504
Views
1
CrossRef citations to date
0
Altmetric
Review

Nanocellulose Based Green Nanocomposites: Characteristics and Application in Primary Food Packaging

, ORCID Icon & ORCID Icon

References

  • Huang, Y.; Mei, L.; Chen, X.; Wang, Q. Recent Developments in Food Packaging Based on Nanomaterials. Nanomaterials. 2018, 8(10), 1–29. doi. DOI: 10.3390/nano8100830.
  • Perera, K. Y.; Jaiswal, S.; Jaiswal, A. K. A Review on Nanomaterials and Nanohybrids Based Bio-Nanocomposites for Food Packaging. Food Chem. 2022, 376, 131912. DOI: 10.1016/j.foodchem.2021.131912.
  • Abdul Khalil, H. P. S.; Davoudpour, Y.; Saurabh, C. K.; Hossain, M. S.; Adnan, A. S.; Dungani, R.; Paridah, M. T.; Islam Sarker, M. Z.; Fazita, M. R. N.; Syakir, M. I., et al. A Review on Nanocellulosic Fibres as New Material for Sustainable Packaging: Process and Applications. Renew. Sustain. Energy Rev. 2016, 64, 823–836. DOI: 10.1016/j.rser.2016.06.072.
  • Perera, K. Y.; Sharma, S.; Pradhan, D.; Jaiswal, A. K.; Jaiswal, S. Seaweed Polysaccharide in Food Contact Materials (Active Packaging, Intelligent Packaging, Edible Films, and Coatings). Foods. 2021, 10(9). DOI: 10.3390/foods10092088.
  • Silva, F. A. G. S.; Dourado, F.; Gama, M.; Poças, F. Nanocellulose Bio-Based Composites for Food Packaging. Nanomaterials. 2020, 10(10), 1–29. DOI: 10.3390/nano10102041.
  • Bharimalla, A. K.; Patil, P. G.; Mukherjee, S.; Yadav, V.; Prasad, V. Polymers for Agri-Food Applications; Switzerland: Springer, 2019.
  • Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and Application. Carbon Resour. Convers. 2018, 1(1), 32–43. DOI: 10.1016/j.crcon.2018.05.004.
  • Phanthong, P.; Guan, G.; Ma, Y.; Hao, X.; Abudula, A. Effect of Ball Milling on the Production of Nanocellulose Using Mild Acid Hydrolysis Method. J. Taiwan Inst. Chem. Eng. 2016, 60, 617–622. DOI: 10.1016/j.jtice.2015.11.001.
  • Abdul Khalil, H. P. S.; Davoudpour, Y.; Islam, M. N.; Mustapha, A.; Sudesh, K.; Dungani, R.; Jawaid, M. Production and Modification of Nanofibrillated Cellulose Using Various Mechanical Processes: A Review. Carbohydr. Polym. 2014, 99, 649–665. DOI: 10.1016/j.carbpol.2013.08.069.
  • Pradhan, D.; Jaiswal, S.; Jaiswal, A. K. Artificial Neural Networks in Valorization Process Modeling of Lignocellulosic Biomass. Biofuels Bioprod. Biorefin. Jul 2022, 16, 1849–1868. DOI: 10.1002/bbb.2417.
  • Khalid, M. Y.; Al Rashid, A.; Arif, Z. U.; Ahmed, W.; Arshad, H. Recent Advances in Nanocellulose-Based Different Biomaterials: Types, Properties, and Emerging Applications. J. Mater. Res. Technol. 2021, 14, 2601–2623. DOI: 10.1016/j.jmrt.2021.07.128.
  • Brinchi, L.; Cotana, F.; Fortunati, E.; Kenny, J. M. Production of Nanocrystalline Cellulose from Lignocellulosic Biomass: Technology and Applications. Carbohydr. Polym. 2013, 94(1), 154–169. DOI: 10.1016/j.carbpol.2013.01.033.
