2019.108650.
  • Zaharah, S.; Singh, Z. Mode of Action of Nitric Oxide in Inhibiting Ethylene Biosynthesis and Fruit Softening During Ripening and Cool Storage of ‘Kensington Pride’mango. Postharvest. Biol. Technol. 2011, 62(3), 258–266. DOI: 10.1016/j.postharvbio.2011.06.007.
  • Zaharah, S.; Singh, Z. Postharvest Nitric Oxide Fumigation Alleviates Chilling Injury, Delays Fruit Ripening and Maintains Quality in Cold-Stored ‘Kensington Pride’mango. Postharvest. Biol. Technol. 2011, 60(3), 202–210. DOI: 10.1016/j.postharvbio.2011.01.011.
  • Adhikary, T.; Gill, P.; Jawandha, S.; Bhardwaj, R.; Anurag, R. Efficacy of Postharvest Sodium Nitroprusside Application to Extend Storability by Regulating Physico-Chemical Quality of Pear Fruit. Food Chem. 2021, 346, 128934. DOI: 10.1016/j.foodchem.2020.128934.
  • Cai, H.; Han, S.; Yu, M.; Ma, R.; Yu, Z. Exogenous Nitric Oxide Fumigation Promoted the Emission of Volatile Organic Compounds in Peach Fruit During Shelf Life After Long-Term Cold Storage. Food Res. Int. 2020, 133, 109135. 10.1016/j.foodres.2020.109135.
  • Flores, F. B.; Sánchez-Bel, P.; Valdenegro, M.; Romojaro, F.; Martínez-Madrid, M. C.; Egea, M. I. Effects of a Pretreatment with Nitric Oxide on Peach (Prunus Persica L.) Storage at Room Temperature. Eur. Food Res. Technol. 2008, 227(6), 1599–1611. DOI: 10.1007/s00217-008-0884-0.
  • Han, S.; Cai, H.; An, X.; Huan, C.; Wu, X.; Jiang, L.; Yu, M.; Ma, R.; Yu, Z. Effect of Nitric Oxide on Sugar Metabolism in Peach Fruit (Cv. Xiahui 6) During Cold Storage. Postharvest. Biol. Technol. 2018, 142, 72–80. DOI: 10.1016/j.postharvbio.2018.04.008.
  • Tran, T.; Aiamla-Or, S.; Srilaong, V.; Jitareerat, P.; Wongs-Aree, C., and Uthairatanakij, A. In Application of Nitric Oxide to Extend the Shelf Life of Mango Fruit, II Southeast Asia Symposium on Quality Management in Postharvest Systems 1088, 2013, Vientiane, Laos, 2013; pp 97–102.
  • Corpas, F. J.; Palma, J. Nitric Oxide On/off in Fruit Ripening. Plant Biol. 2018, 20(5), 805–807. DOI: 10.1111/plb.12852.
  • Ranjbari, F.; Moradinezhad, F.; Khayyat, M. Efficacy of Nitric Oxide and Film Wrapping on Quality Maintenance and Alleviation of Chilling Injury on Pomegranate Fruit. J. Agri. Sci. Technol. 2018, 20(5), 1025–1036.
  • Steelheart, C.; Alegre, M. L.; Bahima, J. V.; Senn, M. E.; Simontacchi, M.; Bartoli, C. G.; Grozeff, G. E. G. Nitric Oxide Improves the Effect of 1-Methylcyclopropene Extending the Tomato (Lycopersicum Esculentum L.) Fruit Postharvest Life. Sci. Hortic. 2019, 255, 193–201. DOI: 10.1016/j.scienta.2019.04.035.
  • Chen, Y.; Ge, Y.; Zhao, J.; Wei, M.; Li, C.; Hou, J.; Cheng, Y.; Chen, J. Postharvest Sodium Nitroprusside Treatment Maintains Storage Quality of Apple Fruit by Regulating Sucrose Metabolism. Postharvest. Biol. Technol. 2019, 154, 115–120. DOI: 10.1016/j.postharvbio.2019.04.024.
  • Asghari, M.; Abdollahi, R. Changes in Quality of Strawberries During Cold Storage in Response to Postharvest Nitric Oxide and Putrescine Treatments. Acta Aliment. 2013, 42(4), 529–539. DOI: 10.1556/aalim.42.2013.4.8.
  • Mohamed, M.; Abd El-Khalek, A.; Elmehrat, H.; Mahmoud, G. A. Nitric Oxide, Oxalic Acid and Hydrogen Peroxide Treatments to Reduce Decay and Maintain Postharvest Quality of ‘Valencia’orange Fruits During Cold Storage. Egypt. J. Hortic. 2016, 43(1), 137–161. DOI: https://dx.doi.org/10.21608/ejoh.2016.2833.
