341
Views
1
CrossRef citations to date
0
Altmetric
Review

Naringenin as a Natural Agent Against Oxidative Stress and Inflammation, and Its Bioavailability

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Ni, H.; Zhang, S. F.; Gao, Q. F.; Hu, Y.; Jiang, Z. D.; Chen, F. Development and Evaluation of Simultaneous Quantification of Naringin, Prunin, Naringenin, and Limonin in Citrus Juice. Food Sci. Biotechnol. 2015, 24(4), 1239–1247. DOI: 10.1007/s10068-015-0159-z.
  • Benayad, O.; Bouhrim, M.; Tiji, S.; Kharchoufa, L.; Addi, M.; Drouet, S.; Hano, C.; Lorenzo, J. M.; Bendaha, H.; Bnouham, M., et al. Phytochemical Profile, α-Glucosidase, and α-Amylase Inhibition Potential and Toxicity Evaluation of Extracts from Citrus Aurantium (L) Peel, a Valuable By-Product from Northeastern Morocco. Biomolecules 2021, 11(11). doi:10.3390/biom11111555
  • Rodríguez Ceraolo, C.; Vázquez, V.; Migues, I.; Cesio, M. V.; Rivas, F.; Heinzen, H. Flavonoids and Limonoids Profiles Variation in Leaves from Mandarin Cultivars and Its Relationship with Alternate Bearing. Agronomy. 2022, 12, 1. DOI: 10.3390/agronomy12010121.
  • De la Luz Cádiz-Gurrea, M.; Fernández-Arroyo, S.; Segura-Carretero, A. Pine Bark and Green Tea Concentrated Extracts: Antioxidant Activity and Comprehensive Characterization of Bioactive Compounds by HPLC–ESI-QTOF-MS. Int. J. Mol. Sci. 2014, 15(11). DOI: 10.3390/ijms151120382.
  • Bower, A. M.; Real Hernandez, L. M.; Berhow, M. A.; de Mejia, E. G. Bioactive Compounds from Culinary Herbs Inhibit a Molecular Target for Type 2 Diabetes Management, Dipeptidyl Peptidase IV. J. Agric. Food Chem. 2014, 62(26), 6147–6158. DOI: 10.1021/jf500639f.
  • Cortés-Chitala, M. D. C.; Flores-Martínez, H.; Orozco-Ávila, I.; León-Campos, C.; Suárez-Jacobo, Á.; Estarrón-Espinosa, M.; López-Muraira, I. Identification and Quantification of Phenolic Compounds from Mexican Oregano (Lippia Graveolens HBK) Hydroethanolic Extracts and Evaluation of Its Antioxidant Capacity. Molecules. 2021, 26(3), 702. DOI: 10.3390/molecules26030702.
  • Figueroa, J. G.; Borrás-Linares, I.; Del Pino-García, R.; Curiel, J. A.; Lozano-Sánchez, J.; Segura-Carretero, A. Functional Ingredient from Avocado Peel: Microwave-Assisted Extraction, Characterization and Potential Applications for the Food Industry. Food Chem. 2021, 352, 129300. DOI: 10.1016/j.foodchem.2021.129300.
  • Rashmi, R.; Bojan Magesh, S.; Mohanram Ramkumar, K.; Suryanarayanan, S.; Venkata SubbaRao, M. Antioxidant Potential of Naringenin Helps to Protect Liver Tissue from Streptozotocin-Induced Damage. Rep. Biochem. Mol. Biol. 2018, 7(1), 76–84.
  • Choi, Y. H. Naringenin Attenuates the Release of Pro-Inflammatory Mediators from Lipopolysaccharide-Stimulated BV2 Microglia by Inactivating Nuclear Factor-κB and Inhibiting Mitogen-Activated Protein Kinases. Int.J. Mol. Med. 2012. DOI: 10.3892/ijmm.2012.979.
  • Biswas, S. K. Does the Interdependence Between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? OXID. MED. CELL LONGEV. 2016, 2016, 5698931. DOI: 10.1155/2016/5698931.
  • Imlay, J. A. Cellular Defenses Against Superoxide and Hydrogen Peroxide. Annu. Rev. Biochem. 2008, 77(1), 755–776. DOI: 10.1146/annurev.biochem.77.061606.161055.
  • Zakkar, M.; Van der Heiden, K.; Luong, L. A.; Chaudhury, H.; Cuhlmann, S.; Hamdulay, S. S.; Krams, R.; Edirisinghe, I.; Rahman, I.; Carlsen, H., et al. Activation of Nrf2 in Endothelial Cells Protects Arteries from Exhibiting a Proinflammatory State. Arterioscler., Thromb., Vasc. Biol. 2009, 29(11), 1851–1857.
  • Battino, M.; Giampieri, F.; Pistollato, F.; Sureda, A.; de Oliveira, M. R.; Pittalà, V.; Fallarino, F.; Nabavi, S. F.; Atanasov, A. G.; Nabavi, S. M. Nrf2 as Regulator of Innate Immunity: A Molecular Swiss Army Knife! Biochem. Adv. 2018, 36(2), 358–370. DOI: 10.1016/j.biotechadv.2017.12.012.
  • Kim, E. K.; Choi, E.-J. Compromised MAPK Signaling in Human Diseases: An Update. Arch. Toxicol. 2015, 89(6), 867–882. DOI: 10.1007/s00204-015-1472-2.
  • Yilma, A. N.; Singh, S. R.; Morici, L.; Dennis, V. A. Flavonoid Naringenin: A Potential Immunomodulator for Chlamydia Trachomatis Inflammation. Mediators Inflamma. 2013, 2013, 1–13. DOI: 10.1155/2013/102457.
  • Chen, S.; Ding, Y.; Tao, W.; Zhang, W.; Liang, T.; Liu, C. Naringenin Inhibits TNF-α Induced VSMC Proliferation and Migration via Induction of HO-1. Food Chem. Toxicol. 2012, 50(9), 3025–3031. DOI: 10.1016/j.fct.2012.06.006.
  • Xie, W.; Zheng, W.; Liu, M.; Qin, Q.; Zhao, Y.; Cheng, Z.; Guo, F. BRF1 Ameliorates LPS-Induced Inflammation Through Autophagy Crosstalking with MAPK/ERK Signaling. Genes Dis. 2018, 5(3), 226–234. DOI: 10.1016/j.gendis.2018.04.004.
  • Vanhaesebroeck, B.; Stephens, L.; Hawkins, P. PI3K Signalling: The Path to Discovery and Understanding. Nat. Rev. Mol. Cell Biol. 2012, 13(3), 195–203. DOI: 10.1038/nrm3290.
  • Williams, D. L.; Ozment-Skelton, T.; Li, C. MODULATION of the PHOSPHOINOSITIDE 3-KINASE SIGNALING PATHWAY ALTERS HOST RESPONSE to SEPSIS, INFLAMMATION, and ISCHEMIA/REPERFUSION INJURY. Shock. 2006, 25, 5. DOI: 10.1097/01.shk.0000209542.76305.55.
  • Liu, K.; Wang, W.; Guo, B.-H.; Gao, H.; Liu, Y.; Liu, X.-H.; Yao, H.-L.; Cheng, K. Chemical Evidence for Potent Xanthine Oxidase Inhibitory Activity of Ethyl Acetate Extract of Citrus Aurantium L. Dried Immature Fruits. Molecules. 2016, 21, 3.
  • Kwon, D. H.; Cha, H.-J.; Choi, E. O.; Leem, S.-H.; Kim, G.-Y.; Moon, S.-K.; Chang, Y.-C.; Yun, S.-J.; Hwang, H. J.; Kim, B. W., et al. Schisandrin a Suppresses Lipopolysaccharide-Induced Inflammation and Oxidative Stress in RAW 264.7 Macrophages by Suppressing the NF-κB, Mapks and Pi3k/akt Pathways and Activating Nrf2/ho-1 Signaling. Int. J. Mol. Med. 2018, 41(1), 264–274.
  • Park, C. M.; Cho, C. W.; Song, Y. S. TOP 1 and 2, Polysaccharides from Taraxacum Officinale, Inhibit NFκB-Mediated Inflammation and Accelerate Nrf2-Induced Antioxidative Potential Through the Modulation of PI3K-Akt Signaling Pathway in RAW 264.7 Cells. Food Chem. Toxicol. 2014, 66, 56–64. DOI: 10.1016/j.fct.2014.01.019.
  • Chai, J.; Luo, L.; Hou, F.; Fan, X.; Yu, J.; Ma, W.; Tang, W.; Yang, X.; Zhu, J.; Kang, W., et al. Agmatine Reduces Lipopolysaccharide-Mediated Oxidant Response via Activating Pi3k/akt Pathway and Up-Regulating Nrf2 and HO-1 Expression in Macrophages. PLoS One. 2016, 11(9), e0163634.
  • Cho, B. O.; Che, D. N.; Kim, J.-S.; Kim, J. H.; Shin, J. Y.; Kang, H. J.; Jang, S. I. In vitro Anti-Inflammatory and Anti-Oxidative Stress Activities of Kushenol C Isolated from the Roots of Sophora Flavescens. Molecules. 2020, 25, 8. DOI: 10.3390/molecules25081768.
  • Kim, M.-B.; Kang, H.; Li, Y.; Park, Y.-K.; Lee, J.-Y. Fucoxanthin Inhibits Lipopolysaccharide-Induced Inflammation and Oxidative Stress by Activating Nuclear Factor E2-Related Factor 2 via the Phosphatidylinositol 3-Kinase/akt Pathway in Macrophages. Eur. J. Nutr. 2021, 60(6), 3315–3324. DOI: 10.1007/s00394-021-02509-z.
  • Owen, K. L.; Brockwell, N. K.; Parker, B. S. JAK-STAT Signaling: A Double-Edged Sword of Immune Regulation and Cancer Progression. Cancers. 2019, 11, 12. DOI: 10.3390/cancers11122002.
  • Wang, L.; Hu, Y.; Song, B.; Xiong, Y.; Wang, J.; Chen, D. Targeting JAK/STAT Signaling Pathways in Treatment of Inflammatory Bowel Disease. Inflammation Res. 2021, 70(7), 753–764. DOI: 10.1007/s00011-021-01482-x.
  • Medzhitov, R. Origin and Physiological Roles of Inflammation. Nature. 2008, 454(7203), 428–435. DOI: 10.1038/nature07201.
  • Kumar, V.; Abbas, A. K.; Aster, J. C. Robbins Basic Pathology, 10th ed.; Elsevier Health Sciences: Philadelphia, Pensylvania, EU, 2018.
  • Zhang, X.; Mosser, D. Macrophage Activation by Endogenous Danger Signals. J. Pathol. 2008, 214(2), 161–178. DOI: 10.1002/path.2284.
  • Dorrington, M. G.; Fraser, I. D. C. NF-κB Signaling in Macrophages: Dynamics, Crosstalk, and Signal Integration. Front. Immunol. 2019, 10. DOI: 10.3389/fimmu.2019.00705.
  • Roe, K. An Inflammation Classification System Using Cytokine Parameters. Scand. J. Immunol. 2021, 93(2), e12970. DOI: 10.1111/sji.12970.
  • Ansari, M. Y.; Ahmad, N.; Haqqi, T. M. Oxidative Stress and Inflammation in Osteoarthritis Pathogenesis: Role of Polyphenols. Biomed. Pharmacother. 2020, 129, 110452. DOI: 10.1016/j.biopha.2020.110452.
  • Erlund, I. Review of the Flavonoids Quercetin, Hesperetin, and Naringenin. Dietary Sources, Bioactivities, Bioavailability, and Epidemiology. Nutr. Res. 2004, 24(10), 851–874. DOI: 10.1016/j.nutres.2004.07.005.
  • Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid Composition of Citrus Juices. Molecules. 2007, 12, 8. DOI: 10.3390/12081641.
  • Latos-Brozio, M.; Masek, A.; Piotrowska, M. Novel Polymeric Biomaterial Based on Naringenin. Materials. 2021, 14, 9. DOI: 10.3390/ma14092142.
  • Cataneo, A. H. D.; Kuczera, D.; Koishi, A. C.; Zanluca, C.; Silveira, G. F.; Arruda, T. B. D.; Suzukawa, A. A.; Bortot, L. O.; Dias-Baruffi, M.; Verri, W. A., et al. The Citrus Flavonoid Naringenin Impairs the in vitro Infection of Human Cells by Zika Virus. Sci. Rep. 2019, 9(1), 16348.
  • Cook, N. C.; Samman, S. Flavonoids—chemistry, Metabolism, Cardioprotective Effects, and Dietary Sources. J. Nutr. Biochem. 1996, 7(2), 66–76. DOI: 10.1016/0955-2863(95)00168-9.
  • Lyu, X.; Ng, K. R.; Lee, J. L.; Mark, R.; Chen, W. N. Enhancement of Naringenin Biosynthesis from Tyrosine by Metabolic Engineering of Saccharomyces Cerevisiae. J. Agric. Food Chem. 2017, 65(31), 6638–6646. DOI: 10.1021/acs.jafc.7b02507.
  • Uysal, S.; Aumeeruddy-Elalfi, Z.; Zengin, G.; Aktumsek, A.; Mašković, P. Z.; Vujić, J. M.; Mahomoodally, M. F. In Vitro Antioxidant, Cytotoxicity and Chemical Profile of Different Extracts from Acanthus Hirsutus Boiss Used in Anatolian Folk Medicine. Eur. J. Int. Med. 2018, 17, 135–140. DOI: 10.1016/j.eujim.2017.12.009.
  • Fan, H.; Sun, L.; Yang, L.; Zhou, J.; Yin, P.; Li, K.; Xue, Q.; Li, X.; Liu, Y. Assessment of the Bioactive Phenolic Composition of Acer Truncatum Seed Coat as a Byproduct of Seed Oil. Ind. Crops Prod. 2018, 118, 11–19. DOI: 10.1016/j.indcrop.2018.03.030.
  • Carvalho Gualberto, N.; Santos de Oliveira, C.; Pedreira Nogueira, J.; Silva de Jesus, M.; Caroline Santos Araujo, H.; Rajan, M.; Terezinha Santos Leite Neta, M.; Narain, N. Bioactive Compounds and Antioxidant Activities in the Agro-Industrial Residues of Acerola (Malpighia Emarginata L.), Guava (Psidium Guajava L.), Genipap (Genipa Americana L.) and Umbu (Spondias Tuberosa L.) Fruits Assisted by Ultrasonic or Shaker Extraction. Food. Res. Int. 2021, 147. DOI: 10.1016/j.foodres.2021.110538.
  • Boeing, J. S.; Barizão, É. O.; Rotta, E. M.; Volpato, H.; Nakamura, C. V.; Maldaner, L.; Visentainer, J. V. Phenolic Compounds from Butia Odorata (Barb. Rodr.) Noblick Fruit and Its Antioxidant and Antitumor Activities. Food Anal. Methods. 2020, 13(1), 61–68. DOI: 10.1007/s12161-019-01515-6.
  • Pervaiz, I.; Saleem, H.; Sarfraz, M.; Imran Tousif, M.; Khurshid, U.; Ahmad, S.; Zengin, G.; Ibrahime Sinan, K.; Locatelli, M.; Mahomoodally, F. M., et al. Multidirectional Insights into the Phytochemical, Biological, and Multivariate Analysis of the Famine Food Plant (Calligonum Polygonoides L).: A Novel Source of Bioactive Phytocompounds. Food. Res. Int. 2020, 137. DOI: 10.1016/j.foodres.2020.109606.
  • Ezzat, S. M.; Raslan, M.; Salama, M. M.; Menze, E. T.; El Hawary, S. S. In Vivo Anti-Inflammatory Activity and UPLC-MS/MS Profiling of the Peels and Pulps of Cucumis Melo Var. Cantalupensis and Cucumis Melo Var. Reticulatus. J Ethnopharmacol. Reticulatus. 2019, 237, 245–254. DOI: 10.1016/j.jep.2019.03.015.
  • Cipriani, A.; Sousa, A. L. D.; Tenfen, A.; Siebert, D. A.; Gasper, A. L. D.; Vitali, L.; Micke, G. A., and Alberton, M. D. Phenolic Compounds of Eugenia Involucrata (Myrtaceae) Extracts and Associated Antioxidant and Inhibitory Effects on Acetylcholinesterase and α-Glucosidase. Nat. Prod. Res. 2020, 36(4), 1134–1137.
  • Ouffai, K.; Azzi, R.; Abbou, F.; Mahdi, S.; El Haci, I. A.; Belyagoubi-Benhammou, N.; Bekkara, F. A.; Lahfa, F. B. Phenolics Compounds, Evaluation of Alpha-Amylase, Alpha‐glucosidase Inhibitory Capacity and Antioxidant Effect from Globularia Alypum L. Vegetos. 2021, 34(2), 477–484. DOI: 10.1007/s42535-021-00211-3.
  • Perestrelo, R.; Lu, Y.; Santos, S. A. O.; Silvestre, A. J. D.; Neto, C. P.; Câmara, J. S.; Rocha, S. M. Phenolic Profile of Sercial and Tinta Negra Vitis Vinifera L. Grape Skins by HPLC–DAD–ESI-MSn. Food Chem. 2012, 135(1), 94–104. DOI: 10.1016/j.foodchem.2012.04.102.
  • Cádiz-Gurrea, M. L.; Fernández-Arroyo, S.; Segura-Carretero, A. Pine Bark and Green Tea Concentrated Extracts: Antioxidant Activity and Comprehensive Characterization of Bioactive Compounds by HPLC-ESI-QTOF-MS. Int. J. Mol. Sci. 2014, 15(11), 20382–20402. DOI: 10.3390/ijms151120382.
  • Ledesma-Escobar, C. A.; Priego-Capote, F.; Luque De Castro, M. D. Characterization of Lemon (Citrus limon) Polar Extract by Liquid Chromatography-Tandem Mass Spectrometry in High Resolution Mode. J. Mass Spectrom. 2015, 50(11), 1196–1205. DOI: 10.1002/jms.3637.
  • Trevisan, M. T. S.; Marques, R. A.; Silva, M. G. V.; Scherer, D.; Haubner, R.; Ulrich, C. M.; Owen, R. W. Composition of Essential Oils and Ethanol Extracts of the Leaves of Lippia Species: Identification, Quantitation and Antioxidant Capacity. Records Nat. Prod. 2016, 10(4), 485–496.
  • Amador, S.; Nieto-Camacho, A.; Ramírez-Apan, M. T.; Martínez, M.; Maldonado, E. Cytotoxic, Anti-Inflammatory, and α-Glucosidase Inhibitory Effects of Flavonoids from Lippia Graveolens (Mexican Oregano). Med. Chem. Res. 2020, 29(8), 1497–1506. DOI: 10.1007/s00044-020-02569-6.
  • Quintanilla-Licea, R.; Vargas-Villarreal, J.; Verde-Star, M. J.; Rivas-Galindo, V. M.; Torres-Hernández, Á. D. Antiprotozoal Activity Against Entamoeba Histolytica of Flavonoids Isolated from Lippia Graveolens Kunth. Molecules. 2020, 25(11), 2464. DOI: 10.3390/molecules25112464.
  • Picos-Salas, M. A.; Gutiérrez-Grijalva, E. P.; Valdez-Torres, B.; Angulo-Escalante, M. A.; López-Martínez, L. X.; Delgado-Vargas, F., and Heredia, J. B. Supercritical CO2 Extraction of Oregano (Lippia Graveolens) Phenolic Compounds with Antioxidant, α-Amylase and α-Glucosidase Inhibitory Capacity. J. Food Meas. Charact. 2021,15, 3480–3490. DOI: 10.1007/s11694-021-00928-4.
  • Fang, H.-L.; Liu, M.-L.; Li, S.-Y.; Song, W.-Q.; Ouyang, H.; Xiao, Z.-P.; Zhu, H.-L. Identification, Potency Evaluation, and Mechanism Clarification of α-Glucosidase Inhibitors from Tender Leaves of Lithocarpus Polystachyus Rehd. Food Chem. 2022, 371, 1–15. DOI: 10.1016/j.foodchem.2021.131128.
  • Sarju, N.; Samad, A. A.; Ghani, M. A.; Ahmad, F. Detection and Quantification of Naringenin and Kaempferol in Melastoma Decemfidum Extracts by GC-FID and GC-MS. Acta Chromatographica. 2012, 24(2), 221–228. DOI: 10.1556/AChrom.24.2012.2.5.
  • Bennour, N.; Mighri, H.; Eljani, H.; Zammouri, T.; Akrout, A. Effect of Solvent Evaporation Method on Phenolic Compounds and the Antioxidant Activity of Moringa Oleifera Cultivated in Southern Tunisia. S. Afr. J. Bot. 2020, 129, 181–190. DOI: 10.1016/j.sajb.2019.05.005.
  • Prokudina, E. A.; Havlíček, L.; Al-Maharik, N.; Lapčík, O.; Strnad, M.; Gruz, J. Rapid UPLC-ESI-MS/MS Method for the Analysis of Isoflavonoids and Other Phenylpropanoids. J. Food Compost. Anal. 2012, 26(1–2), 36–42. DOI: 10.1016/j.jfca.2011.12.001.
  • Tiji, S.; Benayad, O.; Berrabah, M.; El Mounsi, I.; Mimouni, M. Phytochemical Profile and Antioxidant Activity of Nigella Sativa L Growing in Morocco. Sci. World J. 2021, 2021, 1–12. DOI: 10.1155/2021/6623609.
  • Özkan, G.; Özcan, M. M. Some Phenolic Compounds of Extracts Obtained from Origanum Species Growing in Turkey. Environ. Monit. Assess. 2014, 186(8), 4947–4957. DOI: 10.1007/s10661-014-3750-5.
  • Vujicic, M.; Nikolic, I.; Kontogianni, V. G.; Saksida, T.; Charisiadis, P.; Orescanin-Dusic, Z.; Blagojevic, D.; Stosic-Grujicic, S.; Tzakos, A. G.; Stojanovic, I. Methanolic Extract of Origanum Vulgare Ameliorates Type 1 Diabetes Through Antioxidant, Anti-Inflammatory and Anti-Apoptotic Activity. Br. J. Nutr. 2015, 113(5), 770–782. DOI: 10.1017/S0007114514004048.
  • Mahmoud, E. A.; Abdelmohsen, S. A. M.; Elansary, H. O. Husk Cherry: Nutritional Attributes, Bioactive Compounds and Technological Applications. Arabian J. Chem. 2021, 14(11), 103402. DOI: 10.1016/j.arabjc.2021.103402.
  • Zaïri, A.; Nouir, S.; M’Hamdi, N.; Bennani, M.; Bergaoui, I.; Mtiraoui, A.; Chaouachi, M.; Trabelsi, M. Antioxidant, Antimicrobial and the Phenolic Content of Infusion, Decoction and Methanolic Extracts of Thyme and Rosmarinus Species. Curr. Pharm. Biotechnol. 2018, 19(7), 590–599. DOI: 10.2174/1389201019666180817141512.