  • Rosa, M. F.; Medeiros, E. S.; Malmonge, J. A.; Gregorski, K. S.; Wood, D. F.; Mattoso, L. H. C.; Glenn, G.; Orts, W. J.; Imam, S. H. Cellulose Nanowhiskers from Coconut Husk Fibers: Effect of Preparation Conditions on Their Thermal and Morphological Behavior. Carbohydr. Polym. 2010, 81(1), 83–92. DOI: 10.1016/j.carbpol.2010.01.059.
  • Lu, P.; Lo Hsieh, Y. Preparation and Characterization of Cellulose Nanocrystals from Rice Straw. Carbohydr. Polym. 2012, 87(1), 564–573. DOI: 10.1016/j.carbpol.2011.08.022.
  • Rahimi, M.; Behrooz, R. Effect of Cellulose Characteristic and Hydrolyze Conditions on Morphology and Size of Nanocrystal Cellulose Extracted from Wheat Straw. Int. J. Polym. Mater. 2011, 60(8), 529–541. DOI: 10.1080/00914037.2010.531820.
  • Abushammala, H.; Krossing, I.; Laborie, M.-P. Ionic Liquid-Mediated Technology to Produce Cellulose Nanocrystals Directly from Wood. Carbohydr. Polym. 2015, 134, 609–616. DOI: 10.1016/j.carbpol.2015.07.079.
  • Luzi, F.; Puglia, D.; Sarasini, F.; Tirillò, J.; Maffei, G.; Zuorro, A.; Lavecchia, R.; Kenny, J. M.; Torre, L. Valorization and Extraction of Cellulose Nanocrystals from North African Grass: Ampelodesmos Mauritanicus (Diss). Carbohydr. Polym. 2019, 209, 328–337. DOI: 10.1016/j.carbpol.2019.01.048.
  • Ferreira, F. V.; Mariano, M.; Rabelo, S. C.; Gouveia, R. F.; Lona, L. M. F. Isolation and Surface Modification of Cellulose Nanocrystals from Sugarcane Bagasse Waste: From a Micro-To a Nano-Scale View. Appl. Surf. Sci. 2018, 436, 1113–1122. DOI: 10.1016/j.apsusc.2017.12.137.
  • Thambiraj, S.; Shankaran, D. R. Preparation and Physicochemical Characterization of Cellulose Nanocrystals from Industrial Waste Cotton. Appl. Surf. Sci. 2017, 412, 405–416. DOI: 10.1016/j.apsusc.2017.03.272.
  • Zhang, W.; Zhang, Y.; Cao, J.; Jiang, W. Improving the Performance of Edible Food Packaging Films by Using Nanocellulose as an Additive. Int. J. Biol. Macromol. 2021, 166, 288–296. DOI: 10.1016/j.ijbiomac.2020.10.185.
  • Kalia, S.; Boufi, S.; Celli, A.; Kango, S. Nanofibrillated Cellulose: Surface Modification and Potential Applications. Colloid. Polym. Sci. 2014, 292(1), 5–31. DOI: 10.1007/s00396-013-3112-9.
  • Fujisawa, S.; Okita, Y.; Fukuzumi, H.; Saito, T.; Isogai, A. Preparation and Characterization of TEMPO-Oxidized Cellulose Nanofibril Films with Free Carboxyl Groups. Carbohydr. Polym. 2011, 84(1), 579–583. DOI: 10.1016/j.carbpol.2010.12.029.
  • Kolakovic, R.; Peltonen, L.; Laukkanen, A.; Hirvonen, J.; Laaksonen, T. Nanofibrillar Cellulose Films for Controlled Drug Delivery. Eur. J. Pharm. Biopharm. 2012, 82(2), 308–315. DOI: 10.1016/j.ejpb.2012.06.011.
  • Wang, B.; Sain, M. Isolation of Nanofibers from Soybean Source and Their Reinforcing Capability on Synthetic Polymers. Compos. Sci. Technol. 2007, 67(11–12), 2521–2527. DOI: 10.1016/j.compscitech.2006.12.015.
