549
Views
2
CrossRef citations to date
0
Altmetric
Review

Mucilage-Based Films for Food Applications

ORCID Icon & ORCID Icon

References

  • Jiao, X.; Xu, W.; Duan, L. Study on Cold Chain Transportation Model of Fruit and Vegetable Fresh-Keeping in Low-Temperature Cold Storage Environment. Discrete Dyn. Nat. Soc. 2021, 8445028. DOI: 10.1155/2021/8445028.
  • Majidi, H.; Minaei, S.; Almassi, M.; Mostofi, Y. Tomato Quality in Controlled Atmosphere Storage, Modified Atmosphere Packaging and Cold Storage. J. Food Sci. Technol. 2014, 51(9), 2155–2161. DOI: 10.1007/s13197-012-0721-0.
  • Yildirim, S.; Röcker, B.; Pettersen, M. K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17(1), 165–199.
  • Olawuyi, I. F.; Kim, S. R.; Lee, W. Y. Application of Plant Mucilage Polysaccharides and Their Techno-Functional Properties’ Modification for Fresh Produce Preservation. Carbohydr. Polym. 2021, 272, 118371. DOI: 10.1016/j.carbpol.2021.118371.
  • Díaz-Montes, E.; Castro-Muñoz, R. Edible Films and Coatings as Food-Quality Preservers: An Overview. Foods. 2021, 10(2), 249. DOI: 10.3390/foods10020249.
  • Krochta, J. M.; De Mulder-Johnston, C. D. Edible and Biodegradable Polymer Films: Challenges and Opportunities. Food Technol. 1997, 51, 61–74.
  • Debeaufort, F.; Quezada-Gallo, J. A.; Voilley, A. Edible Films and Coatings: Tomorrow’s Packagings: A Review. Crit. Rev. Food Sci. Nutr. 2010, 38(4), 299–313. DOI: 10.1080/10408699891274219.
  • Embuscado, M. E.; Huber, K. C. Edible Films and Coatings for Food Applications; Springer: New York, NY, 2009.
  • Salehi, E.; Emam-Djomeh, Z.; Askari, G.; Fathi, M. Opuntia Ficus Indica Fruit Gum: Extraction, Characterization, Antioxidant Activity and Functional Properties. Carbohydr. Polym. 2019, 206, 565–572. DOI: 10.1016/j.carbpol.2018.11.035.
  • Sharma, G.; Kumar, A.; Devi, K.; Sharma, S.; Naushad, M.; Ghfar, A. A.; Ahamad, T.; Stadler, F. J. Guar Gum-Crosslinked-Soya Lecithin Nanohydrogel Sheets as Effective Adsorbent for the Removal of Thiophanate Methyl Fungicide. Int. J. Biol. Macromol. 2018, 114, 295–305. DOI: 10.1016/j.ijbiomac.2018.03.093.
  • Beikzadeh, S.; Khezerlou, A.; Jafari, S. M.; Pilevar, Z.; Mortazavian, A. M. Seed Mucilages as the Functional Ingredients for Biodegradable Films and Edible Coatings in the Food Industry. Adv. Colloid Interface Sci. 2020, 280, 102164. DOI: 10.1016/j.cis.2020.102164.
  • Soukoulis, C.; Gaiani, C.; Hoffmann, L. Plant Seed Mucilage as Emerging Biopolymer in Food Industry Applications. Curr. Opin. Food Sci. 2018, 22, 28–42. DOI: 10.1016/j.cofs.2018.01.004.
  • Fedeniuk, R. W.; Biliaderis, C. G. Composition and Physicochemical Properties of Linseed (Linum Usitatissimum L.) Mucilage. J. Agric. Food. Chem. 1994, 42(2), 240–247. DOI: 10.1021/jf00038a003.
  • Ribes, S.; Grau, R.; Talens, P. Use of Chia Seed Mucilage as a Texturing Agent: Effect on Instrumental and Sensory Properties of Texture-Modified Soups. Food Hydrocoll. 2022, 123, 107171. DOI: 10.1016/j.foodhyd.2021.107171.
  • López-Díaz, A. S.; Ríos-Corripio, M. A.; Ramírez-Corona, N.; López-Malo, A.; Palou, E. Efecto de la Radiación Ultravioleta de Onda Corta Sobre Algunas Propiedades de Películas Comestibles Elaboradas Con Jugo de Granada Y Quitosano. Rev. Mex. Ing. Quím. 2018, 17(1), 63–73. DOI: 10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Lopez.
  • McHugh, T. H.; Krochta, J. M. Edible Coatings and Films to Improve Food Quality; CRC Press: Boca Raton, FL, 1994.
  • Barzegar, H.; Alizadeh Behbahani, B.; Mehrnia, M. A. Quality Retention and Shelf-Life Extension of Fresh Beef Using Lepidium Sativum Seed Mucilage-Based Edible Coating Containing Heracleum Lasiopetalum Essential Oil: An Experimental and Modeling Study. Food Sci. Biotechnol. 2020, 29(5), 717–728. DOI: 10.1007/s10068-019-00715-4.
  • Noshad, M.; Hojjati, M.; Behrooz, A. Increasing Beef Shelf Life Using Bioactive Edible Coating Based on Dragon’s Head Seed Mucilage Loaded with Caraway Essential Oil. Iranian J. Of Biosystems Eng. 2020, 51(2), 407–418. DOI: 10.22059/IJBSE.2020.299334.665289.
  • Solano-Doblado, L. G.; Heredia, F. J.; Gordillo, B.; Ortiz, G. D.; Beltrán, L. A.; Maciel-Cerda, A.; Martínez, C. J. Propiedades Indicadoras de pH Y Estabilidad de Almacenamiento de Una Película Comestible Inteligente Basada En Nopal-Mucílago/goma Gellan Y Antocianinas de Col Roja. Revista Mexicana de Ingeniería Química. 2020, 19(1), 363–374. DOI: 10.24275/rmiq/Alim1583.
  • Taghinia, P.; Abdolshahi, A.; Sedaghati, S.; Shokrollahi, B. Smart Edible Films Based on Mucilage of Lallemantia Iberica Seed Incorporated with Curcumin for Freshness Monitoring. Food Sci. Nutr. 2021, 9(2), 1222–1231. DOI: 10.1002/fsn3.2114.
  • Galus, S.; Arik Kibar, E. A.; Gniewosz, M.; Kraśniewska, K. Novel Materials in the Preparation of Edible Films and Coatings-A Review. Coatings. 2020, 10(7), 1–14. DOI: 10.3390/coatings10070674.
  • Donhowe, G.; Fennema, O. Water Vapor and Oxygen Permeability of Wax Films. J. Am. Oil Chem. Soc. 1993, 70(9), 867–873. DOI: 10.1007/BF02545345.
  • Falguera, V.; Quintero, J. P.; Jiménez, A.; Muñoz, J. A.; Ibarz, A. Edible Films and Coatings: Structures, Active Functions and Trends in Their Use. Trends Food Sci. Technol. 2011, 22(6), 292–303. DOI: 10.1016/j.tifs.2011.02.004.
  • Rojas-Graü, M. A.; Soliva-Fortuny, R.; Martín-Belloso, O. Edible Coatings to Incorporate Active Ingredients to Fresh-Cut Fruits: A Review. Trends Food Sci. Technol. 2009, 20(10), 438–447. DOI: 10.1016/j.tifs.2009.05.002.
  • Ruelas-Chacón, X.; Reyes-Vega, M. D.; Valdivia-Urdiales, B.; Contreras-Esquivel, J. C.; Montañez-Saenz, J. C.; Aguilera-Carbó, A. F.; Peralta-Rodríguez, R. D. Conservación de Frutas Y Hortalizas Frescas Y Mínimamente Procesadas Con Recubrimientos Comestibles. Rev. Cient. de la Uni. A. de Coah. 2013, 5(9), 31–37.
  • Valencia-Chamorro, S. A.; Palou, L.; Del Río, M. A.; Perez-Gago, M. B. Antimicrobial Edible Films and Coatings for Fresh and Minimally Processed Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2011, 51(9), 872–900. DOI: 10.1080/10408398.2010.485705.
  • Villagómez-Zavala, D. L.; Gómez-Corona, C.; San Martín Martínez, E.; Pérez-Orozco, J. P.; Vernon-Carter, E. J.; Pedroza-Islas, R. Comparative Study of the Mechanical Properties of Edible Films Made from Single and Blended Hydrophilic Biopolymer Matrices. Rev. Mex. Ing. Quím. 2008, 7(3), 263–273.
  • Dominguez-Martinez, B. M.; Martínez-Flores, H. E.; Berrios, J. D.; Otoni, C. G.; Wood, D. F.; Velazquez, G. Physical Characterization of Biodegradable Films Based on Chitosan, Polyvinyl Alcohol and Opuntia Mucilage. J Polym. Environ. 2017, 25(3), 683–691. DOI: 10.1007/s10924-016-0851-y.
  • Benavides, S.; Villalobos-Carvajal, R.; Reyes, J. E. Physical, Mechanical and Antibacterial Properties of Alginate Film: Effect of the Crosslinking Degree and Oregano Essential Oil Concentration. J. Food Eng. 2012, 110(2), 232–239. DOI: 10.1016/j.jfoodeng.2011.05.023.