  • Hlásná Čepková, P.; Jágr, M.; Janovská, D.; Dvořáček, V.; Kotrbová Kozak, A.; Viehmannová, I. Comprehensive Mass Spectrometric Analysis of Snake Fruit: Salak (Salacca zalacca). J. Food Qual. 2021, 2021, 1–12. DOI: 10.1155/2021/6621811.
  • Speranza, S.; Knechtl, R.; Witlaczil, R.; Schönlechner, R. Reversed-Phase HPLC Characterization and Quantification and Antioxidant Capacity of the Phenolic Acids and Flavonoids Extracted from Eight Varieties of Sorghum Grown in Austria. Front Plant Sci. 2021, 12. DOI: 10.3389/fpls.2021.769151.
  • Silva, L. C. R. C. E.; David, J. M.; Borges, R. D. S. Q.; Ferreira, S. L. C.; David, J. P.; Reis, P. S. D.; Bruns, R. E. Determination of Flavanones in Orange Juices Obtained from Different Sources by HPLC/DAD. J. Anal. Methods Chem. 2014, 2014, 296838. DOI: 10.1155/2014/296838.
  • Darwish, R. S.; Shawky, E.; Nassar, K. M.; Rashad Elsayed, R. M.; Hussein, D. E.; Ghareeb, D. A.; El Sohafy, S. M. Differential Anti-Inflammatory Biomarkers of the Desert Truffles Terfezia Claveryi and Tirmania Nivea Revealed via UPLC-QqQ-MS-Based Metabolomics Combined to Chemometrics. LWT - Food Sci. Technol. 2021, 150, 111965. DOI: 10.1016/j.lwt.2021.111965.
  • Mrkonjić, Ž.; Rakić, D.; Olgun, E. O.; Canli, O.; Kaplan, M.; Teslić, N.; Zeković, Z.; Pavlić, B. Optimization of Antioxidants Recovery from Wild Thyme (Thymus Serpyllum L.) by Ultrasound-Assisted Extraction: Multi-Response Approach. J. Appl. Res. Med. Aromat. Plants. 2021, 24, 100333. DOI: 10.1016/j.jarmap.2021.100333.
  • da Silva, L. A. L.; Faqueti, L. G.; Reginatto, F. H.; dos Santos, A. D. C.; Barison, A.; Biavatti, M. W. Phytochemical Analysis of Vernonanthura Tweedieana and a Validated UPLC-PDA Method for the Quantification of Eriodictyol. Rev. Bras. Farmacogn. 2015, 25(4), 375–381. DOI: 10.1016/j.bjp.2015.07.009.
  • Wu, S.; Shen, D.; Wang, R.; Li, Q.; Mo, R.; Zheng, Y.; Zhou, Y.; Liu, Y. Phenolic Profiles and Antioxidant Activities of Free, Esterified and Bound Phenolic Compounds in Walnut Kernel. Food Chem. 2021, 350, 129217. DOI: 10.1016/j.foodchem.2021.129217.
  • Sprunger, A.; Marmillod, I.; Kosińska-Cagnazzo, A.; Andlauer, W. Bioactive Compounds of Juice and Peels of Yuzu Fruits Cultivated in Switzerland. CHIMIA Int. J. Chem. 2018, 72(10), 728–732. DOI: 10.2533/chimia.2018.728.
  • Bajkacz, S.; Adamek, J. Development of a Method Based on Natural Deep Eutectic Solvents for Extraction of Flavonoids from Food Samples. Food Anal. Methods. 2018, 11(5), 1330–1344. DOI: 10.1007/s12161-017-1118-5.
  • Christou, A.; Stavrou, I. J.; Kapnissi-Christodoulou, C. P. Continuous and Pulsed Ultrasound-Assisted Extraction of Carob’s Antioxidants: Processing Parameters Optimization and Identification of Polyphenolic Composition. Ultrason. Sonochem. 2021, 76, 105630. DOI: 10.1016/j.ultsonch.2021.105630.
  • Sharma, A.; Mazumdar, B.; Keshav, A. Ultrasound Assisted Extraction of Phytochemicals from Coccinia Indica Fruits and Its Characterization. J. Food Meas. Charact. 2021, 15(1), 466–477. DOI: 10.1007/s11694-020-00633-8.
  • Chen, H.; Ouyang, K.; Hu, Z.; Yang, W.; Wang, L.; Xiong, N.; Wang, X.; Liu, W.; Wang, W. Constituent Analysis of the Ethanol Extracts of Chimonanthus Nitens Oliv. Leaves and Their Inhibitory Effect on α-Glucosidase Activity. Int. J. Biol. Macromol. 2017, 98, 829–836. DOI: 10.1016/j.ijbiomac.2017.02.044.
  • Kim, D.-S.; Lim, S.-B. Semi-Continuous Subcritical Water Extraction of Flavonoids from Citrus Unshiu Peel: Their Antioxidant and Enzyme Inhibitory Activities. Antioxidants. 2020, 9(5), 360. DOI: 10.3390/antiox9050360.
  • Castro-Vazquez, L.; Alañón, M. E.; Rodríguez-Robledo, V.; Pérez-Coello, M. S.; Hermosín-Gutierrez, I.; Díaz-Maroto, M. C.; Jordán, J.; Galindo, M. F.; Arroyo-Jiménez, M. D. M.; Flavonoids, B. Antioxidant Behaviour, and Cytoprotective Effects of Dried Grapefruit Peels (Citrus Paradisi Macf.). OXID. MED. CELL LONGEV. 2016, 2016, 1–12. DOI: 10.1155/2016/8915729.
  • Arias, J.; Mejía, J.; Córdoba, Y.; Martínez, J. R.; Stashenko, E.; Del Valle, J. M. Optimization of Flavonoids Extraction from Lippia Graveolens and Lippia Origanoides Chemotypes with Ethanol-Modified Supercritical CO2 After Steam Distillation. Ind. Crops Prod. 2020, 146, 112170. DOI: 10.1016/j.indcrop.2020.112170.
  • Stashenko, E. E.; Martínez, J. R.; Cala, M. P.; Durán, D. C.; Caballero, D. Chromatographic and Mass Spectrometric Characterization of Essential Oils and Extracts from Lippia (Verbenaceae) Aromatic Plants. J. Sep. Sci. 2013, 36(1), 192–202. DOI: 10.1002/jssc.201200877.
  • Ribas-Agustí, A.; Cáceres, R.; Gratacós-Cubarsí, M.; Sárraga, C.; Castellari, M. A Validated HPLC-DAD Method for Routine Determination of Ten Phenolic Compounds in Tomato Fruits. Food Anal. Methods. 2012, 5(5), 1137–1144. DOI: 10.1007/s12161-011-9355-5.
  • Cvetanović, A.; Švarc-Gajić, J.; Zeković, Z.; Jerković, J.; Zengin, G.; Gašić, U.; Tešić, Ž.; Mašković, P.; Soares, C.; Fatima Barroso, M., et al. The Influence of the Extraction Temperature on Polyphenolic Profiles and Bioactivity of Chamomile (Matricaria Chamomilla L.) Subcritical Water Extracts. Food Chem. 2019, 271, 328–337. DOI: 10.1016/j.foodchem.2018.07.154.
  • Naseem, Z.; Zahid, M.; Hanif, M.; Shahid, M. Environmentally Friendly Extraction of Bioactive Compounds from Mentha Arvensis Using Deep Eutectic Solvent as Green Extraction Media. Pol. J. Environ. Stud. 2020, 29(5), 3749–3757. DOI: 10.15244/pjoes/114235.
  • Lopes, A. P.; Galuch, M. B.; Petenuci, M. E.; Oliveira, J. H.; Canesin, E. A.; Schneider, V. V. A.; Visentainer, J. V. Quantification of Phenolic Compounds in Ripe and Unripe Bitter Melons (Momordica charantia) and Evaluation of the Distribution of Phenolic Compounds in Different Parts of the Fruit by UPLC–MS/MS. Chem. Pap. 2020, 74(8), 2613–2625. DOI: 10.1007/s11696-020-01094-5.
  • Castro-Vázquez, L.; Lozano, M. V.; Rodríguez-Robledo, V.; González-Fuentes, J.; Marcos, P.; Villaseca, N.; Arroyo-Jiménez, M. M.; Santander-Ortega, M. J. Pressurized Extraction as an Opportunity to Recover Antioxidants from Orange Peels: Heat Treatment and Nanoemulsion Design for Modulating Oxidative Stress. Molecules. 2021, 26(19), 5928. DOI: 10.3390/molecules26195928.
  • Mocan, A.; Babotă, M.; Pop, A.; Fizeșan, I.; Diuzheva, A.; Locatelli, M.; Carradori, S.; Campestre, C.; Menghini, L.; Sisea, C. R., et al. Chemical Constituents and Biologic Activities of Sage Species: A Comparison Between Salvia Officinalis L., S. Glutinosa L. And S. Transsylvanica (Schur Ex Griseb. & Schenk) Schur. Antioxidants. 2020, 9(6), 480.
  • Yang, Y.-C.; Wang, C.-S.; Wei, M.-C. Separation and Quantification of Bioactive Flavonoids from Scutellaria Barbata Using a Green Procedure. Food Bioprod. Process. 2019, 118, 77–90. DOI: 10.1016/j.fbp.2019.09.004.
  • Zhang, Z.; He, L.; Lu, L.; Liu, Y.; Dong, G.; Miao, J.; Luo, P. Characterization and Quantification of the Chemical Compositions of Scutellariae Barbatae Herba and Differentiation from Its Substitute by Combining UHPLC-PDA-QTOF-MS/MS with UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2015, 109, 62–66. DOI: 10.1016/j.jpba.2015.02.025.
  • Cheng, X.-L.; Wan, J.-Y.; Li, P.; Qi, L.-W. Ultrasonic/microwave Assisted Extraction and Diagnostic Ion Filtering Strategy by Liquid Chromatography–quadrupole Time-Of-Flight Mass Spectrometry for Rapid Characterization of Flavonoids in Spatholobus Suberectus. J. Chromatogr. A. 2011, 1218(34), 5774–5786. DOI: 10.1016/j.chroma.2011.06.091.
  • Pellicanò, T. M.; Sicari, V.; Loizzo, M. R.; Leporini, M.; Falco, T.; Poiana, M. Optimizing the Supercritical Fluid Extraction Process of Bioactive Compounds from Processed Tomato Skin By-Products. Food Sci. Technol. 2020, 40(3), 692–697. DOI: 10.1590/fst.16619.
  • Venditti, P.; Di Stefano, L.; Di Meo, S. Mitochondrial Metabolism of Reactive Oxygen Species. Mitochondrion. 2013, 13(2), 71–82. DOI: 10.1016/j.mito.2013.01.008.
  • Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. OXID. MED. CELL LONGEV. 2017, 2017, 8416763. DOI: 10.1155/2017/8416763.
  • Milkovic, L.; Cipak Gasparovic, A.; Cindric, M.; Mouthuy, P.-A.; Zarkovic, N. Short Overview of ROS as Cell Function Regulators and Their Implications in Therapy Concepts. Cells. 2019, 8(8), 793. DOI: 10.3390/cells8080793.
  • Rajendran, P.; Nandakumar, N.; Rengarajan, T.; Palaniswami, R.; Gnanadhas, E. N.; Lakshminarasaiah, U.; Gopas, J.; Nishigaki, I. Antioxidants and Human Diseases. Clin. Chim. Acta. 2014, 436, 332–347. DOI: 10.1016/j.cca.2014.06.004.
  • Pillon, N. J.; Croze, M. L.; Vella, R. E.; Soulère, L.; Lagarde, M.; Soulage, C. O. The Lipid Peroxidation By-Product 4-Hydroxy-2-Nonenal (4-HNE) Induces Insulin Resistance in Skeletal Muscle Through Both Carbonyl and Oxidative Stress. Endocrinology. 2012, 153(5), 2099–2111. DOI: 10.1210/en.2011-1957.