  • Zhao, Y.; Zhu, X.; Hou, Y.; Wang, X.; Li, X. Postharvest Nitric Oxide Treatment Delays the Senescence of Winter Jujube (Zizyphus Jujuba Mill. Cv. Dongzao) Fruit During Cold Storage by Regulating Reactive Oxygen Species Metabolism. Sci. Hortic. 2020, 261, 109009. DOI: 10.1016/j.scienta.2019.109009.
  • Ren, Y.; Xue, Y.; Tian, D.; Zhang, L.; Xiao, G.; He, J. Improvement of Postharvest Anthracnose Resistance in Mango Fruit by Nitric Oxide and the Possible Mechanisms Involved. J. Agric. Food. Chem. 2020, 68(52), 15460–15467. DOI: 10.1021/acs.jafc.0c04270.
  • Tareen, M. J.; Singh, Z.; Khan, A. S.; Abbasi, N. A.; Naveed, M. Combined Applications of Aminoethoxyvinylglycine with Salicylic Acid or Nitric Oxide Reduce Oxidative Stress in Peach During Ripening and Cold Storage. J. Plant Growth Regul. 2017, 36(4), 983–994. DOI: 10.1007/s00344-017-9702-x.
  • Wu, Z.; Dong, C.; Wei, J.; Guo, L.; Meng, Y.; Wu, B.; Chen, J. A Transcriptional Study of the Effects of Nitric Oxide on Rachis Browning in Table Grapes Cv. Thompson Seedless. Postharvest. Biol. Technol. 2021, 175, 111471. DOI: 10.1016/j.postharvbio.2021.111471.
  • Ghorbani, B.; Pakkish, Z.; Khezri, M. Nitric Oxide Increases Antioxidant Enzyme Activity and Reduces Chilling Injury in Orange Fruit During Storage. N. Z. J. Crop Hortic. Sci. 2018, 46(2), 101–116. DOI: 10.1080/01140671.2017.1345764.
  • Ghorbani, B.; Pakkish, Z.; Najafzadeh, R. Shelf Life Improvement of Grape (Vitis Vinifera L. Cv. Rish Baba) Using Nitric Oxide (NO) During Chilling Damage. Int. J. Food. Prop. 2017, 20(sup3), S2750–S2763. DOI: 10.1080/10942912.2017.1373663.
  • Jiménez-Muñoz, R.; Palma, F.; Carvajal, F.; Castro-Cegrí, A.; Pulido, A.; Jamilena, M.; Romero-Puertas, M. C.; Garrido, D. Pre-Storage Nitric Oxide Treatment Enhances Chilling Tolerance of Zucchini Fruit (Cucurbita Pepo L.) by S-Nitrosylation of Proteins and Modulation of the Antioxidant Response. Postharvest. Biol. Technol. 2021, 171, 111345. DOI: 10.1016/j.postharvbio.2020.111345.
  • Maestri, E.; Pavlicevic, M.; Montorsi, M.; Marmiroli, N. Meta‐analysis for Correlating Structure of Bioactive Peptides in Foods of Animal Origin with Regard to Effect and Stability. Compr. Rev. Food Sci. Food Saf. 2019, 18(1), 3–30. DOI: 10.1111/1541-4337.12402.
  • Page, M. J.; McKenzie, J. E.; Bossuyt, P. M.; Boutron, I.; Hoffmann, T. C.; Mulrow, C. D.; Shamseer, L.; Tetzlaff, J. M.; Akl, E. A.; Brennan, S. E. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Bmj. 2021, 372. DOI: 10.1136/bmj.n71.
  • Aboul-Soud, M. A. Exogenous Nitric Oxide Negatively Impacts on Ethylene Emissions from. Res. J. Biol. Sci. 2010, 5(2), 209–214. DOI: http://dx.doi.org/10.3923/rjbsci.2010.209.214.
  • Aghdam, M. S.; Kakavand, F.; Rabiei, V.; Zaare-Nahandi, F.; Razavi, F. γ-Aminobutyric Acid and Nitric Oxide Treatments Preserve Sensory and Nutritional Quality of Cornelian Cherry Fruits During Postharvest Cold Storage by Delaying Softening and Enhancing Phenols Accumulation. Sci. Hortic. 2019, 246, 812–817. DOI: http://dx.doi.org/10.1016/j.scienta.2018.11.064.