  • Liang, J.; Xia, Q.; Wang, S.; Li, J.; Huang, Q.; Ludescher, R. D. Influence of Glycerol on the Molecular Mobility, Oxygen Permeability and Microstructure of Amorphous Zein Films. Food Hydrocoll. 2015, 44, 94–100. DOI: 10.1016/j.foodhyd.2014.09.002.
  • Cervera, M. F.; Heinämäki, J.; Krogars, K.; Jörgensen, A. C.; Karjalainen, M.; Colarte, A. I.; Yliruusi, J. Solid-State and Mechanical Properties of Aqueous Chitosan-Amylose Starch Films Plasticized with Polyols. AAPS PharmScitech. 2004, 5(1), 109–114. DOI: 10.1208/pt050115.
  • Gao, C.; Pollet, E.; Vavérous, L. Innovative Plasticized Alginate Obtained by Thermo-Mechanical Mixing: Effect of Different Biobased Polyols Systems. Carbohydr. Polym. 2017, 157, 669–676. DOI: 10.1016/j.carbpol.2016.10.037.
  • Sothornvit, R.; Krochta, D. J. Plasticizer Effect on Oxygen Permeability of β-Lactoglobulin Films. J. Agric. Food. Chem. 2000, 48(12), 6298–6302. DOI: 10.1021/jf000836l.
  • Bósquez-Molina, E.; Vernon-Carter, E. J. Efecto de Plastificantes Y Calcio En la Permeabilidad Al Vapor de Agua de Películas a Base de Goma de Mezquite Y Cera de Candelilla. Rev. Mex. Ing. Quím. 2005, 4(2), 157–162.
  • Han, J. H.; Aristippos, G. Edible Films and Coatings: A Review. In Innovations in Food Packaging, 1st ed.; Han, J.H., Ed.; ElSevier: Amsterdam, UK, 2005; pp. 239–262. DOI: 10.1016/b978-012311632-1/50047-4.
  • Liu, L.; Kerry, J. F.; Kerry, J. P. Effect of Food Ingredients and Selected Lipids on the Physical Properties of Extruded Edible Films/casings. Int. J. Of Food Sci. Technol. 2006, 41(3), 295–302. DOI: 10.1111/j.1365-2621.2005.01063.x.
  • Nayak, P.; Sasmal, A.; Nanda, P. K.; Nayak, P. L.; Kim, J.; Chang, Y. W. Preparation and Characterization of Edible Films Based on Soy Protein Isolate-Fatty Acid Blends. Polym. Plast. Technol. Eng. 2008, 47(5), 466–472. DOI: 10.1080/03602550801949728.
  • Vargas, M.; Pastor, C.; Chiralt, A.; McClements, D. J.; Gonzalez-Martinez, C. Recent Advances in Edible Coatings for Fresh and Minimally Processed Fruits. Crit. Rev. Food Sci. Nutr. 2008, 48(6), 496–511. DOI: 10.1080/10408390701537344.
  • Albuquerque, B. S.; Coelho, C. B.; Teixeira, J. A.; Carneiro-da-Cunha, M. G. Approaches in Biotechnological Applications of Natural Polymers. AIMS Mol. Sci. 2016, 3(3), 386–425. DOI: 10.3934/molsci.2016.3.386.
  • Alpizar-Reyes, E.; Carrillo-Navas, H.; Gallardo-Rivera, R.; Varela-Guerrero, V.; Alvarez-Ramirez, J.; Pérez-Alonso, C. Functional Properties and Physicochemical Characteristics of Tamarind (Tamarindus Indica L.) Seed Mucilage Powder as a Novel Hydrocolloid. J. Food Eng. 2017, 209, 68–75. DOI: 10.1016/j.jfoodeng.2017.04.021.
  • Sáenz, C.; Sepúlveda, E.; Matsuhiro, B. Opuntia Spp Mucilage’s: A Functional Component with Industrial Perspectives. J. Arid Environ. 2004, 57(3), 275–290. DOI: 10.1016/S0140-1963(03)00106-X.
  • Allegra, A.; Sortino, G.; Inglese, P.; Settanni, L.; Todaro, A.; Gallotta, A. The Effectiveness of Opuntia Ficus-Indica Mucilage Edible Coating on Post-Harvest Maintenance of ‘Dottato’fig (Ficus Carica L.) Fruit. Food Packag. Shelf Life. 2017, 12, 135–141. DOI: 10.1016/j.fpsl.2017.04.010.
  • Kamel, R.; Afifi, S. M.; Kassem, I. A.; Elkasabgy, N. A.; Farag, M. A. Arabinoxylan and Rhamnogalacturonan Mucilage: Outgoing and Potential Trends of Pharmaceutical, Environmental, and Medicinal Merits. Int. J. Biol. Macromol. 2020, 165, 2550–2564. DOI: 10.1016/j.ijbiomac.2020.10.175.
  • Nie, S. P.; Xie, M. Y. A Review on the Isolation and Structure of Tea Polysaccharides and Their Bioactivities. Food Hydrocoll. 2011, 25(2), 144–149. DOI: 10.1016/j.foodhyd.2010.04.010.
  • Rocha, M. S.; Rocha, L. C.; da Silva Feijó, M. B.; dos Santos Marotta, P. L. L.; Mourao, S. C. Effect of pH on the Flaxseed (Linum Usitatissimum L. Seed) Mucilage Extraction Process. Acta Sci. Technol. 2021, 43, e50457. DOI: 10.4025/actascitechnol.v43i1.50457.
  • Puligundla, P.; Lim, S. A Review of Extraction Techniques and Food Applications of Flaxseed Mucilage. Foods. 2022, 11(12), 1677. DOI: 10.3390/foods11121677.
  • Kaushik, P.; Dowling, K.; Adhikari, R.; Barrow, C. J.; Adhikari, B. Effect of Extraction Temperature on Composition, Structure and Functional Properties of Flaxseed Gum. Food Chem. 2017, 215, 333–340. DOI: 10.1016/j.foodchem.2016.07.137.
  • Chiang, J. H.; Ong, D. S. M.; Ng, F. S. K.; Hua, X. Y.; Tay, W. L. W.; Henry, C. J. Application of Chia (Salvia hispanica) Mucilage as an Ingredient Replacer in Foods. Trends Food Sci. Technol. 2021, 115, 105–116. DOI: 10.1016/j.tifs.2021.06.039.
  • Orifici, S. C.; Capitani, M. I.; Tomás, M. C.; Nolasco, S. M. Optimization of Mucilage Extraction from Chia Seeds (Salvia Hispanica L.) Using Response Surface Methodology. J. Sci. Food Agric. 2018, 98(12), 4495–4500. DOI: 10.1002/jsfa.8974.
  • Muñoz, L. A.; Cobos, A.; Díaz, O.; Aguilera, J. M. Chia Seeds: Microstructure, Mucilage Extraction and Hydration. J. Food Eng. 2012, 108(1), 216–224. DOI: 10.1016/j.jfoodeng.2011.06.037.
  • Souza, G.; dos Santos, S. S.; Bergamasco, R.; Antigo, J.; Madrona, G. S. Antioxidant Activity, Extraction and Application of Psyllium Mucilage in Chocolate Drink. Nutr Food Sci. 2020, 50(6), 1175–1185. DOI: 10.1108/NFS-07-2019-0211.
  • Zeng, W. W.; Lai, L. S. Characterization of the Mucilage Extracted from the Edible Fronds of Bird’s Nest Fern (Asplenium australasicum) with Enzymatic Modifications. Food Hydrocoll. 2016, 53, 84–92. DOI: 10.1016/j.foodhyd.2015.03.026.
  • Sun, H.; Li, C.; Ni, Y.; Yao, L.; Jiang, H.; Ren, X.; Fu, Y.; Zhao, C. Ultrasonic/microwave-Assisted Extraction of Polysaccharides from Camptotheca Acuminata Fruits and Its Antitumor Activity. Carbohydr. Polym. 2019, 206, 557–564. DOI: 10.1016/j.carbpol.2018.11.010.
  • Bhotmange, D. U.; Wallenius, J. H.; Singhal, R. S.; Shamekh, S. S. Enzymatic Extraction and Characterization of Polysaccharide from Tuber Aestivum. Carbohydr. Diet. Fibre. 2017, 10, 1–9. DOI: 10.1016/j.bcdf.2017.02.001.
  • Nayak, A. K.; Pal, D.; Pradhan, J.; Hasnain, M. S. Fenugreek Seed Mucilage-Alginate Mucoadhesive Beads of Metformin Hcl: Design, Optimization and Evaluation. Int. J. Biol. Macromol. 2013, 54, 144–154. DOI: 10.1016/j.ijbiomac.2012.12.008.
  • Wang, R.; Li, X.; Liu, L.; Chen, W.; Bai, J.; Ma, F.; Liu, X.; Kang, W. Preparation and Characterization of Edible Films Composed of Dioscorea Opposita Thunb. Mucilage and Starch. Polym. Test. 2020, 90, 106708. DOI: 10.1016/j.polymertesting.2020.106708.