  • Lushchak, V. I. Free Radicals, Reactive Oxygen Species, Oxidative Stress and Its Classification. Chem.-Biol. Interact. 2014, 224, 164–175. DOI: 10.1016/j.cbi.2014.10.016.
  • Ighodaro, O. M.; Akinloye, O. A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alexandria J. Med. 2018, 54(4), 287–293. DOI: 10.1016/j.ajme.2017.09.001.
  • Zakkar, M.; Van der Heiden, K.; Luong, L. A.; Chaudhury, H.; Cuhlmann, S.; Hamdulay, S. S.; Krams, R.; Iedirisinghe, N.; Rahman, I.; Carlsen, H., et al. Activation of Nrf2 in Endothelial Cells Protects Arteries from Exhibiting a Proinflammatory State. Arterioscler., Thromb., Vasc. Biol. 2009, 29(11), 1851–1857.
  • Kobayashi, E. H.; Suzuki, T.; Funayama, R.; Nagashima, T.; Hayashi, M.; Sekine, H.; Tanaka, N.; Moriguchi, T.; Motohashi, H.; Nakayama, K., et al. Nrf2 Suppresses Macrophage Inflammatory Response by Blocking Proinflammatory Cytokine Transcription. Nat. Commun. 2016, 7(1), 11624.
  • García-Sánchez, A.; Miranda-Díaz, A. G.; Cardona-Muñoz, E. G. The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic Diseases. OXID. MED. CELL LONGEV. 2020, 2020, 2082145. DOI: 10.1155/2020/2082145.
  • Ashley, N. T.; Weil, Z. M.; Nelson, R. J. Inflammation: Mechanisms, Costs, and Natural Variation. Annu Rev Ecol Evol Syst. 2012, 43(1), 385–406. DOI: 10.1146/annurev-ecolsys-040212-092530.
  • Zeng, L.; Wang, Y.; Liu, J.; Wang, L.; Weng, S.; Chen, K.; Domino, E. F.; Yang, G.-Y. Pro-Inflammatory Cytokine Network in Peripheral Inflammation Response to Cerebral Ischemia. Neurosci. Lett. 2013, 548, 4–9. DOI: 10.1016/j.neulet.2013.04.037.
  • Tang, S.; Li, S.; Zheng, S.; Ding, Y.; Zhu, D.; Sun, C.; Hu, Y.; Qiao, J.; Fang, H. Understanding of Cytokines and Targeted Therapy in Macrophage Activation Syndrome. Semin. Arthritis Rheum. 2021, 51(1), 198–210. DOI: 10.1016/j.semarthrit.2020.12.007.
  • Sanjabi, S.; Zenewicz, L. A.; Kamanaka, M.; Flavell, R. A. Anti-Inflammatory and Pro-Inflammatory Roles of TGF-β, IL-10, and IL-22 in Immunity and Autoimmunity. Curr. Opin. Pharmacol. 2009, 9(4), 447–453. DOI: 10.1016/j.coph.2009.04.008.
  • Kim, Y.; Kim, T. W.; Park, Y. S.; Jeong, E. M.; Lee, D.-S.; Kim, I.-G.; Chung, H.; Hwang, Y.-I.; Lee, W. J.; Yu, H. G., et al. The Role of Interleukin-22 and Its Receptor in the Development and Pathogenesis of Experimental Autoimmune Uveitis. PLoS One. 2016, 11(5), e0154904.
  • Rashmi, R.; Magesh, S. B.; Ramkumar, K. M.; Suryanarayanan, S.; SubbaRao, M. V. Antioxidant Potential of Naringenin Helps to Protect Liver Tissue from Streptozotocin-Induced Damage. Rep. Biochem. Mol. Biol. 2018, 7(1), 76–84.
  • Zhang, K.; Ding, Z.; Duan, W.; Mo, M.; Su, Z.; Bi, Y.; Kong, F. Optimized Preparation Process for Naringenin and Evaluation of Its Antioxidant and α-Glucosidase Inhibitory Activities. J. Food Process Preserv. 2020, 44(12), 12. DOI: 10.1111/jfpp.14931.
  • Gercek, E.; Zengin, H.; Erisir, F. E.; Yilmaz, O. Biochemical Changes and Antioxidant Capacity of Naringin and Naringenin Against Malathion Toxicity in Saccharomyces Cerevisiae. Comp. Biochem. Physiol. Part - C: Toxicol. Pharmacol. 2021, 241, 108969. DOI: 10.1016/j.cbpc.2020.108969.
  • Jabbari, M.; JabbariSchool, A. Antioxidant Potential and DPPH Radical Scavenging Kinetics of Water-Insoluble Flavonoid Naringenin in Aqueous Solution of Micelles. Colloids Surf. A Physicochem. Eng. Asp. 2016, 489, 392–399. DOI: 10.1016/j.colsurfa.2015.11.022.
  • Martinez, R. M.; Pinho-Ribeiro, F. A.; Steffen, V. S.; Silva, T. C. C.; Caviglione, C. V.; Bottura, C.; Fonseca, M. J. V.; Vicentini, F. T. M. C.; Vignoli, J. A.; Baracat, M. M., et al. Topical Formulation Containing Naringenin: Efficacy Against Ultraviolet B Irradiation-Induced Skin Inflammation and Oxidative Stress in Mice. PLoS One. 2016, 11(1), e0146296.
  • Cavia-Saiz, M.; Busto, M. D.; Pilar-Izquierdo, M. C.; Ortega, N.; Perez-Mateos, M.; Muñiz, P. Antioxidant Properties, Radical Scavenging Activity and Biomolecule Protection Capacity of Flavonoid Naringenin and Its Glycoside Naringin: A Comparative Study. J. Sci. Food Agric. 2010, 90(7), 1238–1244. DOI: 10.1002/jsfa.3959.
  • Pereira, U. C.; Chagas Barros, R. G.; Santana Andrade, J. K.; de Oliveira, C. S.; Gualberto, N. C.; Narain, N. Effect of In Vitro Gastrointestinal Digestion on Bioaccessibility of Phenolic Compounds and Antioxidant Capacity of Crustaceans Residues with Potential Antidiabetic Impact. LWT - Food Sci. Technol. 2020, 133, 110004. DOI: 10.1016/j.lwt.2020.110004.
  • Fuentes, J. L.; García Forero, A.; Quintero Ruiz, N.; Prada Medina, C. A.; Rey Castellanos, N.; Franco Niño, D. A.; Contreras García, D. A.; Córdoba Campo, Y.; Stashenko, E. E. The SOS Chromotest Applied for Screening Plant Antigenotoxic Agents Against Ultraviolet Radiation. Photochem. Photobiol. Sci. 2017, 16(9), 1424–1434. DOI: 10.1039/C7PP00024C.
  • Madej, A.; Popłoński, J.; Huszcza, E. Improved Oxidation of Naringenin to Carthamidin and Isocarthamidin by Rhodotorula Marina. Appl. Biochem. Biotechnol. 2014, 173(1), 67–73. DOI: 10.1007/s12010-014-0787-4.
  • Ahmed, W.; Azmat, R.; Mehmood, A.; Qayyum, A.; Ahmed, R.; Khan, S. U.; Liaquat, M.; Naz, S.; Ahmad, S. The Analysis of New Higher Operative Bioactive Compounds and Chemical Functional Group from Herbal Plants Through UF-HPLC-DAD and Fourier Transform Infrared Spectroscopy Methods and Their Biological Activity with Antioxidant Potential Process as Future Green Chemical Assay. Arabian J. Chem. 2021, 14, 2.
  • Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A Review of the Antioxidant Potential of Medicinal Plant Species. Food Bioprod. Process. 2011, 89, 217–233. DOI: 10.1016/j.fbp.2010.04.008.
  • Wang, Z. J.; Xie, J. H.; Nie, S. P.; Xie, M. Y. Review on Cell Models to Evaluate the Potential Antioxidant Activity of Polysaccharides. Food Funct. 2017, 8(3), 915–926. DOI: 10.1039/C6FO01315E.
  • Zhang, H.; Yin, M.; Huang, L.; Wang, J.; Gong, L.; Liu, J.; Sun, B. Evaluation of the Cellular and Animal Models for the Study of Antioxidant Activity: A Review. J. Food Sci. 2017, 82(2), 278–288. DOI: 10.1111/1750-3841.13605.
  • Hernández-Aquino, E.; Muriel, P. Beneficial Effects of Naringenin in Liver Diseases: Molecular Mechanisms. World J. Gastroenterol. 2018, 24(16), 1679–1707. DOI: 10.3748/wjg.v24.i16.1679.
  • Kumar, S. P.; Birundha, K.; Kaveri, K.; Devi, K. T. R. Antioxidant Studies of Chitosan Nanoparticles Containing Naringenin and Their Cytotoxicity Effects in Lung Cancer Cells. Int. J. Biol. Macromol. 2015, 78, 87–95. DOI: 10.1016/j.ijbiomac.2015.03.045.
  • Maatouk, M.; Elgueder, D.; Mustapha, N.; Chaaban, H.; Bzéouich, I. M.; Loannou, I.; Kilani, S.; Ghoul, M.; Ghedira, K.; Chekir-Ghedira, L. Effect of Heated Naringenin on Immunomodulatory Properties and Cellular Antioxidant Activity. Cell Stress and Chaperones. 2016, 21(6), 1101–1109. DOI: 10.1007/s12192-016-0734-0.
  • Rodriguez, R. J.; Miranda, C. L.; Stevens, J. F.; Deinzer, M. L.; Buhler, D. R. Influence of Prenylated and Non-Prenylated Flavonoids on Liver Microsomal Lipid Peroxidation and Oxidative Injury in Rat Hepatocytes. Food Chem. Toxicol. 2001, 39(5), 437–445. DOI: 10.1016/S0278-6915(00)00159-9.
  • Da Pozzo, E.; Costa, B.; Cavallini, C.; Testai, L.; Martelli, A.; Calderone, V.; Martini, C. The Citrus Flavanone Naringenin Protects Myocardial Cells Against Age-Associated Damage. OXID. MED. CELL LONGEV. 2017, 2017, 9536148. DOI: 10.1155/2017/9536148.
  • Liang, J.; Halipu, Y.; Hu, F.; Yakeya, B.; Chen, W.; Zhang, H.; Kang, X. Naringenin Protects Keratinocytes from Oxidative Stress Injury via Inhibition of the NOD2-Mediated NF-κB Pathway in Pemphigus Vulgaris. Biomed. Pharmacother. = Biomed. Pharmacother. 2017, 92, 796–801. DOI: 10.1016/j.biopha.2017.05.112.
  • Wang, K.; Chen, Z.; Huang, L.; Meng, B.; Zhou, X.; Wen, X.; Ren, D. Naringenin Reduces Oxidative Stress and Improves Mitochondrial Dysfunction via Activation of the Nrf2/are Signaling Pathway in Neuron. Int. J. Mol. Med. 2017, 40(5), 1582–1590. DOI: 10.3892/ijmm.2017.3134.
  • Wang, K.; Chen, Z.; Huang, J.; Huang, L.; Luo, N.; Liang, X.; Liang, M.; Xie, W. Naringenin Prevents Ischaemic Stroke Damage via Anti-Apoptotic and Anti-Oxidant Effects. Clin. Exp. Pharmacol. Physiol. 2017, 44(8), 862–871. DOI: 10.1111/1440-1681.12775.
