349
Views
0
CrossRef citations to date
0
Altmetric
Review

Overview of in vitro digestion methods to evaluate bioaccessibility of lipophilic compounds in foods

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Granado-Lorencio, F.; Hernández-Alvarez, E. Functional Foods and Health Effects: A Nutritional Biochemistry Perspective. Curr. Med. Chem. 2016, 23, 2929–2957. DOI: 10.2174/0929867323666160615105746.
  • Salvia-Trujillo, L.; Fumiaki, B.; Park, Y.; McClements, D.-J. The Influence of Lipid Droplet Size on the Oral Bioavailability of Vitamin D2 Encapsulated in Emulsions: An In Vitro and In Vivo Study. Food. Funct. 2017, 22, 767–777. DOI: 10.1039/c6fo01565d.
  • Feng, S.; Belwal, T.; Li, L.; Limwachiranon, J.; Liu, X.; Luo, Z. Phytosterols and Their Derivatives: Potential Health-Promoting Uses Against Lipid Metabolism and Associated Diseases, Mechanism, and Safety Issues. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1243–1267. DOI: 10.1111/1541-4337.12560.
  • Alegría, A.; Garcia-Llatas, G.; Cilla, A. Static Digestion Models: General Introduction. In The Impact of Food Bioactives on Health: In vitro and ex vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D. and Wichers, H., Eds.; Springer International Publishing: New York, 2015; pp. 3–12.
  • Wu, P.; Chen, X.-D. Validation of In Vitro Bioaccessibility Assays — a Key Aspect in the Rational Design of Functional Foods Towards Tailored Bioavailability. Curr. Opin. Food Sci. 2021, 39, 160–170. DOI: 10.1016/j.cofs.2021.03.002.
  • Mackie, A.; Mulet-Cabero, A.-I.; Torcello-Gómez, A. Simulating Human Digestion: Developing Our Knowledge to Create Healthier and More Sustainable Foods. Food. Funct. 2020, 11, 9397–9431. DOI: 10.1039/d0fo01981j.
  • Dupont, D.; Alric, M.; Blanquet-Diot, S.; Bornhorst, G.; Cueva, C.; Deglaire, A.; Denis, S.; Ferrua, M.; Havenaar, R.; Lelieveld, J., et al. Can Dynamic In Vitro Digestion Systems Mimic the Physiological Reality? Crit. Rev. Food Sci. Nutr. 2019, 59, 1546–1562. DOI: 10.1080/10408398.2017.1421900.
  • Garrett, D.-A.; Failla, M.-L.; Sarama, R.-J. Development of an In Vitro Digestion Method to Assess Carotenoid Bioavailability from Meals. J. Agric. Food Chem. 1999, 47, 4301–4309. DOI: 10.1021/jf9903298.
  • Cilla, A.; Alegría, A.; de Ancos, B.; Sánchez-Moreno, C.; Cano, M.-P.; Plaza, L.; Clemente, G.; Lagarda, M.-J.; Barberá, R. Bioaccessibility of Tocopherols, Carotenoids, and Ascorbic Acid from Milk- and Soy-Based Fruit Beverages: Influence of Food Matrix and Processing. J. Agric. Food Chem. 2012, 60, 7282–7290. DOI: 10.1021/jf301165r.
  • Lee, E.-H.; Cha, K.-H.; Vuong, T.-T.; Kim, S.-M.; Pan, C.-H. Comparison of Static and Dynamic In Vitro Digestion Models to Estimate the Bioaccessibility of Lutein in Lutein-Rich Foods. Appl. Biol. Chem. 2018, 61, 441–447. DOI: 10.1007/s13765-018-0378-0.
  • Lipkie, T.-E.; De Moura, F.-F.; Zhao, Z.-Y.; Albertsen, M.-C.; Che, P.; Glassman, K.; Ferruzzi, M.-G. Bioaccessibility of Carotenoids from Transgenic Provitamin a Biofortified Sorghum. J. Agric. Food Chem. 2013, 61, 5764–5771. DOI: 10.1021/jf305361s.
  • Nagao, A.; Kotake-Nara, E.; Hase, M. Effects of Fats and Oils on the Bioaccessibility of Carotenoids and Vitamin E in Vegetables. Biosci. Biotechnol., Biochem. 2013, 77, 1055–1060. DOI: 10.1271/bbb.130025.
  • Liu, Y.; Blumberg, J.-B.; Chen, C.-Y. Quantification and Bioaccessibility of California Pistachio Bioactives. J. Agric. Food Chem. 2014, 62, 1550–1556. DOI: 10.1021/jf4046864.