  • Barman, K.; Siddiqui, M. W.; Patel, V.; Prasad, M. Nitric Oxide Reduces Pericarp Browning and Preserves Bioactive Antioxidants in Litchi. Sci. Hortic. 2014, 171, 71–77. DOI: 10.1016/j.scienta.2014.03.036.
  • Brackmann, A.; Ludwig, V.; Thewes, F. R.; Anese, R. O.; Schultz, E. E.; Bergetti, M. R. P. Ethanol and Nitric Oxide in Quality Maintenance of ‘Galaxy’apples Stored Under Controlled Atmosphere. Rev. Bras. Frutic. 2017, 39. DOI: 10.1590/0100-29452017322.
  • Chang, Z.; Jingying, S.; Liqin, Z.; Changle, L.; Qingguo, W. Cooperative Effects of Hydrogen Sulfide and Nitric Oxide on Delaying Softening and Decay of Strawberry. Int. J. Agric. Biol. Eng. 2014, 7(6), 114–122. DOI: 10.3965/j.ijabe.20140706.014.
  • Chen, Y.; Deng, H.; Zhang, J.; Tiemur, A.; Wang, J.; Wu, B. Effect of Nitric Oxide Fumigation on Microorganisms and Quality of Dried Apricots During Storage. J. Food Process Preserv. 2021, 45(12), e15725. DOI: 10.1111/jfpp.15725.
  • Dai, H.; Ji, S.; Zhou, X.; Wei, B.; Cheng, S.; Zhang, F.; Wang, S.; Zhou, Q. Postharvest Effects of Sodium Nitroprusside Treatment on Membrane Fatty Acids of Blueberry (Vaccinium Corymbosum, Cv. Bluecrop) Fruit. Sci. Hortic. 2021, 288, 110307. DOI: 10.1016/j.scienta.2021.110307.
  • Duan, X.; Su, X.; You, Y.; Qu, H.; Li, Y.; Jiang, Y. Effect of Nitric Oxide on Pericarp Browning of Harvested Longan Fruit in Relation to Phenolic Metabolism. Food Chem. 2007, 104(2), 571–576. DOI: 10.1016/j.foodchem.2006.12.007.
  • Eum, H. L.; Hwang, D. K.; Lee, S. K. Nitric Oxide Reduced Chlorophyll Degradation in Broccoli (Brassica Oleracea L. Var. Italica) Florets During Senescence. Food Sci. Technol. Int. 2009, 15(3), 223–228. DOI: 10.1177/1082013208339706.
  • Eum, H. L.; Kim, H. B.; Choi, S. B.; Lee, S. K. Regulation of Ethylene Biosynthesis by Nitric Oxide in Tomato (Solanum Lycopersicum L.) Fruit Harvested at Different Ripening Stages. Eur. Food Res. Technol. 2009, 228(3), 331–338. DOI: 10.1007/s00217-008-0938-3.
  • Fan, B.; Shen, L.; Liu, K.; Zhao, D.; Yu, M.; Sheng, J. Interaction Between Nitric Oxide and Hydrogen Peroxide in Postharvest Tomato Resistance Response to Rhizopus Nigricans. J. Sci. Food Agric. 2008, 88(7), 1238–1244. DOI: 10.1002/jsfa.3212.
  • Ge, Y.; Chen, Y.; Li, C.; Zhao, J.; Wei, M.; Li, X.; Yang, S.; Mi, Y. Effect of Sodium Nitroprusside Treatment on Shikimate and Phenylpropanoid Pathways of Apple Fruit. Food Chem. 2019, 290, 263–269. DOI: 10.1016/j.foodchem.2019.04.010.
  • Ge, Y.; Li, X.; Li, C.; Tang, Q.; Duan, B.; Cheng, Y.; Hou, J.; Li, J. Effect of Sodium Nitroprusside on Antioxidative Enzymes and the Phenylpropanoid Pathway in Blueberry Fruit. Food Chem. 2019, 295, 607–612. DOI: 10.1016/j.foodchem.2019.05.160.
  • Gheysarbigi, S.; Mirdehghan, S. H.; Ghasemnezhad, M.; Nazoori, F. The Inhibitory Effect of Nitric Oxide on Enzymatic Browning Reactions of In-Package Fresh Pistachios (Pistacia Vera L.). Postharvest. Biol. Technol. 2020, 159, 110998. DOI: 10.1016/j.postharvbio.2019.110998.
  • Guo, Q.; Wu, B.; Chen, W.; Zhang, Y.; Wang, J.; Li, X. Effects of Nitric Oxide Treatment on the Cell Wall Softening Related Enzymes and Several Hormones of Papaya Fruit During Storage. Food Sci. Technol. Int. 2014, 20(4), 309–317. DOI: 10.1177/1082013213484919.