  • Chen, Y.; Fan, D.; Han, Y.; Li, G.; Wang, S. Length-Controlled Cellulose Nanofibrils Produced Using Enzyme Pretreatment and Grinding. Cellulose. 2017, 24(12), 5431–5442. DOI: 10.1007/s10570-017-1499-z.
  • Berto, G. L.; Arantes, V. Kinetic Changes in Cellulose Properties During Defibrillation into Microfibrillated Cellulose and Cellulose Nanofibrils by Ultra-Refining. Int. J. Biol. Macromol. 2019, 127, 637–648. DOI: 10.1016/j.ijbiomac.2019.01.169.
  • Baati, R.; Magnin, A.; Boufi, S. High Solid Content Production of Nanofibrillar Cellulose via Continuous Extrusion. ACS Sustain. Chem. Eng. 2017, 5(3), 2350–2359. DOI: 10.1021/acssuschemeng.6b02673.
  • Dilamian, M.; Noroozi, B. A Combined Homogenization-High Intensity Ultrasonication Process for Individualizaion of Cellulose Micro-Nano Fibers from Rice Straw. Cellulose. 2019, 26(10), 5831–5849. DOI: 10.1007/s10570-019-02469-y.
  • Li, J.; Wei, X.; Wang, Q.; Chen, J.; Chang, G.; Kong, L.; Su, J.; Liu, Y. Homogeneous Isolation of Nanocellulose from Sugarcane Bagasse by High Pressure Homogenization. Carbohydr. Polym. 2012, 90(4), 1609–1613. DOI: 10.1016/j.carbpol.2012.07.038.
  • Sirviö, J. A.; Ukkola, J.; Liimatainen, H. Direct Sulfation of Cellulose Fibers Using a Reactive Deep Eutectic Solvent to Produce Highly Charged Cellulose Nanofibers. Cellulose. 2019, 26(4), 2303–2316. DOI: 10.1007/s10570-019-02257-8.
  • Su, Y.; Burger, C.; Ma, H.; Chu, B.; Hsiao, B. S. Morphological and Property Investigations of Carboxylated Cellulose Nanofibers Extracted from Different Biological Species. Cellulose. 2015, 22(5), 3127–3135. DOI: 10.1007/s10570-015-0698-8.
  • Härdelin, L.; Thunberg, J.; Perzon, E.; Westman, G.; Walkenström, P.; Gatenholm, P. Electrospinning of Cellulose Nanofibers from Ionic Liquids: The Effect of Different Cosolvents. J. Appl. Polym. Sci. 2012, 125(3), 1901–1909. DOI: 10.1002/app.36323.
  • de Campos, A.; Correa, A. C.; Cannella, D.; de M Teixeira, E.; Marconcini, J. M.; Dufresne, A.; Mattoso, L. H. C.; Cassland, P.; Sanadi, A. R. Obtaining Nanofibers from Curauá and Sugarcane Bagasse Fibers Using Enzymatic Hydrolysis Followed by Sonication. Cellulose. 2013, 20(3), 1491–1500. DOI: 10.1007/s10570-013-9909-3.
  • Tibolla, H.; Pelissari, F. M.; Menegalli, F. C. Cellulose Nanofibers Produced from Banana Peel by Chemical and Enzymatic Treatment. LWT-Food Sci. Technol. 2014, 59(2), 1311–1318. DOI: 10.1016/j.lwt.2014.04.011.
  • Davoudpour, Y.; Hossain, S.; Khalil, H. P. S. A.; Haafiz, M. K. M.; Ishak, Z. A. M.; Hassan, A.; Sarker, Z. I. Optimization of High Pressure Homogenization Parameters for the Isolation of Cellulosic Nanofibers Using Response Surface Methodology. Ind. Crops Prod. 2015, 74, 381–387. DOI: 10.1016/j.indcrop.2015.05.029.