  • Luo, M.; Cao, Y.; Wang, W.; Chen, X.; Cai, J.; Wang, L.; Xiao, J. Sustained-Release Antimicrobial Gelatin Film: Effect of Chia Mucilage on Physicochemical and Antimicrobial Properties. Food Hydrocoll. 2019, 87, 783–791. DOI: 10.1016/j.foodhyd.2018.09.010.
  • Contreras-Padilla, M.; Rodríguez-García, M. E.; Gutiérrez-Cortez, E.; Del Carmen Valderrama-Bravo, M.; Rojas-Molina, J. I.; Rivera-Muñoz, E. M. Physicochemical and Rheological Characterization of Opuntia Ficus Mucilage at Three Different Maturity Stages of Cladode. Eur. Polym. J. 2016, 78, 226–234. DOI: 10.1016/j.eurpolymj.2016.03.024.
  • Fernandes, S. S.; Filipini, G.; de las Mercedes Salas-Mellado, M. Development of Cake Mix with Reduced Fat and High Practicality by Adding Chia Mucilage. Food Biosci. 2021, 42, 101148. DOI: 10.1016/j.fbio.2021.101148.
  • Panigrahi, S.; Bland, B.; Carlaw, P. M. The Nutritive Value of Tamarind Seeds for Broiler Chicks. Animal Feed Sci. Technol. 1989, 22(4), 285–293. DOI: 10.1016/j.carbpol.2013.11.063.
  • Sharma, M.; Mondal, D.; Mukesh, C.; Prasad, K. Preparation of Tamarind Gum Based Soft Ion Gels Having Thixotropic Properties. Carbohydr. Polym. 2014, 102, 467–471. DOI: 10.1016/j.carbpol.2013.11.063.
  • Gheribi, R.; Puchot, L.; Verge, P.; Jaoued-Grayaa, N.; Mezni, M.; Habibi, Y.; Khwaldia, K. Development of Plasticized Edible Films from Opuntia Ficus-Indica Mucilage: A Comparative Study of Various Polyol Plasticizers. Carbohydr. Polym. 2018, 190, 204–211. DOI: 10.1016/j.carbpol.2018.02.085.
  • Otálora, M. C.; Carriazo, J. G.; Iturriaga, L.; Nazareno, M. A.; Osorio, C. Microencapsulation of Betalains Obtained from Cactus Fruit (Opuntia Ficus-indica) by Spray Drying Using Cactus Cladode Mucilage and Maltodextrin as Encapsulating Agents. Food Chem. 2015, 187, 174–181. DOI: 10.1016/j.foodchem.2015.04.090.
  • Dick, M.; Limberger, C.; Thys, R. C. S.; de Oliveira Rios, A.; Flôres, S. H. Mucilage and Cladode Flour from Cactus (Opuntia monacantha) as Alternative Ingredients in Gluten-Free Crackers. Food Chem. 2020, 314, 126178. DOI: 10.1016/j.foodchem.2020.126178.
  • Sepúlveda, E.; Sáenz, C.; Aliaga, E.; Aceituno, C. Extraction and Characterization of Mucilage in Opuntia Spp. J. Arid Environ. 2007, 68(4), 534–545. DOI: 10.1016/j.jaridenv.2006.08.001.
  • De Andrade Vieira, É.; Alcântara, M. A.; Dos Santos, N. A.; Gondim, A. D.; Iacomini, M.; Mellinger, C.; De Magalhães Cordeiro, A. M. T. Mucilages of Cacti from Brazilian Biodiversity: Extraction, Physicochemical and Technological Properties. Food Chem. 2021, 346, 128892. DOI: 10.1016/j.foodchem.2020.128892.
  • Cagri, A.; Ustunol, Z.; Ryser, E. T. Antimicrobial Edible Films and Coatings. J. Food Prot. 2004, 67(4), 833–848. DOI: 10.4315/0362-028X-67.4.833.
  • Carmona Gallego, J. A.; Cordobés Carmona, F.; Guerrero Conejo, A. F.; Martínez, I.; Partal López, P. Influencia Del pH Y de la Fuerza Iónica Sobre la Gelificación Térmica de Proteínas de la Yema de Huevo. Grasas Aceites. 2007, 58(3), 289–296.
  • McHugh, T. H.; Huxsoll, C. C.; Krochta, J. M. Permeability Properties of Fruit Puree Edible Films. J. Food Sci. 1996, 61(1), 88–91. DOI: 10.1111/j.1365-2621.1996.tb14732.
  • Rojas-Graü, M. A.; Avena-Bustillos, R. J.; Friedman, M.; Henika, P. R.; Martín-Belloso, O.; McHugh, T. H. Mechanical, Barrier, and Antimicrobial Properties of Apple Puree Edible Films Containing Plant Essential Oils. J. Agric. Food. Chem. 2006, 54(24), 9262–9267. DOI: 10.1021/jf061717u.
  • Rojas-Graü, M. A.; Raybaudi-Massilia, R. M.; Soliva-Fortuny, R. C.; Avena-Bustillos, R. J.; McHugh, T. H.; Martín-Belloso, O. Apple Puree-Alginate Edible Coating as Carrier of Antimicrobial Agents to Prolong Shelf-Life of Fresh-Cut Apples. Postharvest. Biol. Technol. 2007, 45(2), 254–264. DOI: 10.1016/j.postharvbio.2007.01.017.
  • Du, W. X.; Olsen, C. W.; Avena-Bustillos, R. J.; Friedman, M.; McHugh, T. H. Physical and Antibacterial Properties of Edible Films Formulated with Apple Skin Polyphenols. J. Food Sci. 2011, 76(2), M149–M155. DOI: 10.1021/jf00040a00.
  • Du, W.; Olsen, C.; Avena-Bustillos, R.; McHugh, T.; Levin, C.; Friedman, M. Effects of Allspice, Cinnamon and Clove Bud Essential Oils in Edible Apple Films on Physical Properties and Antimicrobial Activities. J. Food Sci. 2009, 74(7), M372–M378. DOI: 10.1111/j.1750-3841.2009.01282.
  • McHugh, T. H.; Senesi, E. Apple Wraps: A Novel Method to Improve the Quality and Extend the Shelf Life of Fresh-Cut Apples. J. Food Sci. 2000, 65(3), 480–485. DOI: 10.1111/j.1365-2621.2000.tb16032.x.
  • Wang, X.; Sun, X.; Liu, H.; Li, M.; Ma, Z. Barrier and Mechanical Properties of Carrot Puree Films. Food Bioprod. Proces. 2011, 89(2), 149–156. DOI: 10.1016/j.fbp.2010.03.012.
  • Otoni, C. G.; Moura, M. R. D.; Aouada, F. A.; Camilloto, G. P.; Cruz, R. S.; Lorevice, M. V.; Soares, N. D. F. F.; Mattoso, L. H. C. Antimicrobial and Physical-Mechanical Properties of Pectin/papaya Puree/cinnamaldehyde Nanoemulsion Edible Composite Films. Food Hydrocoll. 2014, 41, 188–194. DOI: 10.1016/j.foodhyd.2014.04.013.
  • Rodríguez, M.; Osés, J.; Ziani, K.; Maté, J. I. Combined Effect of Plasticizers and Surfactants on the Physical Properties of Starch Based Edible Films. Food. Res. Int. 2006, 39(8), 840–846. DOI: 10.1016/j.foodres.2006.04.002.
  • McHugh, T. Producing Edible Films. Food Technol. 2015, 69, 120–122.
  • Leaw, Z. E.; Kong, I.; Pui, L. P. 3D Printed Corn Starch–gelatin Film with Glycerol and Hawthorn Berry (Crataegus Pinnatifida) Extract. J. Food Process Preserv. 2021, 45(9), 9. DOI: 10.1111/jfpp.15752.
  • Yang, F.; Guo, C.; Zhang, M.; Bhandari, B.; Liu, Y. Improving 3D Printing Process of Lemon Juice Gel Based on Fluid Flow Numerical Simulation. LWT. 2019, 102, 89–99. DOI: 10.1016/j.lwt.2018.12.031.
  • Espino-Díaz, M.; De Jesús Ornelas-Paz, J.; Martínez-Téllez, M. A.; Santillán, C.; Barbosa-Cánovas, G. V.; Zamudio-Flores, P. B.; Olivas, G. I. Development and Characterization of Edible Films Based on Mucilage of Opuntia Ficus-Indica (L.). J. Food Sci. 2010, 75(6), E347–E352—. DOI: 10.1111/j.1750-3841.2010.01661.x.
  • González Sandoval, D. C.; Luna Sosa, B.; Martínez-Ávila, G. C. G.; Rodríguez Fuentes, H.; Avendaño Abarca, V. H.; Rojas, R. Formulation and Characterization of Edible Films Based on Organic Mucilage from Mexican Opuntia Ficus-Indica. Coatings. 2019, 9(8), 506. DOI: 10.3390/coatings9080506.