  • Rodríguez-Roque, M.-J.; de Ancos, B.; Sánchez-Vega, R.; Sánchez-Moreno, C.; Cano, M.-P.; Elez-Martínez, P.; Martín-Belloso, O. Food Matrix and Processing Influence on Carotenoid Bioaccessibility and Lipophilic Antioxidant Activity of Fruit Juice-Based Beverages. Food. Funct. 2016, 7, 380–389. DOI: 10.1039/c5fo01060h.
  • Sriwichai, W.; Collin, M.; Tranbarger, T.-J.; Berger, J.; Avallone, S. Improvement of the Content in Bioaccessible Lipophilic Micronutrients in Raw and Processed Drumstick Leaves (Moringa Oleifera Lam.). LWT. 2017, 75, 279–285. DOI: 10.1016/j.lwt.2016.09.001.
  • Rodrigues, D.-B.; Chitchumroonchokchai, C.; Mariutti, L.-R.-B; Mercadante, A.-Z.; Failla, M.-L. Comparison of Two Static In Vitro Digestion Methods for Screening the Bioaccessibility of Carotenoids in Fruits, Vegetables, and Animal Products. J. Agric. Food Chem. 2017, 65, 11220–11228. DOI: 10.1021/acs.jafc.7b04854.
  • Alemany, L.; Cilla, A.; Garcia-Llatas, G.; Rodriguez-Estrada, M.-T.; Cardenia; Alegría, A.; Cardenia, V. Effect of Simulated Gastrointestinal Digestion on Plant Sterols and Their Oxides in Enriched Beverages. Food. Res. Int. 2013, 52, 1–7. DOI: 10.1016/j.foodres.2013.02.024.
  • Lipkie, T.-E.; Ferruzzi, M.-G.; Weaver, C.-M. Low Bioaccessibility of Vitamin D2 from Yeast-Fortified Bread Compared to Crystalline D2 Bread and D3 from Fluid Milks. Food. Funct. 2016, 7, 4589–4596. DOI: 10.1039/c6fo00935b.
  • Antoine, T.; Icard-Vernière, C.; Scorrano, G.; Salhi, A.; Halimi, C.; Georgé, S.; Carrière, F.; Mouquet-Rivier, C.; Reboul, E. Evaluation of Vitamin D Bioaccessibility and Mineral Solubility from Test Meals Containing Meat And/Or Cereals And/Or Pulses Using In Vitro Digestion. Food. Chem. 2021, 347, 128621. DOI: 10.1016/j.foodchem.2020.128621.
  • Minekus, M.; Alminger, M.; Alvito, P.; Balance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D., et al. A Standardised Static In Vitro Digestion Method Suitable for Food - an International Consensus. Food. Funct. 2014, 5, 1113–1124. DOI: 10.1039/c3fo60702j.
  • Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F., et al. INFOGEST Static In Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. DOI: 10.1038/s41596-018-0119-1.
  • Colombo, R.; Ferron, L.; Frosi, I.; Papetti, A. Advances in Static In Vitro Digestion Models After the COST Action Infogest Consensus Protocol. Food. Funct. 2021, 12, 7619–7636. DOI: 10.1039/d1fo01089a.
  • Xavier, A. A. O.; Mercadante, A. Z. A Guide for the Evaluation of In Vitro Bioaccessibility of Carotenoids. 2022. DOI: 10.1016/bs.mie.2022.06.002.
  • Déat, E.; Blanquet-Diot, S.; Jarrige, J.-F.; Denis, S.; Beyssac, E.; Alric, M. Combining the dynamic TNO-gastrointestinal tract system with a Caco-2 cell culture model: application to the assessment of lycopene and alpha-tocopherol bioavailability from a whole food. J. Agric. Food Chem. 2009, 57, 11314–11320. DOI: 10.1021/jf902392a.
  • Blanquet-Diot, S.; Soufi, M.; Rambeau, M.; Rock, E.; Alric, M. Digestive stability of xanthophylls exceeds that of carotenes as studied in a dynamic in vitro gastrointestinal system. J. Nutr. 2009, 139, 876–883. DOI: 10.3945/jn.108.103655.
  • Van Loo-Bouwman, C.-A.; Naber, T.-H.; Minekus, M.; van Breemen, R.-B.; Hulshof, P.-J.; Schaafsma, G. Food matrix effects on bioaccessibility of β-carotene can be measured in an in vitro gastrointestinal model. J. Agric. Food Chem. 2014, 62, 950–955. DOI: 10.1021/jf403312v.