  • Jongaroontaprangsee, S.; Chiewchan, N.; Devahastin, S. Production of Nanocellulose from Lime Residues Using Chemical-Free Technology. Mater. Today Proc. 2018, 5(5, Part 1), 11095–11100. DOI: 10.1016/j.matpr.2018.01.027.
  • Hongrattanavichit, I.; Aht-Ong, D. Nanofibrillation and Characterization of Sugarcane Bagasse Agro-Waste Using Water-Based Steam Explosion and High-Pressure Homogenization. J. Clean. Prod. 2020, 277, 123471. DOI: 10.1016/j.jclepro.2020.123471.
  • Liu, Q.; Lu, Y.; Aguedo, M.; Jacquet, N.; Ouyang, C.; He, W.; Yan, C.; Bai, W.; Guo, R.; Goffin, D., et al. Isolation of High-Purity Cellulose Nanofibers from Wheat Straw Through the Combined Environmentally Friendly Methods of Steam Explosion, Microwave-Assisted Hydrolysis, and Microfluidization. ACS Sustain. Chem. Eng. 2017, 5(7), 6183–6191.
  • Ludwicka, K.; Kaczmarek, M.; Białkowska, A. Bacterial Nanocellulose—a Biobased Polymer for Active and Intelligent Food Packaging Applications: Recent Advances and Developments. Polymers (Basel). 2020, 12(10), 1–23. DOI: 10.3390/polym12102209.
  • Skočaj, M. Bacterial Nanocellulose in Papermaking. Cellulose. 2019, 26(11), 6477–6488. DOI: 10.1007/s10570-019-02566-y.
  • Arrieta, M. P.; Fortunati, E.; Burgos, N.; Peltzer, M. A.; López, J.; Peponi, L. Nanocellulose-Based Polymeric Blends for Food Packaging Applications; United Kingdom and United States: Elsevier Inc, 2016.
  • Zhao, R.; Torley, P.; Halley, P. J. Emerging Biodegradable Materials: Starch-And Protein-Based Bio-Nanocomposites. J. Mater. Sci. 2008, 43(9), 3058–3071. DOI: 10.1007/s10853-007-2434-8.
  • Ahankari, S. S.; Subhedar, A. R.; Bhadauria, S. S.; Dufresne, A. Nanocellulose in Food Packaging: A Review. Carbohydr. Polym. 2021, 255(August), 117479. DOI: 10.1016/j.carbpol.2020.117479.
  • Dehnad, D.; Mirzaei, H.; Emam-Djomeh, Z.; Jafari, S.-M.; Dadashi, S. Thermal and Antimicrobial Properties of Chitosan–Nanocellulose Films for Extending Shelf Life of Ground Meat. Carbohydr. Polym. 2014, 109, 148–154. DOI: 10.1016/j.carbpol.2014.03.063.
  • Costa, S. M.; Ferreira, D. P.; Teixeira, P.; Ballesteros, L. F.; Teixeira, J. A.; Fangueiro, R. Active Natural-Based Films for Food Packaging Applications: The Combined Effect of Chitosan and Nanocellulose. Int. J. Biol. Macromol. 2021, 177, 241–251. DOI: 10.1016/j.ijbiomac.2021.02.105.
  • Wang, X.; Guo, C.; Hao, W.; Ullah, N.; Chen, L.; Li, Z.; Feng, X. Development and Characterization of Agar-Based Edible Films Reinforced with Nano-Bacterial Cellulose. Int. J. Biol. Macromol. 2018, 118, 722–730. DOI: 10.1016/j.ijbiomac.2018.06.089.
  • Shankar, S.; Rhim, J.-W. Preparation of Nanocellulose from Micro-Crystalline Cellulose: The Effect on the Performance and Properties of Agar-Based Composite Films. Carbohydr. Polym. 2016, 135, 18–26. DOI: 10.1016/j.carbpol.2015.08.082.