  • Del-Valle, V.; Hernández-Muñoz, P.; Guarda, A.; Galotto, M. J. Development of a Cactus-Mucilage Edible Coating (Opuntia Ficus Indica) and Its Application to Extend Strawberry (Fragaria Ananassa) Shelf-Life. Food Chem. 2005, 91(4), 751–756. DOI: 10.1016/j.foodchem.2004.07.002.
  • Guadarrama-Lezama, A. Y.; Castaño, J.; Velázquez, G.; Carrillo-Navas, H.; Alvarez-Ramírez, J. Effect of Nopal Mucilage Addition on Physical, Barrier and Mechanical Properties of Citric Pectin-Based Films. J. Food Sci. Technol. 2018, 55(9), 3739–3748. DOI: 10.1007/s13197-018-3304-x.
  • Dominguez-Martinez, B. M.; Martínez-Flores, H. E.; Berrios, J. D. J.; Otoni, C. G.; Wood, D. F.; Velazquez, G. Physical Characterization of Biodegradable Films Based on Chitosan, Polyvinyl Alcohol and Opuntia Mucilage. J Polym. Environ. 2016, 25(3), 683–691. DOI: 10.1007/s10924-016-0851-y.
  • Mousavi, Z.; Naseri, M.; Babaei, S.; Hosseini, S. M. H.; Shekarforoush, S. S. The Effect of Cross-Linker Type on Structural, Antimicrobial and Controlled Release Properties of Fish Gelatin-Chitosan Composite Films Incorporated with ε-Poly-L-Lysine. Int. J. Biol. Macromol. 2021, 183, 1743–1752. DOI: 10.1016/j.ijbiomac.2021.05.159.
  • Dick, M.; Costa, T. M. H.; Gomaa, A.; Subirade, M.; Rios, A. D. O.; Flôres, S. H. Edible Film Production from Chia Seed Mucilage: Effect of Glycerol Concentration on Its Physicochemical and Mechanical Properties. Carbohydr. Polym. 2015, 130, 198–205. DOI: 10.1016/j.carbpol.2015.05.040.
  • Charles-Rodríguez, A. V.; Rivera-Solís, L. L.; Martins, J. T.; Genisheva, Z.; Robledo-Olivo, A.; González-Morales, S.; López-Guarin, G.; Martínez-Vázquez, D. G.; Vicente, A. A.; Flores-López, M. L. Edible Films Based on Black Chia (Salvia Hispanica L.) Seed Mucilage Containing Rhus Microphylla Fruit Phenolic Extract. Coatings. 2020, 10(4), 326. DOI: 10.3390/coatings10040326.
  • Capitani, M. I.; Matus-Basto, A.; Ruiz-Ruiz, J. C.; Santiago-García, J. L.; Betancur-Ancona, D. A.; Nolasco, S. M.; Tomás, M. C.; Segura-Campos, M. R. Characterization of Biodegradable Films Based on Salvia Hispanica L. Protein and Mucilage. Food Bioproc. Tech. 2016, 9(8), 1276–1286. DOI: 10.1007/s11947-016-1717-y.
  • Li, X.; Ren, Z.; Wang, R.; Liu, L.; Zhang, J.; Ma, F.; Khan, M. Z. H.; Zhao, D.; Liu, X. Characterization and Antibacterial Activity of Edible Films Based on Carboxymethyl Cellulose, Dioscorea Opposita Mucilage, Glycerol and ZnO Nanoparticles. Food Chem. 2021, 349, 129208. DOI: 10.1016/j.foodchem.2021.129208.
  • Tee, Y. B.; Tee, L. T.; Daengprok, W.; Talib, R. A. Chemical, Physical, and Barrier Properties of Edible Film from Flaxseed Mucilage. BioResources. 2017, 12(3), 6656–6664. DOI: 10.15376/biores.12.3.6656-6664.
  • Sadeghi-Varkani, A.; Emam-Djomeh, Z.; Askari, G. Physicochemical and Microstructural Properties of a Novel Edible Film Synthesized from Balangu Seed Mucilage. Int. J. Biol. Macromol. 2018, 108, 1110–1119. DOI: 10.1016/j.ijbiomac.2017.11.029.
  • Mohite, A. M.; Chandel, D. Formulation of Edible Films from Fenugreek Mucilage and Taro Starch. Sn. Appl. Sci. 2020, 2(11). DOI: 10.1007/s42452-020-03710-1.
  • Ekrami, M.; Emam-Djomeh, Z.; Ghoreishy, S. A.; Najari, Z.; Shakoury, N. Characterization of a High-Performance Edible Film Based on Salep Mucilage Functionalized with Pennyroyal (Mentha Pulegium). Int. J. Biol. Macromol. 2019, 133, 529–537. DOI: 10.1016/j.ijbiomac.2019.04.136.
  • De Alvarenga Pinto Cotrim, M.; Mottin, A. C.; Ayres, E. Preparation and Characterization of Okra Mucilage (Abelmoschus Esculentus) Edible Films. Macromol. Symp. 2016, 367(1), 90–100. DOI: 10.1002/masy.201600019.
  • Oliveira, N. L.; Rodrigues, A. A.; Oliveira Neves, I. C.; Teixeira Lago, A. M.; Borges, S. V.; de Resende, J. V. Development and Characterization of Biodegradable Films Based on Pereskia Aculeata Miller Mucilage. Ind. Crops Prod. 2019, 130, 499–510. DOI: 10.1016/j.indcrop.2019.01.014.
  • Ayquipa-Cuellar, E.; Salcedo-Sucasaca, L.; Azamar-Barrios, J. A.; Chaquilla-Quilca, G. Assessment of Prickly Pear Peel Mucilage and Potato Husk Starch for Edible Films Production for Food Packaging Industries. Waste Biomass Valorization. 2021, 12(1), 321–331. DOI: 10.1007/s12649-020-00981-y.
  • Jouki, M.; Yazdi, F. T.; Mortazavi, S. A.; Koocheki, A.; Khazaei, N. Effect of Quince Seed Mucilage Edible Films Incorporated with Oregano or Thyme Essential Oil on Shelf-Life Extension of Refrigerated Rainbow Trout Fillets. Int. J. Food Microbiol. 2014, 174, 88–97. DOI: 10.1016/j.ijfoodmicro.2014.01.001.
  • Jouki, M.; Tabatabaei Yazdi, F.; Mortazavi, S. A.; Koocheki, A. Physical, Barrier and Antioxidant Properties of a Novel Plasticized Edible Film from Quince Seed Mucilage. Int. J. Biol. Macromol. 2013, 62, 500–507. DOI: 10.1016/j.ijbiomac.2013.09.031.
  • Shekarabi, A. S.; Oromiehie, A. R.; Vaziri, A.; Ardjmand, M.; Safekordi, A. A. Investigation of the Effect of Nanoclay on the Properties of Quince Seed Mucilage Edible Films. Food Sci. Nutr. 2014, 2(6), 821–827. DOI: 10.1002/fsn3.177.
  • Karbowiak, T.; Hervet, H.; Léger, L.; Champion, D.; Debeaufort, F.; Voilley, A. Effect of Plasticizers (Water and Glycerol) on the Diffusion of a Small Molecule in Iota-Carrageenan Biopolymer Films for Edible Coating Application. Biomacromolecules. 2006, 7(6), 2011–2019. DOI: 10.1021/bm060179r.
  • Osés, J.; Fabregat-Vázquez, M.; Pedroza-Islas, R.; Tomás, S. A.; Cruz-Orea, A.; Maté, J. I. Development and Characterization of Composite Edible Films Based on Whey Protein Isolate and Mesquite Gum. J. Food Eng. 2009, 92(1), 56–62. DOI: 10.1016/j.jfoodeng.2008.10.029.
  • Bergo, P.; Moraes, I. C. F.; Sobral, P. J. A. Effects of Plasticizer Concentration and Type on Moisture Content in Gelatin Films. Food Hydrocoll. 2013, 32(2), 412–415. DOI: 10.1016/j.foodhyd.2013.01.015.
  • Cagri, A.; Ustunol, Z.; Ryser, E. T. Antimicrobial, Mechanical, and Moisture Barrier Properties of Low pH Whey Protein-Based Edible Films Containing P-Aminobenzoic or Sorbic Acids. J. Food Sci. 2001, 66(6), 865–870. DOI: 10.1111/j.1365-2621.2001.tb15188.x.
  • Bertuzzi, M. A.; Castro Vidaurre, E. F.; Armada, M.; Gottifredi, J. C. Water Vapor Permeability of Edible Starch Based Films. J. Food Eng. 2007, 80(3), 972–978. DOI: 10.1016/j.jfoodeng.2006.07.016.
  • Ghasemlou, M.; Khodaiyan, F.; Oromiehie, A. Physical, Mechanical, Barrier, and Thermal Properties of Polyol-Plasticized Biodegradable Edible Film Made from Kefiran. Carbohyr. Polym. 2011, 84(1), 477–483. DOI: 10.1016/j.carbpol.2010.12.010.
  • Ma, F.; Wang, R.; Li, X.; Kang, W.; Bell, A. E.; Zhao, D.; Liu, X.; Chen, W. Physical Properties of Mucilage Polysaccharides from Dioscorea Opposita Thunb. Food Chem. 2020, 311, 126039. DOI: 10.1016/j.foodchem.2019.126039.