  • Hu, M.; Yang, D.; Huber, D. J.; Jiang, Y.; Li, M.; Gao, Z.; Zhang, Z. Reduction of Postharvest Anthracnose and Enhancement of Disease Resistance in Ripening Mango Fruit by Nitric Oxide Treatment. Postharvest. Biol. Technol. 2014, 97, 115–122. DOI: 10.1016/j.postharvbio.2014.06.013.
  • Hu, M.; Zhu, Y.; Liu, G.; Gao, Z.; Li, M.; Su, Z.; Zhang, Z. Inhibition on Anthracnose and Induction of Defense Response by Nitric Oxide in Pitaya Fruit. Sci. Hortic. 2019, 245, 224–230. DOI: 10.1016/j.scienta.2018.10.030.
  • Huang, D.; Tian, W.; Feng, J.; Zhu, S. Interaction Between Nitric Oxide and Storage Temperature on Sphingolipid Metabolism of Postharvest Peach Fruit. Plant Physiol. Biochem. 2020, 151, 60–68. DOI: 10.1016/j.plaphy.2020.03.012.
  • Huque, R.; Wills, R.; Pristijono, P.; Golding, J. Effect of Nitric Oxide (NO) and Associated Control Treatments on the Metabolism of Fresh-Cut Apple Slices in Relation to Development of Surface Browning. Postharvest. Biol. Technol. 2013, 78, 16–23. DOI: 10.1016/j.postharvbio.2012.12.006.
  • Jing, G.; Zhou, J.; Zhu, S. Effects of Nitric Oxide on Mitochondrial Oxidative Defence in Postharvest Peach Fruits. J. Sci. Food Agric. 2016, 96(6), 1997–2003. DOI: 10.1002/jsfa.7310.
  • Li, X. P.; Wu, B.; Guo, Q.; Wang, J. D.; Zhang, P.; Chen, W. X. Effects of Nitric Oxide on Postharvest Quality and Soluble Sugar Content in Papaya Fruit During Ripening. J. Food Process Preserv. 2014, 38(1), 591–599. DOI: 10.1111/jfpp.12007.
  • Lichanporn, I.; Techavuthiporn, C. The Effects of Nitric Oxide and Nitrous Oxide on Enzymatic Browning in Longkong (Aglaia Dookkoo Griff.). Postharvest. Biol. Technol. 2013, 86, 62–65. DOI: 10.1016/j.postharvbio.2013.06.021.
  • Li-Qin, Z.; Jie, Z.; Shu-Hua, Z.; Lai-Hui, G. Inhibition of Browning on the Surface of Peach Slices by Short-Term Exposure to Nitric Oxide and Ascorbic Acid. Food Chem. 2009, 114(1), 174–179. DOI: 10.1016/j.foodchem.2008.09.036.
  • Liu, L.-Q.; Yu, D.; Guan, J.-F. Effects of Nitric Oxide on the Quality and Pectin Metabolism of Yali Pears During Cold Storage. Agri. Sci. China. 2011, 10(7), 1125–1133. DOI: 10.1016/S1671-2927(11)60102-8.
  • Liu, L.; Wang, J.; Qu, L.; Li, S.; Wu, R.; Zeng, K. Effect of Nitric Oxide Treatment on Storage Quality of Glorious Oranges. Procedia Engineering. 2012, 37, 150–154. DOI: 10.1016/j.proeng.2012.04.218.
  • Liu, Y.; Yang, X.; Zhu, S.; Wang, Y. Postharvest Application of MeJa and NO Reduced Chilling Injury in Cucumber (Cucumis Sativus) Through Inhibition of H2O2 Accumulation. Postharvest. Biol. Technol. 2016, 119 77–83. DOI: 10.1016/j.postharvbio.2016.04.003.
  • Lokesh, V.; Manjunatha, G.; Hegde, N. S.; Bulle, M.; Puthusseri, B.; Gupta, K. J.; Neelwarne, B. Polyamine Induction in Postharvest Banana Fruits in Response to NO Donor SNP Occurs via L-Arginine Mediated Pathway and Not via Competitive Diversion of S-Adenosyl-L-Methionine. Antioxidants. 2019, 8(9), 358. DOI: 10.3390/antiox8090358.
  • Manjunatha, G.; Lokesh, V., and Bhagyalakshmi, N. In Nitric Oxide-Induced Enhancement of Banana Fruit Attributes and Keeping Quality, XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on 934, 2010, Lisbon, Portugal, 2010; pp 799–806.