  • Sarwar, M. S.; Niazi, M. B. K.; Jahan, Z.; Ahmad, T.; Hussain, A. Preparation and Characterization of PVA/Nanocellulose/Ag Nanocomposite Films for Antimicrobial Food Packaging. Carbohydr. Polym. 2018, 184, 453–464. DOI: 10.1016/j.carbpol.2017.12.068.
  • Wang, W.; Yu, Z.; Alsammarraie, F. K.; Kong, F.; Lin, M.; Mustapha, A. Properties and Antimicrobial Activity of Polyvinyl Alcohol-Modified Bacterial Nanocellulose Packaging Films Incorporated with Silver Nanoparticles. Food Hydrocoll. 2020, 100, 105411. DOI: 10.1016/j.foodhyd.2019.105411.
  • Noorbakhsh-Soltani, S. M.; Zerafat, M. M.; Sabbaghi, S. A Comparative Study of Gelatin and Starch-Based Nano-Composite Films Modified by Nano-Cellulose and Chitosan for Food Packaging Applications. Carbohydr. Polym. 2018, 189, 48–55. DOI: 10.1016/j.carbpol.2018.02.012.
  • Taokaew, S.; Seetabhawang, S.; Siripong, P.; Phisalaphong, M. Biosynthesis and Characterization of Nanocellulose-Gelatin Films. Mater. (Basel). 2013, 6(3), 782–794. DOI: 10.3390/ma6030782.
  • Oun, A. A.; Rhim, J.-W. Characterization of Carboxymethyl Cellulose-Based Nanocomposite Films Reinforced with Oxidized Nanocellulose Isolated Using Ammonium Persulfate Method. Carbohydr. Polym. 2017, 174, 484–492. DOI: 10.1016/j.carbpol.2017.06.121.
  • He, Y.; Li, H.; Fei, X.; Peng, L. Carboxymethyl Cellulose/Cellulose Nanocrystals Immobilized Silver Nanoparticles as an Effective Coating to Improve Barrier and Antibacterial Properties of Paper for Food Packaging Applications. Carbohydr. Polym. 2021, 252, 117156. DOI: 10.1016/j.carbpol.2020.117156.
  • Amara, C.; El Mahdi, A.; Medimagh, R.; Khwaldia, K. Nanocellulose-Based Composites for Packaging Applications. Curr. Opin. Green Sustain. Chem. 2021, 31, 100512. DOI: 10.1016/j.cogsc.2021.100512.
  • Pradhan, D.; Jaiswal, A. K.; Jaiswal, S. Emerging Technologies for the Production of Nanocellulose from Lignocellulosic Biomass. Carbohydr. Polym. 2022, 285, 119258. DOI: 10.1016/j.carbpol.2022.119258.
  • Saallah, S.; Misson, M.;Siddiquee, S.; Roslan, J.; Naim, N.M.; Baker, N.F.A.; Lenggoro, I.W. “Nanocellulose and Nanocellulose-Based Composites for Food Applications,” in Composite Materials: Applications in Engineering, Biomedicine and Food Science; Switzerland: Springer, 2020; pp. 369–385.
  • Abdel Rehim, M. H. Green Food Packaging from Nanocellulose-Based Composite Materials. Bio‐based Packag. May 2021, 151–164. 10.1002/9781119381228.ch9.
  • Arrieta, M. P.; Fortunati, E.; Burgos, N.; Peltzer, M. A.; López, J.; Peponi, L. Chapter 7 - Nanocellulose-Based Polymeric Blends for Food Packaging Applications: Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements. In Puglia, D., Fortunati, E., and J. M. B. T.-M. P. N. B., and Kenny, C.R., Eds.; United Kingdom and United States: Elsevier, 2016; pp. 205–252
  • Hubbe, M. A.; Ferrer, A.; Tyagi, P.; Yin, Y.; Salas, C.; Pal, L.; Rojas, O. J. Nanocellulose in Thin Films, Coatings, and Plies for Packaging Applications: A Review. BioResources. 2017, 12(1), 2143–2233. DOI: 10.15376/biores.12.1.Hubbe.