  • Nimalaratne, C.; Savard, P.; Gauthier, S.-F.; Schieber, A.; Wu, J. Bioaccessibility and digestive stability of carotenoids in cooked eggs studied using a dynamic in vitro gastrointestinal model. J. Agric. Food Chem. 2015, 63, 2956–2962. DOI: 10.1021/jf505615w.
  • Mandalari, G.; Bisignano, C.; Filocamo, A.; Chessa, S.; Sarò, M.; Torre, G.; Faulks, R.-M.; Dugo, P. Bioaccessibility of pistachio polyphenols, xanthophylls, and tocopherols during simulated human digestion. Nutr. 2013, 29, 338–344. DOI: 10.1016/j.nut.2012.08.004.
  • Page, M.-J.; Moher, D.; Bossuyt, P.-M.; Boutron, I.; Hoffmann, T.-C.; Mulrow, C.-D.; Shamseer, L.; Tetzlaff, J.-M.; Akl, E.-A.; Brennan, S.-E., et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021, 372, 160. DOI: 10.1136/bmj.n160.
  • Jourdren, S.; Panouillé, M.; Saint-Eve, A.; Déléris, I.; Forest, D.; Lejeune, P.; Souchon, I. Breakdown pathways during oral processing of different breads: impact of crumb and crust structures. Food. Funct. 2016, 7, 1446–1457. DOI: 10.1039/c5fo01286d.
  • Shani-Levi, C.; Alvito, P.; Andrés, A.; Assunção, R.; Barberá, R.; Blanquet-Diot, S.; Bourlieu, C.; Brodkorb, A.; Cilla, A.; Deglaire, A., et al. Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends Food Sci. Technol. 2017, 60, 52–63. DOI: 10.1016/j.tifs.2016.10.017.
  • Jalabert-Malbos, M.; Mishellany-Dutour, A.; Woda, A.; Peyron, M. Particle size distribution in the food bolus after mastication of natural foods. Food Qual. Prefer. 2007, 18, 803–812. DOI: 10.1016/j.foodqual.2007.01.010.
  • Sahu, G.-K.; Upadhyay, S.; Panna, S.-M. Salivary alpha amylase activity in human beings of different age groups subjected to psychological stress. Indian J. Clin. Biochem. 2014, 29, 485–490. DOI: 10.1007/s12291-013-0388-y.
  • Assad-Bustillos, M.; Tournier, C.; Palier, J.; Septier, C.; Feron, G.; Della Valle, G. Oral processing and comfort perception of soft cereal foods fortified with pulse proteins in the elderly with different oral health status. Food. Funct. 2020, 11, 4535–4547. DOI: 10.1039/c9fo02993a.
  • Peyron, M.-A.; Santé-Lhoutellier, V.; Dardevet, D.; Hennequin, M.; Rémond, D.; François, O.; Woda, A. Addressing various challenges related to food bolus and nutrition with the AM2 mastication simulator. Food. hydrocoll. 2019, 97, 105229. DOI: 10.1016/j.foodhyd.2019.105229.
  • Alvarez-Sala, A.; Garcia-Llatas, G.; Cilla, A.; Barberá, R.; Sánchez-Siles, L.-M.; Lagarda, M.-J. Impact of lipid components and emulsifiers on plant sterols bioaccessibility from milk-based fruit beverages. J. Agric. Food Chem. 2016, 64, 5686–5691. DOI: 10.1021/acs.jafc.6b02028.
  • Blanco-Morales, V.; López-García, G.; Cilla, A.; Garcia-Llatas, G.; Barberá, R.; Lagarda, M.-J.; Sánchez-Siles, L.-M.; Alegría, A. The impact of galactooligosaccharides on the bioaccessibility of sterols in a plant sterol-enriched beverage: adaptation of the harmonized INFOGEST digestion method. Food. Funct. 2018, 9, 2080–2089. DOI: 10.1039/c8fo00155c.
  • Vaghini, S.; Cilla, A.; Garcia-Llatas, G.; Lagarda, M.-J. Bioaccessibility study of plant sterol-enriched fermented milks. Food. Funct. 2016, 7, 110–117. DOI: 10.1039/c5fo00458f.
  • Oomen, A.-G.; Rompelberg, C.-J.; Bruil, M.-A.; Dobbe, C.-J.; Pereboom, D.-P.; Sips, A.-J. Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch. Environ. Contam. Toxicol. 2003, 44, 281–287. DOI: 10.1007/s00244-002-1278-0.
  • Sriwichai, W.; Berger, J.; Picq, C.; Avallone, S. Determining factors of lipophilic micronutrient bioaccessibility in several leafy vegetables. J. Agric. Food Chem. 2016, 64, 1695–1701. DOI: 10.1021/acs.jafc.5b05364.