  • Ali, R.; Shahid, A.; Ali, N.; Hasan, S. K.; Majed, F.; Sultana, S. Amelioration of Benzo[a]pyrene-Induced Oxidative Stress and Pulmonary Toxicity by Naringenin in Wistar Rats: A Plausible Role of COX-2 and NF-κB. Hum. Exp. Toxicol. 2017, 36(4), 349–364. DOI: 10.1177/0960327116650009.
  • Al-Roujayee, A. S. Naringenin Improves the Healing Process of Thermally-Induced Skin Damage in Rats. J. Int. Med. Res. 2017, 45(2), 570–582. DOI: 10.1177/0300060517692483.
  • Chtourou, Y.; Slima, A. B.; Makni, M.; Gdoura, R.; Fetoui, H. Naringenin Protects Cardiac Hypercholesterolemia-Induced Oxidative Stress and Subsequent Necroptosis in Rats. Pharmacol. Rep. 2015, 67(6), 1090–1097. DOI: 10.1016/j.pharep.2015.04.002.
  • Khan, M. B.; Khan, M. M.; Khan, A.; Ahmed, M. E.; Ishrat, T.; Tabassum, R.; Vaibhav, K.; Ahmad, A.; Islam, F. Naringenin Ameliorates Alzheimer’s Disease (AD)-Type Neurodegeneration with Cognitive Impairment (AD-TNDCI) Caused by the Intracerebroventricular-Streptozotocin in Rat Model. Neurochem. Int. 2012, 61(7), 1081–1093. DOI: 10.1016/j.neuint.2012.07.025.
  • Roy, S.; Ahmed, F.; Banerjee, S.; Saha, U. Naringenin Ameliorates Streptozotocin-Induced Diabetic Rat Renal Impairment by Downregulation of TGF-β1 and IL-1 via Modulation of Oxidative Stress Correlates with Decreased Apoptotic Events. Pharm. Biol. 2016, 54(9), 1616–1627. DOI: 10.3109/13880209.2015.1110599.
  • Arafa, H. M.; Abd-Ellah, M. F.; Hafez, H. F. Abatement by Naringenin of Doxorubicin-Induced Cardiac Toxicity in Rats. Egypt Natl Canc Inst. 2005, 17(4), 291–300.
  • Liaquat, L.; Batool, Z.; Sadir, S.; Rafiq, S.; Shahzad, S.; Perveen, T.; Haider, S. Naringenin-Induced Enhanced Antioxidant Defence System Meliorates Cholinergic Neurotransmission and Consolidates Memory in Male Rats. Life Sci. 2018, 194, 213–223. DOI: 10.1016/j.lfs.2017.12.034.
  • Badary, O. A.; Abdel-Maksoud, S.; Ahmed, W. A.; Owieda, G. H. Naringenin Attenuates Cisplatin Nephrotoxicity in Rats. Life Sci. 2005, 76(18), 2125–2135. DOI: 10.1016/j.lfs.2004.11.005.
  • Bodduluru, L. N.; Kasala, E. R.; Madhana, R. M.; Barua, C. C.; Hussain, M. I.; Haloi, P.; Borah, P. Naringenin Ameliorates Inflammation and Cell Proliferation in Benzo(a)pyrene Induced Pulmonary Carcinogenesis by Modulating CYP1A1, NFκB and PCNA Expression. Int. Immunopharmacol. 2016, 30, 102–110. DOI: 10.1016/j.intimp.2015.11.036.
  • Ren, B.; Qin, W.; Wu, F.; Wang, S.; Pan, C.; Wang, L.; Zeng, B.; Ma, S.; Liang, J. Apigenin and Naringenin Regulate Glucose and Lipid Metabolism, and Ameliorate Vascular Dysfunction in Type 2 Diabetic Rats. Eur. J. Pharmacol. 2016, 773, 13–23. DOI: 10.1016/j.ejphar.2016.01.002.
  • Luo, Y.-L.; Zhang, C.-C.; Li, P.-B.; Nie, Y.-C.; Wu, H.; Shen, J.-G.; Su, W.-W. Naringin Attenuates Enhanced Cough, Airway Hyperresponsiveness and Airway Inflammation in a Guinea Pig Model of Chronic Bronchitis Induced by Cigarette Smoke. Int. Immunopharmacol. 2012, 13(3), 301–307. DOI: 10.1016/j.intimp.2012.04.019.
  • Shakeel, S.; Rehman, M. U.; Tabassum, N.; Amin, U.; Mir, M. U. R. Effect of Naringenin (A Naturally Occurring Flavanone) Against Pilocarpine-Induced Status Epilepticus and Oxidative Stress in Mice. Pharmacogn. Mag. 2017, 13(Suppl 1), S154–s160. DOI: 10.4103/0973-1296.203977.
  • Fouad, A. A.; Albuali, W. H.; Zahran, A.; Gomaa, W. Protective Effect of Naringenin Against Gentamicin-Induced Nephrotoxicity in Rats. Environ. Toxicol. Pharmacol. 2014, 38(2), 420–429. DOI: 10.1016/j.etap.2014.07.015.
  • Ozkaya, A.; Sahin, Z.; Dag, U.; Ozkaraca, M. Effects of Naringenin on Oxidative Stress and Histopathological Changes in the Liver of Lead Acetate Administered Rats. J. Biochem. Mol. Toxicol. 2016, 30(5), 243–248. DOI: 10.1002/jbt.21785.
  • Umukoro, S.; Kalejaye, H. A.; Ben-Azu, B.; Ajayi, A. M. Naringenin Attenuates Behavioral Derangements Induced by Social Defeat Stress in Mice via Inhibition of Acetylcholinesterase Activity, Oxidative Stress and Release of Pro-Inflammatory Cytokines. Biomed. Pharmacother. 2018, 105, 714–723. DOI: 10.1016/j.biopha.2018.06.016.
  • Abdel-Magied, N.; Shedid, S. M. The Effect of Naringenin on the Role of Nuclear Factor (Erythroid-Derived 2)-Like2 (Nrf2) and Haem Oxygenase 1 (HO-1) in Reducing the Risk of Oxidative Stress-Related Radiotoxicity in the Spleen of Rats. Environ. Toxicol. 2019, 34(7), 788–795. DOI: 10.1002/tox.22745.
  • Al-Rejaie, S. S. Protective Effect of Naringenin on Acetic Acid-Induced Ulcerative Colitis in Rats. World J. Gastroenterol. 2013, 19(34), 5633. DOI: 10.3748/wjg.v19.i34.5633.
  • Al-Rejaie, S. S.; Aleisa, A. M.; Abuohashish, H. M.; Parmar, M. Y.; Ola, M. S.; Al-Hosaini, A. A.; Ahmed, M. M. Naringenin Neutralises Oxidative Stress and Nerve Growth Factor Discrepancy in Experimental Diabetic Neuropathy. Neurol. Res. 2015, 37(10), 924–933. DOI: 10.1179/1743132815Y.0000000079.
  • Bansal, Y.; Singh, R.; Saroj, P.; Sodhi, R. K.; Kuhad, A. Naringenin Protects Against Oxido-Inflammatory Aberrations and Altered Tryptophan Metabolism in Olfactory Bulbectomized-Mice Model of Depression. Toxicol. Appl. Pharmacol. 2018, 355, 257–268. DOI: 10.1016/j.taap.2018.07.010.
  • Das, A.; Roy, A.; Das, R.; Bhattacharya, S.; Haldar, P. K. Naringenin Alleviates Cadmium-Induced Toxicity Through the Abrogation of Oxidative Stress in Swiss Albino Mice. J. Environ. Pathol. Toxicol. Oncol. 2016, 35(2), 161–169. DOI: 10.1615/JEnvironPatholToxicolOncol.2016015892.
  • Duan, B. D.; Li, Y.; Geng, H.; Ma, A. R.; Yang, X. Z. Naringenin Prevents Pregnancy-Induced Hypertension via Suppression of JAK/STAT3 Signalling Pathway in Mice. Int. J. Clin. Pract. 2021, 75(10), 1–9. DOI: 10.1111/ijcp.14509.
  • Fan, R.; Pan, T.; Zhu, A.-L.; Zhang, M.-H. Anti‐inflammatory and Anti‐arthritic Properties of Naringenin via Attenuation of NF‐κB and Activation of the Heme Oxygenase ?ho?‐1/related Factor 2 Pathway. Pharmacol Rep. 2017, 69(5), 1021–1029. DOI: 10.1016/j.pharep.2017.03.020.
  • Hong, Y. L.; Yin, Y. Y.; Tan, Y.; Hong, K.; Zhou, H. F. The Flavanone, Naringenin, Modifies Antioxidant and Steroidogenic Enzyme Activity in a Rat Model of Letrozole-Induced Polycystic Ovary Syndrome. Med. Sci. Monitor. 2019, 25, 395–401. DOI: 10.12659/MSM.912341.
  • Jayaraman, J.; Namasivayam, N. Naringenin Modulates Circulatory Lipid Peroxidation, Anti-Oxidant Status and Hepatic Alcohol Metabolizing Enzymes in Rats with Ethanol Induced Liver Injury. Fundam. Clin. Pharmacol. 2011, 25(6), 682–689. DOI: 10.1111/j.1472-8206.2010.00899.x.
  • Khajevand-Khazaei, M.-R.; Ziaee, P.; Motevalizadeh, S.-A.; Rohani, M.; Afshin-Majd, S.; Baluchnejadmojarad, T.; Roghani, M. Naringenin Ameliorates Learning and Memory Impairment Following Systemic Lipopolysaccharide Challenge in the Rat. Eur. J. Pharmacol. 2018, 826, 114–122. DOI: 10.1016/j.ejphar.2018.03.001.
  • Kometsi, L.; Govender, K.; Mofo Mato, E. P.; Hurchund, R.; Owira, P. M. O. By Reducing Oxidative Stress, Naringenin Mitigates Hyperglycaemia-Induced Upregulation of Hepatic Nuclear Factor Erythroid 2-Related Factor 2 Protein. J. Pharm. Pharmacol. 2020, 72(10), 1394–1404. DOI: 10.1111/jphp.13319.
  • Miler, M.; Zivanovic, J.; Ajdzanovic, V.; Milenkovic, D.; Jaric, I.; Sosic-Jurjevic, B.; Milosevic, V. Citrus Flavanones Upregulate Thyrotroph Sirt1 and Differently Affect Thyroid Nrf2 Expressions in Old-Aged Wistar Rats. J. Agric. Food Chem. 2020, 68(31), 8242–8254. DOI: 10.1021/acs.jafc.0c03079.
  • Olufunke, D.; Edidiong, A.; Oluwatomisin, F.; Alani, A. Therapeutic Activities of Naringenin on Efavirenz-Induced Sleep-Like Disorder in the Midbrain of White Albino Mice. IRAN J. BASIC MED. SCI. 2020, 23(11), 1462–1470. DOI: 10.22038/ijbms.2020.47043.10852.
  • Olugbemide, A. S.; Ben-Azu, B.; Bakre, A. G.; Ajayi, A. M.; Femi-Akinlosotu, O.; Umukoro, S. Naringenin Improves Depressive- and Anxiety-Like Behaviors in Mice Exposed to Repeated Hypoxic Stress Through Modulation of Oxido-Inflammatory Mediators and NF-Kappa B/BDNF Expressions. Brain Res. Bull. 2021, 169, 214–227. DOI: 10.1016/j.brainresbull.2020.12.003.
  • Raza, S. S.; Khan, M. M.; Ahmad, A.; Ashafaq, M.; Islam, F.; Wagner, A. P.; Safhi, M. M.; Islam, F. Neuroprotective Effect of Naringenin is Mediated Through Suppression of NF-κB Signaling Pathway in Experimental Stroke. Neuroscience. 2013, 230, 157–171. DOI: 10.1016/j.neuroscience.2012.10.041.