  • Rabiei, V.; Kakavand, F.; Zaare-Nahandi, F.; Razavi, F.; Aghdam, M. S. Nitric Oxide and γ-Aminobutyric Acid Treatments Delay Senescence of Cornelian Cherry Fruits During Postharvest Cold Storage by Enhancing Antioxidant System Activity. Sci. Hortic. 2019, 243, 268–273. DOI: 10.1016/j.scienta.2018.08.034.
  • Ranjbari, F.; Moradinezhad, F.; Khayyat, M. Effect of Nitric Oxide on Biochemical and Antioxidant Properties of Pomegranate Fruit Cv. Shishe-Kab During Cold Storage. Int. J. Hortic. Sci. Technol. 2016, 3(2), 211–219. DOI: https://dx.doi.org/10.22059/ijhst.2016.62920.
  • Ren, Y.; He, J.; Liu, H.; Liu, G.; Ren, X. Nitric Oxide Alleviates Deterioration and Preserves Antioxidant Properties in ‘Tainong’mango Fruit During Ripening. Hortic. Environ. Biotechnol. 2017, 58(1), 27–37. DOI: 10.1007/s13580-017-0001-z.
  • Shahkoomahally, S.; Ramezanian, A.; Farahnaky, A. Postharvest Nitric Oxide Treatment of Persimmon (Diospyros Kaki L.) Improves Fruit Quality During Storage. Fruits. 2015, 70(2), 63–68. DOI: 10.1051/fruits/2014045.
  • Sharma, S.; Sharma, R. Nitric Oxide Inhibits Activities of PAL and PME Enzymes and Reduces Chilling Injury in ‘Santa Rosa’japanese Plum (Prunus Salicina Lindell). J. Plant Biochem. Biotechnol. 2015, 24(3), 292–297. DOI: 10.1007/s13562-014-0271-9.
  • Shi, J. Y.; Liu, N.; Gu, R. X.; Zhu, L. Q.; Zhang, C.; Wang, Q. G.; Lei, Z. H.; Liu, Y. Y.; Ren, J. Y. Signals Induced by Exogenous Nitric Oxide and Their Role in Controlling Brown Rot Disease Caused by Monilinia Fructicola in Postharvest Peach Fruit. J. Gen. Plant Pathol. 2015, 81(1), 68–76. DOI: 10.1007/s10327-014-0562-y.
  • Shi, J.; Gao, L.; Zuo, J.; Wang, Q.; Wang, Q.; Fan, L. Exogenous Sodium Nitroprusside Treatment of Broccoli Florets Extends Shelf Life, Enhances Antioxidant Enzyme Activity, and Inhibits Chlorophyll-Degradation. Postharvest. Biol. Technol. 2016, 116, 98–104. DOI: 10.1016/j.postharvbio.2016.01.007.
  • Shi, K.; Liu, Z.; Wang, J.; Zhu, S.; Huang, D. Nitric Oxide Modulates Sugar Metabolism and Maintains the Quality of Red Raspberry During Storage. Sci. Hortic. 2019, 256, 108611. DOI: 10.1016/j.scienta.2019.108611.
  • Siddiqui, M. W.; Homa, F.; Lata, D.; Ahmad, M. S. Exogenous Nitric Oxide Delays Ripening and Maintains Postharvest Quality of Pointed Gourd During Storage. J. Plant Growth Regul. 2020, 1–8. DOI: 10.1007/s00344-020-10270-6.
  • Sun, Z.; Li, Y.; Zhou, J.; Zhu, S. H. Effects of Exogenous Nitric Oxide on Contents of Soluble Sugars and Related Enzyme Activities in ‘Feicheng’peach Fruit. J. Sci. Food Agric. 2011, 91(10), 1795–1800. DOI: 10.1002/jsfa.4384.
  • Wang, Y.; Luo, Z.; Khan, Z. U.; Mao, L.; Ying, T. Effect of Nitric Oxide on Energy Metabolism in Postharvest Banana Fruit in Response to Chilling Stress. Postharvest. Biol. Technol. 2015, 108, 21–27. DOI: 10.1016/j.postharvbio.2015.05.007.
  • Wang, C.; Huang, D.; Tian, W.; Zhu, S. Nitric Oxide Alleviates Mitochondrial Oxidative Damage and Maintains Mitochondrial Functions in Peach Fruit During Cold Storage. Sci. Hortic. 2021, 287, 110249. DOI: 10.1016/j.scienta.2021.110249.