  • Muñoz, L. A.; Aguilera, J. M.; Rodriguez-Turienzo, L.; Cobos, A.; Diaz, O. Characterization and Microstructure of Films Made from Mucilage of Salvia Hispanica and Whey Protein Concentrate. J. Food Eng. 2012, 111(3), 511–518. DOI: 10.1016/j.jfoodeng.2012.02.031.
  • Nazan Turhan, K.; Şahbaz, F. Water Vapor Permeability, Tensile Properties and Solubility of Methylcellulose-Based Edible Films. J. Food Eng. 2004, 61(3), 459–466. DOI: 10.1016/s0260-8774(03)00155-9.
  • Razavi, S. M. A.; Mohammad Amini, A.; Zahedi, Y. Characterization of a New Biodegradable Edible Film Based on Sage Seed Gum: Influence of Plasticizer Type and Concentration. Food Hydrocoll. 2015, 43, 290–298. DOI: 10.1016/j.foodhyd.2014.05.028.
  • Khwaldia, K. Physical and Mechanical Properties of Hydroxypropyl Methylcellulose–coated Paper as Affected by Coating Weight and Coating Composition. BioResources. 2013, 8(3), 3438–3452. DOI: 10.15376/biores.8.3.3438-3452.
  • Sothornvit, R.; Pitak, N. Oxygen Permeability and Mechanical Properties of Banana Films. Food. Res. Int. 2007, 40(3), 365–370. DOI: 10.1016/j.foodres.2006.10.010.
  • Park, J.; Nam, J.; Yun, H.; Jin, H.-J.; Kwak, H. W. Aquatic Polymer-Based Edible Films of Fish Gelatin Crosslinked with Alginate Dialdehyde Having Enhanced Physicochemical Properties. Carbohydr. Polym. 2021, 254, 117317. DOI: 10.1016/j.carbpol.2020.117317.
  • Sapper, M.; Chiralt, A. Starch-Based Coatings for Preservation of Fruits and Vegetables. Coatings. 2018, 8(5), 152. DOI: 10.3390/coatings8050152.
  • Choi, W. S.; Singh, S.; Lee, Y. S. Characterization of Edible Film Containing Essential Oils in Hydroxypropyl Methylcellulose and Its Effect on Quality Attributes of ‘Formosa’ Plum (Prunus Salicina L.). LWT. 2016, 70, 213–222. DOI: 10.1016/j.lwt.2016.02.036.
  • Jiang, Y.; Li, Y. Effects of Chitosan Coating on Postharvest Life and Quality of Longan Fruit. Food Chem. 2001, 73(2), 139–143. DOI: 10.1016/s0308-8146(00)00246-6.
  • Sothornvit, R.; Rodsamran, P. Effect of a Mango Film on Quality of Whole and Minimally Processed Mangoes. Postharvest. Biol. Technol. 2008, 47(3), 407–415. DOI: 10.1016/j.postharvbio.2007.08.005.
  • Martins, J. T.; Cerqueira, M. A.; Souza, B. W.; Carmo Avides, M. D.; Vicente, A. A. Shelf Life Extension of Ricotta Cheese Using Coatings of Galactomannans from Nonconventional Sources Incorporating Nisin Against Listeria Monocytogenes. J. Agric. Food. Chem. 2010, 58(3), 1884–1891. DOI: 10.1021/jf902774z.
  • Miller, K. S.; Krochta, J. M. Oxygen and Aroma Barrier Properties of Edible Films: A Review. Trends Food Sci. Technol. 1997, 8(7), 228–237. DOI: 10.1016/S0924-2244(97)01051-0.
  • Donhowe, I. G.; Fennema, O. The Effects of Plasticizers on Crystallinity, Permeability, and Mechanical Properties of Methylcellulose Films. J. Food Process Preserv. 1993, 17(4), 247–257. DOI: 10.1111/j.1745-4549.1993.tb00729.x.
  • Monjazeb Marvdashti, L.; Yavarmanesh, M.; Koocheki, A. In vitro Release Study of Nisin from Active Polyvinyl Alcohol-Alyssum Homolocarpum Seed Gum Films at Different Temperatures. Polym. Test. 2019, 79, 106032. DOI: 10.1016/j.polymertesting.2019.106032.
  • Banker, G. S.; Gore, A. Y.; Swarbrick, J. Water Vapour Transmission Properties of Free Polymer Films. J. Pharm. Pharmacol. 1966, 18(7), 457–466. DOI: 10.1111/j.2042-7158.1966.tb07906.x.
  • Park, H. J.; Weller, C. L.; Vergano, P. J.; Testin, R. F. Permeability and Mechanical Properties of Cellulose-Based Edible Films. J. Food Sci. 1993, 58(6), 1361–1364. DOI: 10.1111/j.1365-2621.1993.tb06183.x.
  • Acosta, S. A.; Jimenez, A.: Chiralt, A.; Martinez, A.; Chafer, A. Mechanical, Barrier and Microstructural Properties of Films Based on Cassava Starch Gelatin Blends: Effect of Aging and Lipid Addition. AIP Conf. Proc. 2016, 1755(150003), 1–7. DOI: 10.1063/1.4958576.
  • Memiş, S.; Tornuk, F.; Bozkurt, F.; Durak, M. Z. Production and Characterization of a New Biodegradable Fenugreek Seed Gum Based Active Nanocomposite Film Reinforced with Nanoclays. Int. J. Biol. Macromol. 2017, 103, 669–675. DOI: 10.1016/j.ijbiomac.2017.05.090.
  • Lira-Vargas, A. A.; Corrales-Garcia, J. J. E.; Valle-Guadarrama, S.; Peña-Valdivia, C. B.; Trejo-Marquez, M. A. Biopolymeric Films Based on Cactus (Opuntia Ficus-Indica) Mucilage Incorporated with Gelatin and Beeswax. J. Prof. Assoc. Cactus Dev. 2014, 6, 51–70.
  • Seyedi, S.; Koocheki, A.; Mohebbi, M.; Zahedi, Y. Lepidium Perfoliatum Seed Gum: A New Source of Carbohydrate to Make a Biodegradable Film. Carbohydr. Polym. 2014, 101, 349–358. DOI: 10.1016/j.carbpol.2013.09.072.
  • Gennadios, A.; Weller, C. L.; Gooding, C. H. Measurement Errors in Water Vapor Permeability of Highly Permeable, Hydrophilic Edible Films. J. Food Eng. 1994, 21(4), 395–409. DOI: 10.1016/0260-8774(94)90062-0.
  • Park, S.; Zhao, Y. Incorporation of a High Concentration of Mineral or Vitamin into Chitosan-Based Films. J. Agric. Food. Chem. 2004, 52(7), 1933–1939. DOI: 10.1021/jf034612p.
  • Srinivasa, P. C.; Ramesh, M. N.; Tharanathan, R. N. Effect of Plasticizers and Fatty Acids on Mechanical and Permeability Characteristics of Chitosan Films. Food Hydrocoll. 2007, 21(7), 1113–1122. DOI: 10.1016/j.foodhyd.2006.08.005.
  • Khazaei, N.; Esmaiili, M.; Djomeh, Z. E.; Ghasemlou, M.; Jouki, M. Characterization of New Biodegradable Edible Film Made from Basil Seed (Ocimum Basilicum L.) Gum. Carbohydr. Polym. 2014, 102, 199–206. DOI: 10.1016/j.carbpol.2013.10.062.
  • Tosif, M. M.; Najda, A.; Klepacka, J.; Bains, A.; Chawla, P.; Kumar, A.; Sharma, M.; Sridhar, K.; Gautam, S. P.; Kaushik, R. A Concise Review on Taro Mucilage: Extraction Techniques, Chemical Composition, Characterization, Applications, and Health Attributes. Polymers. 2022, 14(6), 1163. DOI: 10.3390/polym14061163.
  • Aguirre, A.; Borneo, R.; León, A. E. Antimicrobial, Mechanical and Barrier Properties of Triticale Protein Films Incorporated with Oregano Essential Oil. Food Biosci. 2013, 1, 2–9. DOI: 10.1016/j.fbio.2012.12.001.
  • Yang, L.; Paulson, A. T. Effects of Lipids on Mechanical and Moisture Barrier Properties of Edible Gellan Film. Food. Res. Int. 2000, 33(7), 571–578. DOI: 10.1016/s0963-9969(00)00093-4.
  • Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—a Review. Int. J. Food Microbiol. 2004, 94(3), 223–253. DOI: 10.1016/j.ijfoodmicro.2004.03.022.
  • Delaquis, P. Antimicrobial Activity of Individual and Mixed Fractions of Dill, Cilantro, Coriander and Eucalyptus Essential Oils. Int. J. Food Microbiol. 2002, 74(1–2), 101–109. DOI: 10.1016/s0168-1605(01)00734-6.
  • Tepe, B.; Donmez, E.; Unlu, M.; Candan, F.; Daferera, D.; Vardar-Unlu, G.; Polissiou, M.; Sokmen, A. Antimicrobial and Antioxidative Activities of the Essential Oils and Methanol Extracts of Salvia Cryptantha (Montbret Et Aucher Ex Benth.) and Salvia Multicaulis (Vahl). Food Chem. 2004, 84(4), 519–525. DOI: 10.1016/s0308-8146(03)00267-x.