  • Lee, H.; You, J.; Jin, H.-J.; Kwak, H. W. Chemical and Physical Reinforcement Behavior of Dialdehyde Nanocellulose in PVA Composite Film: A Comparison of Nanofiber and Nanocrystal. Carbohydr. Polym. 2020, 232, 115771. DOI: 10.1016/j.carbpol.2019.115771.
  • Srivastava, K. R.; Dixit, S.; Pal, D. B.; Mishra, P. K.; Srivastava, P.; Srivastava, N.; Hashem, A.; Alqarawi, A. A.; Abd_allah, E. F. Effect of Nanocellulose on Mechanical and Barrier Properties of PVA–Banana Pseudostem Fiber Composite Films. Environ. Technol. Innovations. 2021, 21, 101312. DOI: 10.1016/j.eti.2020.101312.
  • Leite, L. S. F.; Ferreira, C. M.; Corrêa, A. C.; Moreira, F. K. V.; Mattoso, L. H. C. Scaled-Up Production of Gelatin-Cellulose Nanocrystal Bionanocomposite Films by Continuous Casting. Carbohydr. Polym. 2020, 238, 116198. DOI: 10.1016/j.carbpol.2020.116198.
  • Kusmono, M. W. W.; Lubis, F. I. Fabrication and Characterization of Chitosan/Cellulose Nanocrystal/Glycerol Bio-Composite Films. Polymers. 2021, 13(7), 1096. DOI: 10.3390/polym13071096.
  • Zhang, L.; Zhao, J.; Zhang, Y.; Li, F.; Jiao, X.; Li, Q. The Effects of Cellulose Nanocrystal and Cellulose Nanofiber on the Properties of Pumpkin Starch-Based Composite Films. Int. J. Biol. Macromol. 2021, 192, 444–451. DOI: 10.1016/j.ijbiomac.2021.09.187.
  • Li, H.; Shi, H.; He, Y.; Fei, X.; Peng, L. Preparation and Characterization of Carboxymethyl Cellulose-Based Composite Films Reinforced by Cellulose Nanocrystals Derived from Pea Hull Waste for Food Packaging Applications. Int. J. Biol. Macromol. 2020, 164, 4104–4112. DOI: 10.1016/j.ijbiomac.2020.09.010.
  • Kang, S.; Xiao, Y.; Guo, X.; Huang, A.; Xu, H. Development of Gum Arabic-Based Nanocomposite Films Reinforced with Cellulose Nanocrystals for Strawberry Preservation. Food Chem. 2021, 350(February), 129199. DOI: 10.1016/j.foodchem.2021.129199.
  • Kumar, S.; Mukherjee, A.; Dutta, J. Chitosan Based Nanocomposite Films and Coatings: Emerging Antimicrobial Food Packaging Alternatives. Trends Food Sci. Technol. 2020, 97(August), 196–209. DOI: 10.1016/j.tifs.2020.01.002.
  • Aulin, C.; Karabulut, E.; Tran, A.; Wågberg, L.; Lindström, T. Transparent Nanocellulosic Multilayer Thin Films on Polylactic Acid with Tunable Gas Barrier Properties. ACS Appl. Mater. Interfaces. Aug 2013, 5(15), 7352–7359. doi:10.1021/am401700n.
  • Hou, Q.; Wang, X.; Ragauskas, A. J. Preparation and Characterization of Nanocellulose–Polyvinyl Alcohol Multilayer Film by Layer-By-Layer Method. Cellulose. 2019, 26(8), 4787–4798. DOI: 10.1007/s10570-019-02413-0.
  • Li, F.; Biagioni, P.; Finazzi, M.; Tavazzi, S.; Piergiovanni, L. Tunable Green Oxygen Barrier Through Layer-By-Layer Self-Assembly of Chitosan and Cellulose Nanocrystals. Carbohydr. Polym. 2013, 92(2), 2128–2134. DOI: 10.1016/j.carbpol.2012.11.091.