  • Makran, M.; Faubel, N.; López-García, G.; Cilla, A.; Barberá, R.; Alegría, A.; Garcia-Llatas, G. Sterol bioaccessibility in a plant sterol-enriched beverage using the INFOGEST digestion method: Influence of gastric lipase, bile salts and cholesterol esterase. Food. Chem. 2022, 382, 132305. DOI: 10.1016/j.foodchem.2022.132305.
  • Neyraud, E.; Palicki, O.; Schwartz, C.; Nicklaus, S.; Feron, G. Variability of human saliva composition: Possible relationships with fat perception and liking. Arch. oral biol. 2012, 57, 556–566. DOI: 10.1016/j.archoralbio.2011.09.016.
  • Boyd, A. P.; Talbert, J. N.; Acevedo, N. C. Effect of agitation and added cholesterol esterase on bioaccessibility of phytosterols in a standardized in vitro digestion model. LWT. 2021, 150, 112051. DOI: 10.1016/j.lwt.2021.112051.
  • Iddir, M.; Porras Yaruro, J.-F.; Cocco, E.; Hardy, E.-M.; Appenzeller, B.-M.-R; Guignard, C.; Larondelle, Y.; Bohn, T. Impact of protein-enriched plant food items on the bioaccessibility and cellular uptake of carotenoids. Antioxidants. 1005, 2021b(10). DOI: 10.3390/antiox10071005.
  • Iddir, M.; Porras Yaruro, J.-F.; Larondelle, Y.; Bohn, T. Gastric lipase can significantly increase lipolysis and carotenoid bioaccessibility from plant food matrices in the harmonized INFOGEST static in vitro digestion model. Food Funct. Food & Function. 2021a, 12, 9043–9053. DOI: 10.1039/d1fo00786f.
  • Stinco, C.-M.; Pumilia, G.; Giuffrida, D.; Dugo, G.; Meléndez-Martínez, A.-J.; Vicario, I.-M. Bioaccessibility of carotenoids, vitamin A and α-tocopherol, from commercial milk-fruit juice beverages: Contribution to the recommended daily intake. J. Food Compost. Anal. 2019, 78, 24–32. DOI: 10.1016/j.jfca.2019.01.019.
  • Ubeyitogullari, A.; Ciftci, O.-N. In vitro bioaccessibility of novel low-crystallinity phytosterol nanoparticles in non-fat and regular-fat foods. Food. Res. Int. 2019, 123, 27–35. DOI: 10.1016/j.foodres.2019.04.014.
  • Hiolle, M.; Lechevalier, V.; Floury, J.; Boulier-Monthéan, N.; Prioul, C.; Dupont, D.; Nau, F. In vitro digestion of complex foods: How microstructure influences food disintegration and micronutrient bioaccessibility. Food. Res. Int. 2020, 128, 108817. DOI: 10.1016/j.foodres.2019.108817.
  • de Souza Mesquita, L.-M.; Neves, B.-V.; Pisani, L.-P.; de Rosso, V.-V. Mayonnaise as a model food for improving the bioaccessibility of carotenoids from Bactris gasipaes fruits. LWT. 2020, 122, 109022. DOI: 10.1016/j.lwt.2020.109022.
  • Zhou, H.; Liu, J.; Dai, T.; Muriel Mundo, J.-L.; Tan, Y.; Bai, L.; McClements, D.-J. The gastrointestinal fate of inorganic and organic nanoparticles in vitamin D-fortified plant-based milks. Food Hydrocoll. 2021a. 112, 106310. DOI:10.1016/j.foodhyd.2020.106310.
  • Zhou, H.; Zheng, B.; Zhang, Z.; Zhang, R.; He, L.; McClements, D.-J. Fortification of plant-based milk with calcium may reduce vitamin D bioaccessibility: An in vitro digestion study. J. Agric. Food Chem. 2021b, 69, 4223–4233. DOI: 10.1021/acs.jafc.1c01525.
  • Jensen, M.-B.; Daugintis, A.; Jakobsen, J. Content and bioaccessibility of vitamin K (phylloquinone and menaquinones) in cheese. Foods. 2021, 10, 2938. DOI: 10.3390/foods10122938.
  • Jensen, M.-B.; Biltoft-Jensen, A.-P.; Jakobsen, J. In vitro bioaccessibility of vitamin K (phylloquinone and menaquinones) in food and supplements assessed by INFOGEST 2.0 – vit K. Curr. Res. Nutr. Food Sci. 2022, 5, 306α312. DOI: 10.1016/j.crfs.2022.01.018.