  • Du, W.-X.; Avena-Bustillos, R. J.; Woods, R.; Breksa, A. P.; McHugh, T. H.; Friedman, M.; Levin, C. E.; Mandrell, R. Sensory Evaluation of Baked Chicken Wrapped with Antimicrobial Apple and Tomato Edible Films Formulated with Cinnamaldehyde and Carvacrol. J. Agric. Food. Chem. 2012, 60(32), 7799–7804. DOI: 10.1021/jf301281a.
  • Teixeira, B.; Marques, A.; Ramos, C.; Batista, I.; Serrano, C.; Matos, O.; Neng, N. R.; Nogueira, J. M. F.; Saraiva, J. A.; Nunes, M. L. European Pennyroyal (Mentha Pulegium) from Portugal: Chemical Composition of Essential Oil and Antioxidant and Antimicrobial Properties of Extracts and Essential Oil. Ind. Crops Prod. 2012, 36(1), 81–87. DOI: 10.1016/j.indcrop.2011.08.011.
  • Zivanovic, S.; Chi, S.; Draughon, A. F. Antimicrobial Activity of Chitosan Films Enriched with Essential Oils. J. Food Sci. 2005, 70(1), M45–M51—. DOI: 10.1111/j.1365-2621.2005.tb09045.x.
  • Wilkinson, J. M.; Hipwell, M.; Ryan, T.; Cavanagh, H. M. A. Bioactivity ofBackhousia Citriodora: Antibacterial and Antifungal Activity. J. Agric. Food. Chem. 2003, 51(1), 76–81. DOI: 10.1021/jf0258003.
  • Shan, B.; Cai, Y. Z.; Sun, M.; Corke, H. Antioxidant Capacity of 26 Spice Extracts and Characterization of Their Phenolic Constituents. J. Agric. Food. Chem. 2005, 53(20), 7749–7759. DOI: 10.1021/jf051513y.
  • Tantiwatcharothai, S.; Prachayawarakorn, J. Property Improvement of Antibacterial Wound Dressing from Basil Seed (O. Basilicum L.) Mucilage- ZnO Nanocomposite by Borax Crosslinking. Carbohydr. Polym. 2020, 227, 115360. DOI: 10.1016/j.carbpol.2019.115360.
  • Ponce, A. G.; Roura, S. I.; Del Valle, C. E.; Moreira, M. R. Antimicrobial and Antioxidant Activities of Edible Coatings Enriched with Natural Plant Extracts: In Vitro and in vivo Studies. Postharvest. Biol. Technol. 2008, 49(2), 294–300. DOI: 10.1016/j.postharvbio.2008.02.013.
  • Sebti, I.; Chollet, E.; Degraeve, P.; Noel, C.; Peyrol, E. Water Sensitivity, Antimicrobial, and Physicochemical Analyses of Edible Films Based on HPMC And/or Chitosan. J. Agric. Food. Chem. 2007, 55(3), 693–699. DOI: 10.1021/jf062013n.
  • Stevanović, Z.; Bošnjak-Neumüller, J.; Pajić-Lijaković, I.; Raj, J.; Vasiljević, M. Essential Oils as Feed Additives—future Perspectives. Molecules. 2018, 23(7), 1717. DOI: 10.3390/molecules23071717.
  • Avila-Sosa, R.; Palou, E.; Jiménez Munguía, M. T.; Nevárez-Moorillón, G. V.; Navarro Cruz, A. R.; López-Malo, A. Antifungal Activity by Vapor Contact of Essential Oils Added to Amaranth, Chitosan, or Starch Edible Films. Int. J. Food Microbiol. 2012, 153(1–2), 66–72. DOI: 10.1016/j.ijfoodmicro.2011.10.017.
  • Musso, Y. S.; Salgado, P. R.; Mauri, A. N. Gelatin Based Films Capable of Modifying Its Color Against Environmental pH Changes. Food Hydrocoll. 2016, 61, 523–530. DOI: 10.1016/j.foodhyd.2016.06.013.
  • Treviño-Garza, M. Z.; Yañez-Echeverría, S. A.; García, S.; Mora-Zúñiga, A. E.; Arévalo Niño, K. Physico-Mechanical, Barrier and Antimicrobial Properties of Linseed Mucilague Films Incorporated with H. Virginiana Extract. Rev. Mex. Ing. Quim. 2019, 19(2), 983–996. DOI: 10.24275/rmiq/bio872.
  • Rodrigues, C.; Souza, V. G. L.; Coelhoso, I.; Fernando, A. L. Bio-Based Sensors for Smart Food Packaging-Current Applications and Future Trends. Sensors. 2021, 21(6), 2148. DOI: 10.3390/s21062148.
  • Ezati, P.; Bang, Y.-J.; Rhim, J.-W. Preparation of a Shikonin-Based pH-Sensitive Color Indicator for Monitoring the Freshness of Fish and Pork. Food Chem. 2021, 337, 127995. DOI: 10.1016/j.foodchem.2020.127995.
  • Poyatos-Racionero, E.; Ros-Lis, J. V.; Vivancos, J.-L.; Martínez-Máñez, R. Recent Advances on Intelligent Packaging as Tools to Reduce Food Waste. J. Clean. Prod. 2018, 172, 3398–3409. DOI: 10.1016/j.jclepro.2017.11.075.
  • Balbinot-Alfaro, E.; Craveiro, D. V.; Lima, K. O.; Costa, H. L. G.; Lopes, D. R.; Prentice, C. Intelligent Packaging with pH Indicator Potential. Food Eng. Rev. 2019, 11(4), 235–244. DOI: 10.1007/s12393-019-09198-9.
  • Zhang, J.; Zou, X.; Zhai, X.; Huang, X.; Jiang, C.; Holmes, M. Preparation of an Intelligent pH Film Based on Biodegradable Polymers and Roselle Anthocyanins for Monitoring Pork Freshness. Food Chem. 2019, 272, 306–312. DOI: 10.1016/j.foodchem.2018.08.041.
  • Liang, T.; Sun, G.; Cao, L.; Li, J.; Wang, L. A pH and NH3 Sensing Intelligent Film Based on Artemisia Sphaerocephala Krasch. Gum and Red Cabbage Anthocyanins Anchored by Carboxymethyl Cellulose Sodium Added as a Host Complex. Food Hydrocoll. 2019, 87, 858–868. DOI: 10.1016/j.foodhyd.2018.08.028.
  • Chi, W.; Cao, L.; Sun, G.; Meng, F.; Zhang, C.; Li, J.; Wang, L. Developing a Highly pH-Sensitive ĸ-Carrageenan-Based Intelligent Film Incorporating Grape Skin Powder via a Cleaner Process. J. Clean. Prod. 2020, 244, 118862. DOI: 10.1016/j.jclepro.2019.118862.
  • Zhang, X.; Zou, W.; Xia, M.; Zeng, Q.; Cai, Z. Intelligent Colorimetric Film Incorporated with Anthocyanins-Loaded Ovalbumin-Propylene Glycol Alginate Nanocomplexes as a Stable pH Indicator of Monitoring Pork Freshness. Food Chem. 2022, 368, 130825. DOI: 10.1016/j.foodchem.2021.130825.
  • Alizadeh-Sani, M.; Tavassoli, M.; Mohammadian, E.; Ehsani, A.; Khaniki, G. J.; Priyadarshi, R.; Rhim, J.-W. pH-Responsive Color Indicator Films Based on Methylcellulose/chitosan Nanofiber and Barberry Anthocyanins for Real-Time Monitoring of Meat Freshness. Int. J. Biol. Macromol. 2021, 166, 741–750. DOI: 10.1016/j.ijbiomac.2020.10.231.
  • Eze, F. N.; Jayeoye, T. J.; Singh, S. Fabrication of Intelligent pH-Sensing Films with Antioxidant Potential for Monitoring Shrimp Freshness via the Fortification of Chitosan Matrix with Broken Riceberry Phenolic Extract. Food Chem. 2022, 366, 130574. DOI: 10.1016/j.foodchem.2021.130574.
  • Chen Chen, T.; Yu, S. C.; Hsu, C. M.; Tsai, F. J.; Tsai, Y. A Water-Based Topical Chinese Traditional Medicine (Zicao) for Wound Healing Developed Using 2-Hydroxypropyl-β-Cyclodextrin Colloids Surf. B: Biointerfaces. 2018, 165, 67–73. DOI: 10.1016/j.colsurfb.2018.02.013.
  • Roy, S.; Rhim, J.-W. Fabrication of Cellulose Nanofiber-Based Functional Color Indicator Film Incorporated with Shikonin Extracted from Lithospermum Erythrorhizon Root. Food Hydrocoll. 2021, 114, 106566. DOI: 10.1016/j.foodhyd.2020.106566.