  • Wu, F.; Yang, H.; Chang, Y.; Cheng, J.; Bai, S.; Yin, J. Effects of Nitric Oxide on Reactive Oxygen Species and Antioxidant Capacity in Chinese Bayberry During Storage. Sci. Hortic. 2012, 135, 106–111. DOI: 10.1016/j.scienta.2011.12.011.
  • Wu, X.; Yuan, J.; Wang, X.; Yu, M.; Ma, R.; Yu, Z. Synergy of Nitric Oxide and 1-Methylcyclopropene Treatment in Prolong Ripening and Senescence of Peach Fruit. Foods. 2021, 10(12), 2956. DOI: 10.3390/foods10122956.
  • Yang, H.; Wu, F.; Cheng, J. Reduced Chilling Injury in Cucumber by Nitric Oxide and the Antioxidant Response. Food Chem. 2011, 127(3), 1237–1242. DOI: 10.1016/j.foodchem.2011.02.011.
  • Yang, R.; Du, H.; Sun, Y.; Zhang, F.; Zhang, W.; Wan, C.; Chen, J.; Zhu, L. Effects of Nitric Oxide on the Alleviation of Postharvest Disease Induced by Penicillium Italicum in Navel Orange Fruits. Int J. Food Sci. Tech. 2021. DOI: 10.1111/ijfs.15054.
  • Zhang, T.; Che, F.; Zhang, H.; Pan, Y.; Xu, M.; Ban, Q.; Han, Y.; Rao, J. Effect of Nitric Oxide Treatment on Chilling Injury, Antioxidant Enzymes and Expression of the CmCbf1 and CmCbf3 Genes in Cold-Stored Hami Melon (Cucumis Melo L.) Fruit. Postharvest. Biol. Technol. 2017, 127, 88–98. DOI: 10.1016/j.postharvbio.2017.01.005.
  • Zhang, Q.; Zhang, L.; Geng, B.; Feng, J.; Zhu, S. Interactive Effects of Abscisic Acid and Nitric Oxide on Chilling Resistance and Active Oxygen Metabolism in Peach Fruit During Cold Storage. J. Sci. Food Agric. 2019, 99(7), 3367–3380. DOI: 10.1002/jsfa.9554.
  • Zhao, R.; Sheng, J.; Lv, S.; Zheng, Y.; Zhang, J.; Yu, M.; Shen, L. Nitric Oxide Participates in the Regulation of LeCbf1 Gene Expression and Improves Cold Tolerance in Harvested Tomato Fruit. Postharvest. Biol. Technol. 2011, 62(2), 121–126. DOI: 10.1016/j.postharvbio.2011.05.013.
  • Zheng, X.; Hu, B.; Song, L.; Pan, J.; Liu, M. Changes in Quality and Defense Resistance of Kiwifruit in Response to Nitric Oxide Treatment During Storage at Room Temperature. Sci. Hortic. 2017, 222, 187–192. DOI: 10.1016/j.scienta.2017.05.010.
  • Zhou, Y.; Li, S.; Zeng, K. Exogenous Nitric Oxide‐induced Postharvest Disease Resistance in Citrus Fruit to Colletotrichum Gloeosporioides. J. Sci. Food Agric. 2016, 96(2), 505–512. DOI: 10.1002/jsfa.7117.
  • Zhu, S.; Liu, M.; Zhou, J. Inhibition by Nitric Oxide of Ethylene Biosynthesis and Lipoxygenase Activity in Peach Fruit During Storage. Postharvest. Biol. Technol. 2006, 42(1), 41–48. DOI: 10.1016/j.postharvbio.2006.05.004.
  • Zhu, S.; Sun, L.; Liu, M.; Zhou, J. Effect of Nitric Oxide on Reactive Oxygen Species and Antioxidant Enzymes in Kiwifruit During Storage. J. Sci. Food Agric. 2008, 88(13), 2324–2331. DOI: 10.1002/jsfa.3353.
  • Zhu, L.-Q.; Zhou, J.; Zhu, S.-H. Effect of a Combination of Nitric Oxide Treatment and Intermittent Warming on Prevention of Chilling Injury of ‘Feicheng’peach Fruit During Storage. Food Chem. 2010, 121(1), 165–170. DOI: 10.1016/j.foodchem.2009.12.025.
  • Zhu, S.; Sun, L.; Zhou, J. Effects of Different Nitric Oxide Application on Quality of Kiwifruit During 20 C Storage. Int J. Food Sci. Tech. 2010, 45(2), 245–251. DOI: 10.1111/j.1365-2621.2009.02127.x.