  • Rehman, K.; Khan, I.I.; Akash, M. S. H.; Jabeen, K.; Haider, K. Naringenin Downregulates Inflammation-Mediated Nitric Oxide Overproduction and Potentiates Endogenous Antioxidant Status During Hyperglycemia. J. Food Biochem. 2020, 44(10), 11. DOI: 10.1111/jfbc.13422.
  • Roy, S.; Rahaman, N.; Ahmed, F.; Metya, S.; Sannigrahi, S. Naringenin Attenuates Testicular Damage, Germ Cell Death and Oxidative Stress in Streptozotocin Induced Diabetic Rats: Naringenin Prevents Diabetic Rat Testicular Damage. J. Appl. Biomed. 2013, 11(3), 195–208. DOI: 10.2478/v10136-012-0026-7.
  • She, B.; Wu, H.; Xie, Q.; Zhang, M.; Zhou, N.; Pei, D.; Tu, Z. The Effects of Methylated Flavonoids on Depression-Like Activity and Pro-Inflammatory Cytokine Thresholds in Mice Induced by Repeated Finasteride Administration. Eur J Inflamm. 2021, 19, 205873922110476. DOI: 10.1177/20587392211047646.
  • Subburaman, S.; Ganesan, K.; Ramachandran, M. Protective Role of Naringenin Against Doxorubicin-Induced Cardiotoxicity in a Rat Model: Histopathology and mRna Expression Profile Studies. J. Environ. Pathol. Toxicol. Oncol. 2014, 33(4), 363–376. DOI: 10.1615/JEnvironPatholToxicolOncol.2014010625.
  • Wali, A. F.; Rashid, S.; Rashid, S. M.; Ansari, M. A.; Khan, M. R.; Haq, N.; Alhareth, D. Y.; Ahmad, A.; Rehman, M. U. Naringenin Regulates Doxorubicin-Induced Liver Dysfunction: Impact on Oxidative Stress and Inflammation. Plants. 2020, 9(4), 550. DOI: 10.3390/plants9040550.
  • Wang, J.; Yang, Z.; Lin, L.; Zhao, Z.; Liu, Z.; Liu, X. Protective Effect of Naringenin Against Lead-Induced Oxidative Stress in Rats. Biol. Trace Elem. Res. 2012, 146(3), 354–359. DOI: 10.1007/s12011-011-9268-6.
  • Wang, J. C.; Zhu, H. L.; Lin, S.; Wang, K.; Wang, H. W.; Liu, Z. P. Protective Effect of Naringenin Against Cadmium-Induced Testicular Toxicity in Male SD Rats. J. Inorg. Biochem. 2021, 214, 9. DOI: 10.1016/j.jinorgbio.2020.111310.
  • Wojnar, W.; Zych, M.; Kaczmarczyk-Sedlak, I. Antioxidative Effect of Flavonoid Naringenin in the Lenses of Type 1 Diabetic Rats. Biomed. Pharmacother. 2018, 108, 974–984. DOI: 10.1016/j.biopha.2018.09.092.
  • Han, X.; Pan, J.; Ren, D.; Cheng, Y.; Fan, P.; Lou, H. Naringenin-7-O-Glucoside Protects Against Doxorubicin-Induced Toxicity in H9c2 Cardiomyocytes by Induction of Endogenous Antioxidant Enzymes. Food Chem. Toxicol. 2008, 46(9), 3140–3146. DOI: 10.1016/j.fct.2008.06.086.
  • Chen, P.; Xiao, Z.; Wu, H.; Wang, Y.; Fan, W.; Su, W.; Li, P. Beneficial Effects of Naringenin in Cigarette Smoke-Induced Damage to the Lung Based on Bioinformatic Prediction and in vitro Analysis. Molecules. 2020, 25(20), 4704. DOI: 10.3390/molecules25204704.
  • Curti, V.; Di Lorenzo, A.; Rossi, D.; Martino, E.; Capelli, E.; Collina, S.; Daglia, M. Enantioselective Modulatory Effects of Naringenin Enantiomers on the Expression Levels of miR‐17‐3p Involved in Endogenous Antioxidant Defenses. Nutrients. 2017, 9(3), 215. DOI: 10.3390/nu9030215.
  • Tseng, Y.-T.; Hsu, H.-T.; Lee, T.-Y.; Chang, W.-H.; Lo, Y.-C. Naringenin, a Dietary Flavanone, Enhances Insulin-Like Growth Factor 1 Receptor-Mediated Antioxidant Defense and Attenuates Methylglyoxal-Induced Neurite Damage and Apoptotic Death. Nutr. Neurosci. 2021, 24(1), 71–81. DOI: 10.1080/1028415X.2019.1594554.
  • Zaidun, N. H.; Thent, Z. C.; Latiff, A. A. Combating Oxidative Stress Disorders with Citrus Flavonoid: Naringenin. Life Sci. 2018, 208, 111–122. DOI: 10.1016/j.lfs.2018.07.017.
  • Salehi, B.; Fokou, P. V. T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals (Basel). 2019, 12(1), 11. DOI: 10.3390/ph12010011.
  • Podder, B.; Song, H.-Y.; Kim, Y.-S. Naringenin Exerts Cytoprotective Effect Against Paraquat-Induced Toxicity in Human Bronchial Epithelial BEAS-2B Cells Through NRF2 Activation. J. Microbiol. Biotechnol. 2014, 24(5), 605–613. DOI: 10.4014/jmb.1402.02001.
  • de Oliveira, M. R.; Andrade, C. M. B.; Fürstenau, C. R. Naringenin Exerts Anti-Inflammatory Effects in Paraquat-Treated SH-SY5Y Cells Through a Mechanism Associated with the Nrf2/ho-1 Axis. Neurochem. Res. 2018, 43(4), 894–903. DOI: 10.1007/s11064-018-2495-x.
  • Lou, H.; Jing, X.; Wei, X.; Shi, H.; Ren, D.; Zhang, X. Naringenin Protects Against 6-OHDA-Induced Neurotoxicity via Activation of the Nrf2/are Signaling Pathway. Neuropharmacology. 2014, 79, 380–388. DOI: 10.1016/j.neuropharm.2013.11.026.
  • Ramprasath, T.; Senthamizharasi, M.; Vasudevan, V.; Sasikumar, S.; Yuvaraj, S.; Selvam, G. S. Naringenin Confers Protection Against Oxidative Stress Through Upregulation of Nrf2 Target Genes in Cardiomyoblast Cells. J. Physiol. Biochem. 2014, 70(2), 407–415. DOI: 10.1007/s13105-014-0318-3.
  • Bussmann, A. J. C.; Borghi, S. M.; Zaninelli, T. H.; Dos Santos, T. S.; Guazelli, C. F. S.; Fattori, V.; Domiciano, T. P.; Pinho-Ribeiro, F. A.; Ruiz-Miyazawa, K. W.; Casella, A. M. B., et al. The Citrus Flavanone Naringenin Attenuates Zymosan-Induced Mouse Joint Inflammation: Induction of Nrf2 Expression in Recruited CD45+ Hematopoietic Cells. Inflammopharmacology. 2019, 27(6), 1229–1242.
  • Esmaeili, M. A.; Alilou, M. Naringenin Attenuates CCl4-induced Hepatic Inflammation by the Activation of an Nrf2-Mediated Pathway in Rats. Clin. Exp. Pharmacol. Physiol. 2014, 41(6), 416–422. DOI: 10.1111/1440-1681.12230.
  • Li, Y.; Pan, Y.; Gao, L.; Zhang, J.; Xie, X.; Tong, Z.; Li, B.; Li, G.; Lu, G.; Li, W. Naringenin Protects Against Acute Pancreatitis in Two Experimental Models in Mice by NLRP3 and Nrf2/ho-1 Pathways. Mediators Inflammation. 2018, 2018, 3232491.
  • Manchope, M. F.; Calixto-Campos, C.; Coelho-Silva, L.; Zarpelon, A. C.; Pinho-Ribeiro, F. A.; Georgetti, S. R.; Baracat, M. M.; Casagrande, R.; Verri, W. A. Naringenin Inhibits Superoxide Anion-Induced Inflammatory Pain: Role of Oxidative Stress, Cytokines, Nrf-2 and the No−cGMP−PKG−KATP Channel Signaling Pathway. PLoS One. 2016, 11(4), e0153015. DOI: 10.1371/journal.pone.0153015.
  • Oluyede, D. M.; Lawal, A. O.; Adebimpe, M. O.; Olumegbon, L. T.; Elekofehinti, O. O. Biochemical and Molecular Effects of Naringenin on the Cardiovascular Oxidative and Pro-Inflammatory Effects of Oral Exposure to Diesel Exhaust Particles in Rats. Air Qual. Atmos.Health. 2021, 14(7), 935–953. DOI: 10.1007/s11869-021-00991-2.
  • Rajappa, R.; Sireesh, D.; Salai, M. B.; Ramkumar, K. M.; Sarvajayakesavulu, S.; Madhunapantula, S. V. Treatment with Naringenin Elevates the Activity of Transcription Factor Nrf2 to Protect Pancreatic β-Cells from Streptozotocin-Induced Diabetes In Vitro and In Vivo. Front Pharmacol. 2019, 9, 1562. DOI: 10.3389/fphar.2018.01562.
  • Ruiz-Miyazawa, K. W.; Borghi, S. M.; Pinho-Ribeiro, F. A.; Staurengo-Ferrari, L.; Fattori, V.; Fernandes, G. S. A.; Casella, A. M.; Alves-Filho, J. C.; Cunha, T. M.; Cunha, F. Q., et al. The Citrus Flavanone Naringenin Reduces Gout-Induced Joint Pain and Inflammation in Mice by Inhibiting the Activation of NFκB and Macrophage Release of IL-1β. J. Funct. Foods. 2018, 48, 106–116. DOI: 10.1016/j.jff.2018.06.025.
  • He, W.; Li, Y.; Liu, M.; Yu, H.; Chen, Q.; Chen, Y.; Ruan, J.; Ding, Z.; Zhang, Y.; Wang, T. Citrus Aurantium L. And Its Flavonoids Regulate TNBS-Induced Inflammatory Bowel Disease Through Anti-Inflammation and Suppressing Isolated Jejunum Contraction. Int. J. Mol. Sci. 2018, 19(10), 3057. DOI: 10.3390/ijms19103057.
  • Liu, X.; Wang, N.; Fan, S.; Zheng, X.; Yang, Y.; Zhu, Y.; Lu, Y.; Chen, Q.; Zhou, H.; Zheng, J. The Citrus Flavonoid Naringenin Confers Protection in a Murine Endotoxaemia Model Through AMPK-ATF3-Dependent Negative Regulation of the TLR4 Signalling Pathway. Sci. Rep. 2016, 6(1), 39735. DOI: 10.1038/srep39735.
  • Liang, J.; Halipu, Y.; Hu, F.; Yakeya, B.; Chen, W.; Zhang, H.; Kang, X. Naringenin Protects Keratinocytes from Oxidative Stress Injury via Inhibition of the NOD2-Mediated NF-kB Pathway in Pemphigus Vulgaris. Biomed. Pharmacother. 2017, 92, 796–801. DOI: 10.1016/j.biopha.2017.05.112.
  • Lim, R.; Barker, G.; Wall, C. A.; Lappas, M. Dietary Phytophenols Curcumin, Naringenin and Apigenin Reduce Infection-Induced Inflammatory and Contractile Pathways in Human Placenta, Foetal Membranes and Myometrium. MHR: Basic Science of Reproductive Medicine. 2013, 19(7), 451–462.