  • Pourjavaher, S.; Almasi, H.; Meshkini, S.; Pirsa, S.; Parandi, E. Development of a Colorimetric pH Indicator Based on Bacterial Cellulose Nanofibers and Red Cabbage (Brassica Oleraceae) Extract. Carbohydr. Polym. 2017, 156, 193–201. DOI: 10.1016/j.carbpol.2016.09.027.
  • Bajpai, S. K.; Chand, N.; Ahuja, S. Investigation of Curcumin Release from Chitosan/cellulose Micro Crystals (CMC) Antimicrobial Films. Int. J. Biol. Macromol. 2015, 79, 440–448. DOI: 10.1016/j.ijbiomac.2015.05.012.
  • Rostami, H.; Esfahani, A. A. Development a Smart Edible Nanocomposite Based on Mucilage of Melissa Officinalis Seed/montmorillonite (Mmt)/curcumin. Int. J. Biol. Macromol. 2019, 141, 171–177. DOI: 10.1016/j.ijbiomac.2019.08.261.
  • Kang, S.; Wang, H.; Xia, L.; Chen, M.; Li, L.; Cheng, J.; Li, X.; Jiang, S. Colorimetric Film Based on Polyvinyl Alcohol/okra Mucilage Polysaccharide Incorporated with Rose Anthocyanins for Shrimp Freshness Monitoring. Carbohydr. Polym. 2020, 229, 115402. DOI: 10.1016/j.carbpol.2019.115402.
  • Moradi, M.; Tajik, H.; Almasi, H.; Forough, M.; Ezati, P. A Novel pH-Sensing Indicator Based on Bacterial Cellulose Nanofibers and Black Carrot Anthocyanins for Monitoring Fish Freshness. Carbohydr. Polym. 2019, 222, 115030. DOI: 10.1016/j.carbpol.2019.115030.
  • Ma, Q.; Du, L.; Wang, L. Tara Gum/polyvinyl Alcohol-Based Colorimetric NH3 Indicator Films Incorporating Curcumin for Intelligent Packaging. Sens. Actuators B: Chem. 2017, 244, 759–766. DOI: 10.1016/j.snb.2017.01.035.
  • Choi, I.; Lee, J. Y.; Lacroix, M.; Han, J. Intelligent pH Indicator Film Composed of Agar/potato Starch and Anthocyanin Extracts from Purple Sweet Potato. Food Chem. 2017, 218, 122–128. DOI: 10.1016/j.foodchem.2016.09.050.
  • Shahbazi, Y.; Shavisi, N.; Karami, N. Development of Edible Bioactive Coating Based on Mucilages for Increasing the Shelf Life of Strawberries. J. Food Meas. Charact. 2020. DOI: 10.1007/s11694-020-00638-3.
  • Noshad, M.; Rahmati-Joneidabad, M.; Badvi, Z. Effects of Natural Mucilage as an Edible Coating on Quality Improvement of Freshly-Cut Apples. Nutr Food Sci. 2019, 6(2), 21–27. DOI: 10.29252/nfsr.6.2.21.
  • Yousuf, B.; Srivastava, A. K. Psyllium (Plantago) Gum as an Effective Edible Coating to Improve Quality and Shelf Life of Fresh-Cut Papaya (Carica Papaya). Int. J. Biol. Biom. Agr. Food Biot. Eng. 2015, 9(7), 702–707.
  • Tabaestani, H. S.; Sedaghat, N.; Pooya, E. S.; Alipour, A. Shelf-Life Improvement and Postharvest Quality of Cherry Tomato (Solanum Lycopersicum L.) Fruit Using Basil Mucilage Edible Coating and Cumin Essential Oil. Intl J. Agron. Plant Prod. 2013, 4(9), 2346–2353.
  • Rehman, H. U.; Farooq, U.; Akram, K.; Sidhu, A. I.; Shafi, A.; Sarfraz, F. Incorporation of Garlic Extract as Antifungal Agent in Psyllium Based Edible Coating for Mandarin. Int. J. Food Allied Sci. 2015, 1(1), 11. DOI: 10.21620/ijfaas.2015111-17.
  • Karami, N.; Kamkar, A.; Shahbazi, Y.; Misaghi, A. Edible Films Based on Chitosan-Flaxseed Mucilage: In Vitro Antimicrobial and Antioxidant Properties and Their Application on Survival of Food-Borne Pathogenic Bacteria in Raw Minced Trout Fillets. Pharm. Biomed. Res. 2019. DOI: 10.18502/pbr.v5i2.1580.
  • Coban, M. Z.; Coban, O. E. Potency and Use of Chia Mucilage Coating Containing Propolis Liquid Extract for Improves Shelf-Life of Sea Bass Fillets. Acta Sci. Pol. Technol. Aliment. 2020, 19(3), 255–260. DOI: 10.17306/j.afs.0843.
  • Alizadeh Behbahani, B.; Imani Fooladi, A. A. Development of a Novel Edible Coating Made by Balangu Seed Mucilage and Feverfew Essential Oil and Investigation of Its Effect on the Shelf Life of Beef Slices During Refrigerated Storage Through Intelligent Modeling. J. Food Saf. 2018, 38(3), nº e12443. DOI: 10.1111/jfs.12443.
  • Behbahani, B. A.; Imani Fooladi, A. A. Shirazi Balangu (Lallemantia Royleana) Seed Mucilage: Chemical Composition, Molecular Weight, Biological Activity and Its Evaluation as Edible Coating on Beefs. Int. J. Biol. Macromol. 2018, 114, 882–889. DOI: 10.1016/j.ijbiomac.2018.03.177.
  • Behbahani, B. A.; Shahidi, F.; Yazdi, F. T.; Mortazavi, S. A.; Mohebbi, M. Use of Plantago Major Seed Mucilage as a Novel Edible Coating Incorporated with Anethum Graveolens Essential Oil on Shelf-Life Extension of Beef in Refrigerated Storage. Int. J. Biol. Macromol. 2017, 94, 515–526. DOI: 10.1016/j.ijbiomac.2016.10.055.
  • Alizadeh Behbahani, B.; Noshad, M.; Jooyandeh, H. Improving Oxidative and Microbial Stability of Beef Using Shahri Balangu Seed Mucilage Loaded with Cumin Essential Oil as a Bioactive Edible Coating. Biocatal Agric. Biotechnol. 2020, 24, 101563. DOI: 10.1016/j.bcab.2020.101563.
  • Alizadeh Behbahani, B.; Shahidi, F. Evaluation of Microbial, Chemical and Sensory Characteristics of Coated Lamb with Scutellaria Lateriflora Seed Mucilage in Combination with Carum Copticum Essential Oil to Shelf-Life Extension at Refrigerated Storage. IFSTRJ. 2020, 16(4), 383–394.
  • Heydari, S.; Jooyandeh, H.; Alizadeh Behbahani, B.; Noshad, M. The Impact of Qodume Shirazi Seed Mucilage‐based Edible Coating Containing Lavender Essential Oil on the Quality Enhancement and Shelf-Life Improvement of Fresh Ostrich Meat: An Experimental and Modeling Study. Food Sci. Nutr. 2020, 8(12), 6497–6512. DOI: 10.1002/fsn3.1940.
  • Noshad, M.; Alizadeh Behbahani, B.; Jooyandeh, H.; Rahmati-Joneidabad, M.; Hemmati Kaykha, M. E.; Ghodsi Sheikhjan, M. Utilization of Plantago Major Seed Mucilage Containing Citrus Limon Essential Oil as an Edible Coating to Improve Shelf‐life of Buffalo Meat Under Refrigeration Conditions. Food Sci. Nutr. 2021, 9(3), 1625–1639. DOI: 10.1002/fsn3.2137.
  • Tanavar, H.; Barzegar, H.; Alizadeh Behbahani, B.; Mehrnia, M. A. Investigation of the Chemical Properties of Mentha Pulegium Essential Oil and Its Application in Ocimum Basilicum Seed Mucilage Edible Coating for Extending the Quality and Shelf Life of Veal Stored in Refrigerator (4°C). Food Sci. Nutr. 2021, 9(10), 5600–5615. DOI: 10.1002/fsn3.2522.
  • El-Sheikh, D. M. Efficiency of Using Arabic Gum and Plantago Seeds Mucilage as Edible Coating for Chicken Boneless Breast. Food Sci Quality Mgmt. 2014, 32, 28–33.
  • Mohammadi, H.; Kamkar, A.; Misaghi, A.; Zunabovic-Pichler, M.; Fatehi, S. Nanocomposite Films with CMC, Okra Mucilage, and ZnO Nanoparticles: Extending the Shelf-Life of Chicken Breast Meat. Food Packag. Shelf Life. 2019, 21, 100330. DOI: 10.1016/j.fpsl.2019.100330.
  • Karimi, N.; Kenari, R. E. Functionality of Coatings with Salep and Basil Seed Gum for Deep Fried Potato Strips. JAOCS. 2015, 93(2), 243–250. DOI: 10.1007/s11746-015-2762-9.
  • Tabibloghmany, F.; Hojjatoleslamy, M.; Farhadian, F.; Ehsandoost, E. Effect of Linseed (Linum Usitatissimum L.) Hydrocolloid as Edible Coating on Decreasing Oil Absorption in Potato Chips During Deep-Fat Frying. IJACS. 2013, 6(2), 63–69.