  • Zhu, L.; Du, H.; Wang, W.; Zhang, W.; Shen, Y.; Wan, C.; Chen, J. Synergistic Effect of Nitric Oxide with Hydrogen Sulfide on Inhibition of Ripening and Softening of Peach Fruits During Storage. Sci. Hortic. 2019, 256, 108591. DOI: 10.1016/j.scienta.2019.108591.
  • Zhu, L.; Yang, R.; Sun, Y.; Zhang, F.; Du, H.; Zhang, W.; Wan, C.; Chen, J. Nitric Oxide Maintains Postharvest Quality of Navel Orange Fruit by Reducing Postharvest Rotting During Cold Storage and Enhancing Antioxidant Activity. Physiol. Mol. Plant Pathol. 2021, 113, 101589. DOI: 10.1016/j.pmpp.2020.101589.
  • Marczak, L. B.; Thompson, R. M.; Richardson, J. S. Meta‐analysis: Trophic Level, Habitat, and Productivity Shape the Food Web Effects of Resource Subsidies. Ecology. 2007, 88(1), 140–148. DOI: 10.1890/0012-9658(2007)88[140:MTLHAP]2.0.CO;2.
  • Weir, C. J.; Butcher, I.; Assi, V.; Lewis, S. C.; Murray, G. D.; Langhorne, P.; Brady, M. C. Dealing with Missing Standard Deviation and Mean Values in Meta-Analysis of Continuous Outcomes: A Systematic Review. BMC Med. Res. Methodol. 2018, 18(1), 1–14. DOI: 10.1186/s12874-018-0483-0.
  • Tufanaru, C.; Munn, Z.; Stephenson, M.; Aromataris, E. Fixed or Random Effects Meta-Analysis? Common Methodological Issues in Systematic Reviews of Effectiveness. Int. J. Evidence-Based Healthcare. 2015, 13(3), 196–207. DOI: 10.1097/XEB.0000000000000065.
  • Dardiotis, E.; Tsouris, Z.; Mentis, A.-F.-A.; Siokas, V.; Michalopoulou, A.; Sokratous, M.; Dastamani, M.; Bogdanos, D. P.; Deretzi, G.; Kountouras, J. H. Pylori and Parkinson’s Disease: Meta-Analyses Including Clinical Severity. Clin. Neurol. Neurosurg. 2018, 175, 16–24. DOI: 10.1016/j.clineuro.2018.09.039.
  • Sterne, J. A.; Sutton, A. J.; Ioannidis, J. P.; Terrin, N.; Jones, D. R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R. M.; Schmid, C. H. Recommendations for Examining and Interpreting Funnel Plot Asymmetry in Meta-Analyses of Randomised Controlled Trials. Bmj. 2011, 343. DOI: 10.1136/bmj.d4002.
  • Mukherjee, S. Recent Advancements in the Mechanism of Nitric Oxide Signaling Associated with Hydrogen Sulfide and Melatonin Crosstalk During Ethylene-Induced Fruit Ripening in Plants. Nitric Oxide. 2019, 82, 25–34. DOI: 10.1016/j.niox.2018.11.003.
  • Palma, J. M.; Freschi, L.; Rodríguez-Ruiz, M.; González-Gordo, S.; Corpas, F. J. Nitric Oxide in the Physiology and Quality of Fleshy Fruits. J. Exp. Bot. 2019, 70(17), 4405–4417. DOI: 10.1093/jxb%2Ferz350.
  • Sun, C.; Zhang, Y.; Liu, L.; Liu, X.; Li, B.; Jin, C.; Lin, X. Molecular Functions of Nitric Oxide and Its Potential Applications in Horticultural Crops. Hortic. Res. 2021, 8(1). 10.1038/s41438-021-00500-7
  • Zhang, W.; Cao, J.; Fan, X.; Jiang, W. Applications of Nitric Oxide and Melatonin in Improving Postharvest Fruit Quality and the Separate and Crosstalk Biochemical Mechanisms. Trends Food Sci. Technol. 2020, 99, 531–541. DOI: 10.1016/j.tifs.2020.03.024.
  • Underhill, S. J.; Simons, D. H. Lychee (Litchi Chinensis Sonn.) Pericarp Desiccation and the Importance of Postharvest Micro-Cracking. Sci. Hortic. 1993, 54(4), 287–294. DOI: 10.1016/0304-4238(93)90107-2.
  • Paniagua, A.; East, A.; Hindmarsh, J.; Heyes, J. Moisture Loss is the Major Cause of Firmness Change During Postharvest Storage of Blueberry. Postharvest. Biol. Technol. 2013, 79, 13–19. DOI: http://dx.doi.org/10.1016/j.postharvbio.2012.12.016.