  • Petry, F.-C.; Mercadante, A.-Z. Addition of either gastric lipase or cholesterol esterase to improve both β-cryptoxanthin ester hydrolysis and micellarization during in vitro digestion of fruit pulps. Food. Res. Int. 2020, 137, 109691. DOI: 10.1016/j.foodres.2020.109691.
  • Ribeiro, A.; Gonçalves, R.-F.-S; Pinheiro, A.-C.; Manrique, Y.-A.; Barreiro, M.-F.; Lopes, J.-C.-B; Dias, M.-M. In vitro digestion and bioaccessibility studies of vitamin E-loaded nanohydroxyapatite Pickering emulsions and derived fortified foods. LWT. 2022, 154, 112706. DOI: 10.1016/j.lwt.2021.112706.
  • McClements, D.-J.; Li, Y. Review of in vitro digestion models for rapid screening of emulsion-based systems. Food. Funct. 2010, 1, 32–59. DOI: 10.1039/c0fo00111b.
  • Bauer, E.; Jakob, S.; Mosenthin, R. Principles of physiology of lipid digestion. Asian-Aust. J. Anim. Sci. 2005, 2, 282–295. DOI: 10.5713/ajas.2005.282.
  • Politeo, O.; Jukic, M.; Milos, M. Chemical composition and antioxidant capacity of free volatile aglycones from basil (Ocimum basilicum L.) compared with its essential oil. Food. Chem. 2007, 101, 379–385. DOI: 10.1016/j.foodchem.2006.01.045.
  • Rodríguez-Roque, M.-J.; Rojas-Graü, M.-A.; Elez-Martínez, P.; Martín-Belloso, O. In vitro bioaccessibility of health-related compounds as affected by the formulation of fruit juice- and milk-based beverages. Food. Res. Int. 2014, 62, 771–778. DOI: 10.1016/j.foodres.2014.04.037.
  • Xavier, -A.-A.-O; Mercadante, A.-Z.; Garrido-Fernández, J.; Pérez-Gálvez, A. Fat content affects bioaccessibility and efficiency of enzymatic hydrolysis of lutein esters added to milk and yogurt. Food. Res. Int. 2014, 65, 171–176. DOI: 10.1016/j.foodres.2014.06.016.
  • Rodrigues, D.-B.; Mariutti, L.-R.; Mercadante, A.-Z. An in vitro digestion method adapted for carotenoids and carotenoid esters: moving forward towards standardization. Food. Funct. 2016, 7, 4992–5001. DOI: 10.1039/c6fo01293k.
  • Bakala N’Goma, J.-C.; Amara, S.; Dridi, K.; Jannin, V.; Carrière, F. Understanding the lipid-digestion processes in the GI tract before designing lipid-based drug-delivery systems. Ther. Deliv. 2012, 3, 105–124. DOI: 10.4155/tde.11.138.
  • Hui, D.-Y.; Howles, P.-N. Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. J. Lipid. Res. 2002, 43, 2017–2030. DOI:10.1194/jlr.R200013-JLR200.
  • Granado-Lorencio, F.; Olmedilla-Alonso, B.; Herrero-Barbudo, C.; Blanco-Navarro, I.; Pérez-Sacristán, B.; Blázquez-García, S. In vitro bioaccessibility of carotenoids and tocopherols from fruits and vegetables. Food. Chem. 2007, 102, 641–648. DOI: 10.1016/j.foodchem.2006.05.043.
  • Petry, F.-C.; Mercadante, A.-Z. Bile amount affects both the degree of micellarization and the hydrolysis extent of carotenoid esters during in vitro digestion. Food. Funct. 2019, 10, 8250–8262. DOI: 10.1039/c9fo01453e.
  • Estévez-Santiago, R.; Olmedilla-Alonso, B.; Fernández-Jalao, I. Bioaccessibility of provitamin A carotenoids from fruits: application of a standardised static in vitro digestion method. Food. Funct. 2016, 7, 1354–1366. DOI: 10.1039/c5fo01242b.
  • López-Marcos, M.-C.; Bailina, C.; Viuda-Martos, M.; Pérez-Alvarez, J.-A.; Fernández-López, J. Effects of various fibre-rich extracts on cholesterol binding capacity during in vitro digestion of pork patties. Food. Funct. 2015, 6, 3473–3478. DOI: 10.1039/c5fo00709g.
  • Arilla, E.; García-Segovia, P.; Martínez-Monzó, J.; Codoñer-Franch, P.; Igual, M. Effect of adding resistant maltodextrin to pasteurized orange juice on bioactive compounds and their bioaccessibility. Foods. 2021, 10, 1198. DOI: 10.3390/foods10061198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.