  • Noshad, M.; Nasehi, B.; Anvar, A. Effect of Active Edible Coating Made by Quince Seed Mucilage and Green Tea Extract on Quality of Fried Shrimps: Physicochemical and Sensory Properties. NFSR. 2017, 4(4), 31–38. DOI: 10.29252/nfsr.4.4.5.
  • Soleimani-Rambod, A.; Zomorodi, S.; Naghizadeh Raeisi, S.; Khosrowshahi Asl, A.; Shahidi, S.-A. The Effect of Xanthan Gum and Flaxseed Mucilage as Edible Coatings in Cheddar Cheese During Ripening. Coatings. 2018, 8(2), 80. DOI: 10.3390/coatings8020080.
  • Moreira, M. R.; Cassani, L.; Martín-Belloso, O.; Soliva-Fortuny, R. Effects of Polysaccharide-Based Edible Coatings Enriched with Dietary Fiber on Quality Attributes of Fresh-Cut Apples. J. Food Sci. Technol. 2015, 52(12), 7795–7805. DOI: 10.1007/s13197-015-1907-z.
  • Gol, N. B.; Patel, P. R.; Rao, T. V. R. Improvement of Quality and Shelf-Life of Strawberries with Edible Coatings Enriched with Chitosan. Postharvest. Biol. Technol. 2013, 85, 185–195. DOI: 10.1016/j.postharvbio.2013.06.008.
  • Khan, I.; Tango, C. N.; Miskeen, S.; Lee, B. H.; Oh, D.-H. Hurdle Technology: A Novel Approach for Enhanced Food Quality and Safety – a Review. Food Control. 2017, 73, 1426–1444. DOI: 10.1016/j.foodcont.2016.11.010.
  • Banks, N. H.; Dadzie, B. K.; Cleland, D. J. Reducing Gas Exchange of Fruits with Surface Coatings. Postharvest. Biol. Technol. 1993, 3(3), 269–284. DOI: 10.1016/0925-5214(93)90062-8.
  • Vital, A. C. P.; Guerrero, A.; Monteschio, J. D. O.; Valero, M. V.; Carvalho, C. B.; de Abreu Filho, B. A.; Madrona, G. S.; Do Prado, I. N.; Chamani, J. Effect of Edible and Active Coating (With Rosemary and Oregano Essential Oils) on Beef Characteristics and Consumer Acceptability. PLoS One. 2016, 11(8), e0160535. DOI: 10.1371/journal.pone.0160535.
  • Huang, B.; He, J.; Ban, X.; Zeng, H.; Yao, X.; Wang, Y. Antioxidant Activity of Bovine and Porcine Meat Treated with Extracts from Edible Lotus (Nelumbo Nucifera) Rhizome Knot and Leaf. Meat Sci. 2011, 87(1), 46–53. DOI: 10.1016/j.meatsci.2010.09.001.
  • Kim, H.; Cadwallader, K. R.; Kido, H.; Watanabe, Y. Effect of Addition of Commercial Rosemary Extracts on Potent Odorants in Cooked Beef. Meat Sci. 2013, 94(2), 170–176. DOI: 10.1016/j.meatsci.2013.01.005.
  • Zhou, G. H.; Xu, X. L.; Liu, Y. Preservation Technologies for Fresh Meat – a Review. Meat Sci. 2010, 86(1), 119–128. DOI: 10.1016/j.meatsci.2010.04.033.
  • Perumalla, A. V. S.; Hettiarachchy, N. S. Green Tea and Grape Seed Extracts — Potential Applications in Food Safety and Quality. Food. Res. Int. 2011, 44(4), 827–839. DOI: 10.1016/j.foodres.2011.01.022.
  • Gagaoua, M.; Bhattacharya, T.; Lamri, M.; Oz, F.; Dib, A. L.; Oz, E.; Tomasevic, I.; Tomasevic, I. Green Coating Polymers in Meat Preservation. Coatings. 2021, 11(11), 1379. DOI: 10.3390/coatings11111379.
  • Saffari Samani, E.; Jooyandeh, H.; Alizadeh Behbahani, B. Shelf‐life Extension of Buffalo Meat Using Farsi Gum Edible Coating Containing Shirazi Thyme Essential Oil. Food Sci. Nutr. 2022. DOI: 10.1002/fsn3.2737.
  • Voloski, F. L. S.; Tonello, L.; Ramires, T.; Reta, G. G.; Dewes, C.; Iglesias, M.; Mondadori, R. G.; Gandra, E. A.; da Silva, W. P.; Duval, E. H. Influence of Cutting and Deboning Operations on the Microbiological Quality and Shelf Life of Buffalo Meat. Meat Sci. 2016, 116, 207–212. DOI: 10.1016/j.meatsci.2016.02.020.
  • Janes, M. E.; Dai, Y. Edible Films for Meat, Poultry and Seafood. In Advances in Meat, Poultry and Seafood Packaging; Kerry, J.P., Ed.; Elsevier, 2012; pp. 504–521. DOI: 10.1533/9780857095718.4.504.
  • Fan, W.; Sun, J.; Chen, Y.; Qiu, J.; Zhang, Y.; Chi, Y. Effects of Chitosan Coating on Quality and Shelf Life of Silver Carp During Frozen Storage. Food Chem. 2009, 115(1), 66–70. DOI: 10.1016/j.foodchem.2008.11.060.
  • Ashie, I. N. A.; Smith, J. P.; Simpson, B. K.; Haard, N. F. Spoilage and Shelf‐life Extension of Fresh Fish and Shellfish. Crit. Rev. Food Sci. Nutr. 1996, 36(1–2), 87–121. DOI: 10.1080/10408399609527720.
  • Mohan, C. O.; Ravishankar, C. N.; Srinivasagopal, T. K. Effect of O2 Scavenger on the Shelf-Life of Catfish (Pangasius Sutchi) Steaks During Chilled Storage. J. Sci. Food Agric. 2008, 88(3), 442–448. DOI: 10.1002/jsfa.3105.
  • Georgala, A.; Moschopoulou, E.; Aktypis, A.; Massouras, T.; Zoidou, E.; Kandarakis, I.; Anifantakis, E. Evolution of Lipolysis During the Ripening of Traditional Feta Cheese. Food Chem. 2005, 93(1), 73–80. DOI: 10.1016/j.foodchem.2004.09.007.
  • Collins, Y. F.; McSweeney, P. L. H.; Wilkinson, M. G. Lipolysis and Free Fatty Acid Catabolism in Cheese: A Review of Current Knowledge. Int. Dairy. J. 2003, 13(11), 841–866. DOI: 10.1016/s0958-6946(03)00109-2.
  • Costa, M. J.; Maciel, L. C.; Teixeira, J. A.; Vicente, A. A.; Cerqueira, M. A. Use of Edible Films and Coatings in Cheese Preservation: Opportunities and Challenges. Food. Res. Int. 2018, 107, 84–92. DOI: 10.1016/j.foodres.2018.02.013.
  • Dash, K. K.; Sharma, M.; Tiwari, A. Heat and Mass Transfer Modeling and Quality Changes During Deep Fat Frying: A Comprehensive Review. J. Food Process. Eng. 2022, 45(4), 4. DOI: 10.1111/jfpe.13999.
  • Gamble, M. H.; Rice, P.; Selman, J. D. Relationship Between Oil Uptake and Moisture Loss During Frying of Potato Slices from C. V. Record U.K. TubersInt. J. Food Sci. Technol. 2007, 22(3), 233–241. DOI: 10.1111/j.1365-2621.1987.tb00483.x.
  • Shaker, M. A. Comparison Between Traditional Deep-Fat Frying and Air-Frying for Production of Healthy Fried Potato Strips. Int. Food Res. J. Int. Food Res. J. 2015, 22(4), 1557–1563.
  • Garayo, J.; Moreira, R. Vacuum Frying of Potato Chips. J. Food Eng. 2002, 55(2), 181–191. DOI: 10.1016/s0260-8774(02)00062-6.
  • Cortés, P.; Segura, L.; Kawaji, M.; Bouchon, P. The Effect of Gravity on Moisture Loss and Oil Absorption Profiles During a Simulated Frying Process Using Glass Micromodels. Food Bioprod. Process. 2015, 95, 133–145. DOI: 10.1016/j.fbp.2015.05.001.
  • Krokida, M. K.; Oreopoulou, V.; Maroulis, Z. B. Water Loss and Oil Uptake as a Function of Frying Time. J. Food Eng. 2000, 44(1), 39–46. DOI: 10.1016/s0260-8774(99)00163-6.
  • Rubnov, M.; Saguy, I. S. Fractal Analysis and Crust Water Diffusivity of a Restructured Potato Product During Deep-Fat Frying. J. Food Sci. 1997, 62(1), 135–137. DOI: 10.1111/j.1365-2621.1997.tb04384.x.
  • Rimac-Brnčić, S.; Lelas, V.; Rade, D.; Šimundić, B. Decreasing of Oil Absorption in Potato Strips During Deep Fat Frying. J. Food Eng. 2004, 64(2), 237–241. DOI: 10.1016/j.jfoodeng.2003.10.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.