  • Fava, J.; Alzamora, S.; Castro, M. Structure and Nanostructure of the Outer Tangential Epidermal Cell Wall in Vaccinium Corymbosum L.(blueberry) Fruits by Blanching, Freezing-Thawing and Ultrasound. Food Sci. Technol. Int. 2006, 12(3), 241–251. DOI: http://dx.doi.org/10.1177/1082013206065702.
  • Saladié, M.; Matas, A. J.; Isaacson, T.; Jenks, M. A.; Goodwin, S. M.; Niklas, K. J.; Xiaolin, R.; Labavitch, J. M.; Shackel, K. A.; Fernie, A. R. A Reevaluation of the Key Factors That Influence Tomato Fruit Softening and Integrity. Plant Physiol. 2007, 144(2), 1012–1028. DOI: 10.1104/pp.107.097477.
  • Deng, L.; Pan, X.; Chen, L.; Shen, L.; Sheng, J. Effects of Preharvest Nitric Oxide Treatment on Ethylene Biosynthesis and Soluble Sugars Metabolism in ‘Golden Delicious’ Apples. Postharvest. Biol. Technol. 2013, 84, 9–15. DOI: http://dx.doi.org/10.1016/j.postharvbio.2013.03.017.
  • Yoshioka, H.; Hayama, H.; Tatsuki, M.; Nakamura, Y. Cell Wall Modifications During Softening in Melting Type Peach “Akatsuki” and Non-Melting Type Peach “Mochizuki”. Postharvest. Biol. Technol. 2011, 60(2), 100–110. DOI: 10.1016/j.postharvbio.2010.12.013.
  • Razavi, F.; Mahmoudi, R.; Rabiei, V.; Aghdam, M. S.; Soleimani, A. Glycine Betaine Treatment Attenuates Chilling Injury and Maintains Nutritional Quality of Hawthorn Fruit During Storage at Low Temperature. Sci. Hortic. 2018, 233, 188–194. DOI: 10.1016/j.scienta.2018.01.053.
  • Li, J.; Yi, C.; Yang, E.; Qu, H.; Jiang, Y.; Duan, X.; Zhang, D., and Cheng, G. In Effect of Nitric Oxide on Disorder Development and Quality Maintenance of Plum Fruit Stored at Low Temperature, Europe-Asia Symposium on Quality Management in Postharvest Systems-Eurasia 2007 804, 2007, Bangkok, Thailand, 2007; pp 549–554.
  • Singh, Z.; Khan, A. S.; Zhu, S.; Payne, A. D. Nitric Oxide in the Regulation of Fruit Ripening: Challenges and Thrusts. Stewart Postharvest Rev. 2013, 9(4), 1–11. http://hdl.handle.net/20.500.11937/5976.
  • Aghdam, M. S.; Jannatizadeh, A.; Luo, Z.; Paliyath, G. Ensuring Sufficient Intracellular ATP Supplying and Friendly Extracellular ATP Signaling Attenuates Stresses, Delays Senescence and Maintains Quality in Horticultural Crops During Postharvest Life. Trends Food Sci. Technol. 2018, 76, 67–81. DOI: 10.1016/j.tifs.2018.04.003.
  • Wang, Y.; Luo, Z.; Du, R.; Liu, Y.; Ying, T.; Mao, L. Effect of Nitric Oxide on Antioxidative Response and Proline Metabolism in Banana During Cold Storage. J. Agric. Food. Chem. 2013, 61(37), 8880–8887. DOI: 10.1021/jf401447y.
  • Zhang, Z.; Xu, J.; Chen, Y.; Wei, J.; Wu, B. Nitric Oxide Treatment Maintains Postharvest Quality of Table Grapes by Mitigation of Oxidative Damage. Postharvest. Biol. Technol. 2019, 152, 9–18. DOI: http://doi.org/10.1016/j.postharvbio.2019.01.015.
  • Aghdam, M. S.; Naderi, R.; Jannatizadeh, A.; Sarcheshmeh, M. A. A.; Babalar, M. Enhancement of Postharvest Chilling Tolerance of Anthurium Cut Flowers by γ-Aminobutyric Acid (GABA) Treatments. Sci. Hortic. 2016, 198, 52–60. DOI: 10.1016/j.scienta.2015.11.019.
  • Liang, L.; Deng, Y.; Sun, X.; Jia, X.; Su, J. Exogenous Nitric Oxide Pretreatment Enhances Chilling Tolerance of Anthurium. J. Am. Soc. Hort. Sci. 2018, 143(1), 3–13. DOI: 10.21273/JASHS04218-17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.