  • Park, H. Y.; Kim, G.-Y., and Choi, Y. H. Naringenin Attenuates the Release of Pro-Inflammatory Mediators from Lipopolysaccharide-Stimulated BV2 Microglia by Inactivating Nuclear Factor-κB and Inhibiting Mitogen-Activated Protein Kinases. Int.J. Mol. Med. 2012, 30(1), 204–210. DOI: 10.3892/ijmm.2012.979.
  • Wang, Q.; Ou, Y.; Hu, G.; Wen, C.; Yue, S.; Chen, C.; Xu, L.; Xie, J.; Dai, H.; Xiao, H., et al. Naringenin Attenuates Non-Alcoholic Fatty Liver Disease by Down-Regulating the NLRP3/NF-κB Pathway in Mice. Br. J. Pharmacol. 2019, 177(8), 1806–1821.
  • Yang, J.; Liu, L.; Li, M.; Huang, X.; Yang, H.; Li, K. Naringenin Inhibits Pro‑inflammatory Cytokine Production in Macrophages Through Inducing MT1G to Suppress the Activation of NF‑κB. Mol. Immunol. 2021, 137, 155–162. DOI: 10.1016/j.molimm.2021.07.003.
  • Yu, D.-H.; Ma, C.-H.; Yue, Z.-Q.; Yao, X.; Mao, C.-M. Protective Effect of Naringenin Against Lipopolysaccharide-Induced Injury in Normal Human Bronchial Epithelium via Suppression of MAPK Signaling. Inflammation. 2015, 38(1), 195–204. DOI: 10.1007/s10753-014-0022-z.
  • Zhong, J.; Yu, R.; Zhou, Q.; Liu, P.; Liu, Z.; Bian, Y. Naringenin Prevents TNF-α-Induced Gut-Vascular Barrier Disruption Associated with Inhibiting the NF-κB-Mediated Mlck/p-MLC and NLRP3 Pathways. Food Funct. 2021, 12(6), 2715–2725. DOI: 10.1039/D1FO00155H.
  • Li, Y.-R.; Chen, D.-Y.; Chu, C.-L.; Li, S.; Chen, Y.-K.; Wu, C.-L.; Lin, C.-C. Naringenin Inhibits Dendritic Cell Maturation and Has Therapeutic Effects in a Murine Model of Collagen-Induced Arthritis. J. Nutr. Biochem. 2015, 26(12), 1467–1478. DOI: 10.1016/j.jnutbio.2015.07.016.
  • Jin, L.; Zeng, W.; Zhang, F.; Zhang, C.; Liang, W. Naringenin Ameliorates Acute Inflammation by Regulating Intracellular Cytokine Degradation. J. Immunol. 2017, 199(10), 3466–3477. DOI: 10.4049/jimmunol.1602016.
  • Bai, X.; Zhang, X.; Chen, L.; Zhang, J.; Zhang, L.; Zhao, X.; Zhao, T.; Zhao, Y. Protective Effect of Naringenin in Experimental Ischemic Stroke: Down-Regulated NOD2, RIP2, NF-κB, MMP-9 and Up-Regulated Claudin-5 Expression. Neurochem. Res. 2014, 39(8), 1405–1415. DOI: 10.1007/s11064-014-1326-y.
  • Chtourou, Y.; Kamoun, Z.; Zarrouk, W.; Kebieche, M.; Kallel, C.; Gdoura, R.; Fetoui, H. Naringenin Ameliorates Renal and Platelet Purinergic Signalling Alterations in High-Cholesterol Fed Rats Through the Suppression of ROS and NF-κB Signaling Pathways. Food Funct. 2016, 7(1), 183–193. DOI: 10.1039/C5FO00871A.
  • Dou, W.; Zhang, J.; Sun, A.; Zhang, E.; Ding, L.; Mukherjee, S.; Wei, X.; Chou, G.; Wang, Z.-T.; Mani, S. Protective Effect of Naringenin Against Experimental Colitis via Suppression of Toll-Like Receptor 4/NF-κB Signalling. Br. J. Nutr. 2013, 110, 599–608. DOI: 10.1017/S0007114512005594.
  • Khan, T. H.; Ganaie, M. A.; Alharthy, K. M.; Madkhali, H.; Jan, B. L.; Sheikh, I. A. Naringenin Prevents Doxorubicin-Induced Toxicity in Kidney Tissues by Regulating the Oxidative and Inflammatory Insult in Wistar Rats. Arch. Physiol. Biochem. 2020, 126(4), 300–307. DOI: 10.1080/13813455.2018.1529799.
  • Rehman, M. U.; Mir, M. U. R.; Farooq, A.; Rashid, S. M.; Ahmad, B.; Ahmad, S. B.; Ali, R.; Hussain, I.; Masoodi, M.; Muzamil, S., et al. Naringenin (4,5,7-Trihydroxyflavanone) Suppresses the Development of Precancerous Lesions via Controlling Hyperproliferation and Inflammation in the Colon of Wistar Rats. Environ. Toxicol. 2018, 33(4), 422–435.
  • Tsai, S.-J.; Huang, C.-S.; Mong, M.-C.; Kam, W.-Y.; Huang, H.-Y.; Yin, M.-C. Anti-Inflammatory and Antifibrotic Effects of Naringenin in Diabetic Mice. J. Agric. Food Chem. 2012, 60(1), 514–521. DOI: 10.1021/jf203259h.
  • Fouad, A. A.; Amin, E. F.; Ahmed, A. F. Naringenin and Vanillin Mitigate Cadmium-Induced Pancreatic Injury in Rats via Inhibition of JNK and P38 MAPK Pathways. Pharmacogn. J. 2020, 12(4), 742–748. DOI: 10.5530/pj.2020.12.107.
  • Karuppagounder, V.; Arumugam, S.; Thandavarayan, R. A.; Pitchaimani, V.; Sreedhar, R.; Afrin, R.; Harima, M.; Suzuki, H.; Suzuki, K.; Nakamura, M., et al. Naringenin Ameliorates Daunorubicin Induced Nephrotoxicity by Mitigating AT1R, ERK1/2-NFκB P65 Mediated Inflammation. Int. Immunopharmacol. 2015, 28(1), 154–159.
  • Pinho-Ribeiro, F. A.; Zarpelon, A. C.; Mizokami, S. S.; Borghi, S. M.; Bordignon, J.; Silva, R. L.; Cunha, T. M.; Alves-Filho, J. C.; Cunha, F. Q.; Casagrande, R., et al. The Citrus Flavonone Naringenin Reduces Lipopolysaccharide-Induced Inflammatory Pain and Leukocyte Recruitment by Inhibiting NF-κB Activation. J. Nutr. Biochem. 2016, 33, 8–14. DOI: 10.1016/j.jnutbio.2016.03.013.
  • Manchope, M. F.; Artero, N. A.; Fattori, V.; Mizokami, S. S.; Pitol, D. L.; Issa, J. P. M.; Fukada, S. Y.; Cunha, T. M.; Alves-Filho, J. C.; Cunha, F. Q., et al. Naringenin Mitigates Titanium Dioxide (TiO2)-induced Chronic Arthritis in Mice: Role of Oxidative Stress, Cytokines, and NFκB. Inflammation Res. 2018, 67(11–12), 997–1012.
  • Hsu, C.-L.; Fang, S.-C.; Yen, G.-C. Anti-Inflammatory Effects of Phenolic Compounds Isolated from the Flowers of Nymphaea Mexicana Zucc. Food Funct. 2013, 4(8), 1216. DOI: 10.1039/c3fo60041f.
  • Zhang, B.; Wei, Y.-Z.; Wang, G.-Q.; Li, D.-D.; Shi, J.-S.; Zhang, F. Targeting MAPK Pathways by Naringenin Modulates Microglia M1/M2 Polarization in Lipopolysaccharide-Stimulated Cultures. Front. Cell. Neurosci. 2019, 12. DOI: 10.3389/fncel.2018.00531.
  • Park, S.; Lim, W.; Bazer, F. W.; Song, G. Naringenin Suppresses Growth of Human Placental Choriocarcinoma via Reactive Oxygen Species-Mediated P38 and JNK MAPK Pathways. Phytomedicine. 2018, 50, 238–246. DOI: 10.1016/j.phymed.2017.08.026.
  • Xu, X.-H.; Ma, C.-M.; Han, Y.-Z.; Li, Y.; Liu, C.; Duan, Z.-H.; Wang, H.-L.; Liu, D.-Q.; Liu, R.-H. Protective Effect of Naringenin on Glutamate-Induced Neurotoxicity in Cultured Hippocampal Cells. Arch. Biol. Sci. 2015, 67(2), 639–646. DOI: 10.2298/ABS140811023X.
  • Yang, J.; Li, Q.; Zhou, X. D.; Kolosov, V. P.; Perelman, J. M. Naringenin Attenuates Mucous Hypersecretion by Modulating Reactive Oxygen Species Production and Inhibiting NF-κB Activity via EGFR-PI3K-Akt/erk Mapkinase Signaling in Human Airway Epithelial Cells. Mol. Cell. Biochem. 2011, 351(1–2), 29–40. DOI: 10.1007/s11010-010-0708-y.
  • Song, J.-G.; Liu, L. Naringenin Alleviates Bone Cancer Pain in Rats via Down-Regulating Spinal P2X7R/PI3K/AKT Signaling: Involving Suppression in Spinal Inflammation. Mol. Cell. Toxicol. 2021, 17(4), 475–484. DOI: 10.1007/s13273-021-00156-3.
  • Xu, X.-R.; Yu, H.-T.; Hang, L.; Shao, Y.; Ding, S.-H.; Yang, X.-W. Preparation of Naringenin/β-Cyclodextrin Complex and Its More Potent Alleviative Effect on Choroidal Neovascularization in Rats. Biomed Res. Int. 2014, 2014, 1–9.
  • Gaggeri, R.; Rossi, D.; Daglia, M.; Leoni, F.; Avanzini, M. A.; Mantelli, M.; Juza, M.; Collina, S. An Eco-Friendly Enantioselective Access to (R)-Naringenin as Inhibitor of Proinflammatory Cytokine Release. Chem. Biodivers. 2013, 10(8), 1531–1538. DOI: 10.1002/cbdv.201200227.
  • Hatia, S.; Septembre-Malaterre, A.; Le Sage, F.; Badiou-Bénéteau, A.; Baret, P.; Payet, B.; Lefebvre D’Hellencourt, C.; Gonthier, M. P. Evaluation of Antioxidant Properties of Major Dietary Polyphenols and Their Protective Effect on 3T3-L1 Preadipocytes and Red Blood Cells Exposed to Oxidative Stress. Free Radical Res. 2014, 48(4), 387–401. DOI: 10.3109/10715762.2013.879985.
  • Lin, W.-C.; Lin, J.-Y. Five Bitter Compounds Display Different Anti-Inflammatory Effects Through Modulating Cytokine Secretion Using Mouse Primary Splenocytes in vitro. J. Agric. Food Chem. 2011, 59(1), 184–192. DOI: 10.1021/jf103581r.
  • Yoshida, H.; Watanabe, H.; Ishida, A.; Watanabe, W.; Narumi, K.; Atsumi, T.; Sugita, C.; Kurokawa, M. Naringenin Suppresses Macrophage Infiltration into Adipose Tissue in an Early Phase of High-Fat Diet-Induced Obesity. Biochem. Biophys. Res. Commun. 2014, 454(1), 95–101. DOI: 10.1016/j.bbrc.2014.10.038.
  • Chang, Y.-H.; Seo, J.; Song, E.; Choi, H.-J.; Shim, E.; Lee, O.; Hwang, J. Bioconverted Jeju Hallabong Tangor (Citrus Kiyomi × ponkan) Peel Extracts by Cytolase Enhance Antioxidant and Anti-Inflammatory Capacity in RAW 264.7 Cells. Nutr. Res. Pract. 2016, 10(2), 131. DOI: 10.4162/nrp.2016.10.2.131.
  • Lin, Y.; Tan, D.; Kan, Q.; Xiao, Z.; Jiang, Z. The Protective Effect of Naringenin on Airway Remodeling After Mycoplasma Pneumoniae Infection by Inhibiting Autophagy-Mediated Lung Inflammation and Fibrosis. Mediators Inflammation. 2018, 2018, 1–10.
  • Azuma, T.; Shigeshiro, M.; Kodama, M.; Tanabe, S.; Suzuki, T. Supplemental Naringenin Prevents Intestinal Barrier Defects and Inflammation in Colitic Mice. J. Nutr. 2013, 143(6), 827–834. DOI: 10.3945/jn.113.174508.
  • Chaen, Y.; Yamamoto, Y.; Suzuki, T. Naringenin Promotes Recovery from Colonic Damage Through Suppression of Epithelial Tumor Necrosis factor–α Production and Induction of M2-Type Macrophages in Colitic Mice. Nutr. Res. 2019, 64, 82–92. DOI: 10.1016/j.nutres.2019.01.004.
  • Huang, B.; Hu, P.; Hu, A.; Li, Y.; Shi, W.; Huang, J.; Jiang, Q.; Xu, S.; Li, L.; Wu, Q. Naringenin Attenuates Carotid Restenosis in Rats After Balloon Injury Through Its Anti-Inflammation and Anti-Oxidative Effects via the RIP1-RIP3-MLKL Signaling Pathway. Eur. J. Pharmacol. 2019, 855, 167–174. DOI: 10.1016/j.ejphar.2019.05.012.
  • Martinez, R. M.; Pinho-Ribeiro, F. A.; Steffen, V. S.; Caviglione, C. V.; Vignoli, J. A.; Barbosa, D. S.; Baracat, M. M.; Georgetti, S. R.; Verri, W. A.; Casagrande, R. Naringenin Inhibits UVB Irradiation-Induced Inflammation and Oxidative Stress in the Skin of Hairless Mice. J. Nat. Prod. 2015, 78(7), 1647–1655. DOI: 10.1021/acs.jnatprod.5b00198.
  • Oguido, A. P. M. T.; Hohmann, M. S. N.; Pinho-Ribeiro, F. A.; Crespigio, J.; Domiciano, T. P.; Verri, W. A.; Casella, A. M. B. Naringenin Eye Drops Inhibit Corneal Neovascularization by Anti-Inflammatory and Antioxidant Mechanisms. Invest. Ophthalmol. Vis. Sci. 2017, 58(13), 5764. DOI: 10.1167/iovs.16-19702.
  • Mani, S.; Sekar, S.; Barathidasan, R.; Manivasagam, T.; Thenmozhi, A. J.; Sevanan, M.; Chidambaram, S. B.; Essa, M. M.; Guillemin, G. J.; Sakharkar, M. K. Naringenin Decreases α-Synuclein Expression and Neuroinflammation in MPTP-Induced Parkinson’s Disease Model in Mice. Neurol. Res. 2018, 33(3), 656–670. DOI: 10.1007/s12640-018-9869-3.
  • Shan, S.; Zhang, Y.; Wu, M.; Yi, B.; Wang, J.; Li, Q. Naringenin Attenuates Fibroblast Activation and Inflammatory Response in a Mechanical Stretch-Induced Hypertrophic Scar Mouse Model. Mol. Med. Rep. 2017, 16(4), 4643–4649. DOI: 10.3892/mmr.2017.7209.
  • Jayaraman, J.; Jesudoss, V. A. S.; Menon, V. P.; Namasivayam, N. Anti-Inflammatory Role of Naringenin in Rats with Ethanol Induced Liver Injury. Toxicol. Mech. Methods. 2012, 22(7), 568–576. DOI: 10.3109/15376516.2012.707255.
  • Li, H.; Pan, S. Y.; Xu, X. Y. Structure Characteristics of Flavonoids for Cyclooxygenase-2 mRna Inhibition in Lipopolysaccharide-Induced Inflammatory Macrophages. Eur. J. Pharmacol. 2019, 856, 7. DOI: 10.1016/j.ejphar.2019.172416.
  • Wu, L.-H.; Lin, C.; Lin, H.-Y.; Liu, Y.-S.; Wu, C.-Y.-J.; Tsai, C.-F.; Chang, P.-C.; Yeh, W.-L.; Lu, D.-Y. Naringenin Suppresses Neuroinflammatory Responses Through Inducing Suppressor of Cytokine Signaling 3 Expression. Mol. Neurobiol. 2016, 53(2), 1080–1091. DOI: 10.1007/s12035-014-9042-9.
  • Alifarsangi, A.; Esmaeili-Mahani, S.; Sheibani, V.; Abbasnejad, M. The Citrus Flavanone Naringenin Prevents the Development of Morphine Analgesic Tolerance and Conditioned Place Preference in Male Rats. Am. J. Drug Alcohol Abuse. 2021, 47(1), 43–51. DOI: 10.1080/00952990.2020.1813296.
  • Velderrain-Rodríguez, G. R.; Palafox-Carlos, H.; Wall-Medrano, A.; Ayala-Zavala, J. F.; Chen, C. Y. O.; Robles-Sánchez, M.; Astiazaran-García, H.; Alvarez-Parrilla, E.; González-Aguilar, G. A. Phenolic Compounds: Their Journey After Intake. Food Funct. 2014, 5(2), 189–197. DOI: 10.1039/C3FO60361J.
  • Del Rio, D.; Costa, L. G.; Lean, M. E. J.; Crozier, A. Polyphenols and Health: What Compounds are Involved? Nutr. Metab. Cardiovasc. Dis. 2010, 20(1), 1–6. DOI: 10.1016/j.numecd.2009.05.015.
  • Chen, G.-L.; Chen, S.-G.; Xie, Y.-Q.; Chen, F.; Zhao, Y.-Y.; Luo, C.-X.; Gao, Y.-Q. Total Phenolic, Flavonoid and Antioxidant Activity of 23 Edible Flowers Subjected to in vitro Digestion. J. Funct. Foods. 2015, 17, 243–259. DOI: 10.1016/j.jff.2015.05.028.
  • Gutiérrez-Grijalva, E. P.; Antunes-Ricardo, M.; Acosta-Estrada, B. A.; Gutiérrez-Iribe, J. A.; Heredia, J. B. Cellular Antioxidant Activity and In Vitro Inhibition of α-Glucosidase, α-Amylase and Pancreatic Lipase of Oregano Polyphenols Under Simulated Gastrointestinal Digestion. Food. Res. Int. 2019, 116, 676–686. DOI: 10.1016/j.foodres.2018.08.096.
  • Wootton-Beard, P. C.; Moran, A.; Ryan, L. Stability of the Total Antioxidant Capacity and Total Polyphenol Content of 23 Commercially Available Vegetable Juices Before and After in vitro Digestion Measured by FRAP, DPPH, ABTS and Folin–ciocalteu Methods. Food. Res. Int. 2011, 44(1), 217–224. DOI: 10.1016/j.foodres.2010.10.033.
  • Castello, F.; Costabile, G.; Bresciani, L.; Tassotti, M.; Naviglio, D.; Luongo, D.; Ciciola, P.; Vitale, M.; Vetrani, C.; Galaverna, G., et al. Bioavailability and Pharmacokinetic Profile of Grape Pomace Phenolic Compounds in Humans. Arch. Biochem. Biophys. 2018, 646, 1–9. DOI: 10.1016/j.abb.2018.03.021.
  • Heleno, S. A.; Martins, A.; Queiroz, M. J. R. P.; Ferreira, I. C. F. R. Bioactivity of Phenolic Acids: Metabolites versus Parent Compounds: A Review. Food Chem. 2015, 173, 501–513. DOI: 10.1016/j.foodchem.2014.10.057.
  • Ávila, E. P.; Mendes, L. A. O.; De Almeida, W. B.; Santos, H. F. D.; De Almeida, M. V. Conformational Analysis and Reactivity of Naringenin. J. Mol. Struct. 2021, 1245, 131027. DOI: 10.1016/j.molstruc.2021.131027.
  • Hu, R.; Liu, S.; Anwaier, G.; Wang, Q.; Shen, W.; Shen, Q.; Qi, R. Formulation and Intestinal Absorption of Naringenin Loaded Nanostructured Lipid Carrier and Its Inhibitory Effects on Nonalcoholic Fatty Liver Disease. Nanomed. Nanotechnol. Biol. Med. 2021, 32, 102310. DOI: 10.1016/j.nano.2020.102310.
  • Pingili, R. B.; Vemulapalli, S.; Dirisala, V. R.; Mullapudi, S. S.; Gullapalli, Y.; Kilaru, N. B. Effect of Naringenin on the Pharmacokinetics of Metoprolol Succinate in Rats. Xenobiotica. 2021, 51(8), 926–932. DOI: 10.1080/00498254.2021.1942311.
  • Shi, H. F.; Zhao, F. L.; Chen, H.; Zhou, Q.; Geng, P. W.; Zhou, Y. F.; Wu, H. L.; Chong, J.; Wang, F.; Dai, D. P., et al. Naringenin Has an Inhibitory Effect on Rivaroxaban in Rats Both in vitro and in vivo. Pharmacol. Res. Perspect. 2021, 9(3), 3.
  • Kruger, J.; Sus, N.; Frank, J. Ascorbic Acid, Sucrose and Olive Oil Lipids Mitigate the Inhibitory Effects of Pectin on the Bioaccessibility and Caco-2 Cellular Uptake of Ferulic Acid and Naringenin. Food Funct. 2020, 11(5), 4138–4145. DOI: 10.1039/D0FO00129E.
  • Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F., et al. INFOGEST Static in vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14(4), 991–1014.
  • Smruthi, M. R.; Nallamuthu, I.; Anand, T. A Comparative Study of Optimized Naringenin Nanoformulations Using Nano-Carriers (PLA/PVA and Zein/pectin) for Improvement of Bioavailability. Food Chem. 2022, 369. DOI: 10.1016/j.foodchem.2021.130950.
  • Sun, Y.; Tao, W.; Huang, H.; Ye, X.; Sun, P. Flavonoids, Phenolic Acids, Carotenoids and Antioxidant Activity of Fresh Eating Citrus Fruits, Using the Coupled in vitro Digestion and Human Intestinal HepG2 Cells Model. Food Chem. 2019, 279, 321–327. DOI: 10.1016/j.foodchem.2018.12.019.
  • Wang, L.; Wang, X.; Shen, L.; Alrobaian, M.; Panda, S. K.; Almasmoum, H. A.; Ghaith, M. M.; Almaimani, R. A.; Ibrahim, I. A. A.; Singh, T., et al. Paclitaxel and Naringenin-Loaded Solid Lipid Nanoparticles Surface Modified with Cyclic Peptides with Improved Tumor Targeting Ability in Glioblastoma Multiforme. Biomed. Pharmacother. 2021, 138, 111461. DOI: 10.1016/j.biopha.2021.111461.
  • Xu, X.; Shen, L.; Xu, Q.; Bai, X.; He, Z.; Zhang, T.; Jiang, Q. Development and Optimization of a High‐throughput HPLC–MS/MS Method for the Simultaneous Determination of Naringenin and Its Valine Carbamate Prodrug in Rat Plasma. Biomed. Chromatogr. 2021, 35, 8. DOI: 10.1002/bmc.5119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.