  • Ferrer, A.; Pal, L.; Hubbe, M. Nanocellulose in Packaging: Advances in Barrier Layer Technologies. Ind. Crops Prod. 2017, 95, 574–582. DOI: 10.1016/j.indcrop.2016.11.012.
  • Liu, Y.; Ahmed, S.; Sameen, D. E.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. A Review of Cellulose and Its Derivatives in Biopolymer-Based for Food Packaging Application. Trends Food Sci. Technol. 2021, 112(April), 532–546. DOI: 10.1016/j.tifs.2021.04.016.
  • Fotie, G.; Limbo, S.; Piergiovanni, L. Manufacturing of Food Packaging Based on Nanocellulose: Current Advances and Challenges. Nanomaterials. 2020, 10(9), 1–26. DOI: 10.3390/nano10091726.
  • Zheng, T.; Zhang, Z.; Shukla, S.; Agnihotri, S.; Clemons, C. M.; Pilla, S. PHBV-Graft-GMA via Reactive Extrusion and Its Use in PHBV/Nanocellulose Crystal Composites. Carbohydr. Polym. 2019, 205, 27–34. DOI: 10.1016/j.carbpol.2018.10.014.
  • Karkhanis, S. S.; Stark, N. M.; Sabo, R. C.; Matuana, L. M. Potential of Extrusion-Blown Poly(lactic Acid)/Cellulose Nanocrystals Nanocomposite Films for Improving the Shelf-Life of a Dry Food Product. Food Packag. Shelf Life. 2021, 29, 100689. DOI: 10.1016/j.fpsl.2021.100689.
  • Geng, S.; Wloch, D.; Herrera, N.; Oksman, K. Large-Scale Manufacturing of Ultra-Strong, Strain-Responsive Poly(lactic Acid)-Based Nanocomposites Reinforced with Cellulose Nanocrystals. Compos. Sci. Technol. 2020, 194, 108144. DOI: 10.1016/j.compscitech.2020.108144.
  • Fourati, Y.; Magnin, A.; Putaux, J.-L.; Boufi, S. One-Step Processing of Plasticized Starch/Cellulose Nanofibrils Nanocomposites via Twin-Screw Extrusion of Starch and Cellulose Fibers. Carbohydr. Polym. 2020, 229, 115554. DOI: 10.1016/j.carbpol.2019.115554.
  • Nessi, V.; Falourd, X.; Maigret, J.-E.; Cahier, K.; D’Orlando, A.; Descamps, N.; Gaucher, V.; Chevigny, C.; Lourdin, D. Cellulose Nanocrystals-Starch Nanocomposites Produced by Extrusion: Structure and Behavior in Physiological Conditions. Carbohydr. Polym. 2019, 225, 115123. DOI: 10.1016/j.carbpol.2019.115123.
  • Sanders, J. E.; Han, Y.; Rushing, T. S.; Gardner, D. J. Electrospinning of Cellulose Nanocrystal-Filled Poly (Vinyl Alcohol) Solutions: Material Property Assessment. Nanomaterials. 2019, 9(5). DOI: 10.3390/nano9050805.
  • Wang, H.; Kong, L.; Ziegler, G. R. Fabrication of Starch - Nanocellulose Composite Fibers by Electrospinning. Food Hydrocoll. 2019, 90, 90–98. DOI: 10.1016/j.foodhyd.2018.11.047.
  • Ozturk, S.; Zhang, J.; Singh, R. K.; Kong, F. Effect of Cellulose Nanofiber-Based Coating with Chitosan and Trans-Cinnamaldehyde on the Microbiological Safety and Quality of Cantaloupe Rind and Fresh-Cut Pulp. Part 2: Quality Attributes. LWT. 2021, 147, 111519. DOI: 10.1016/j.lwt.2021.111519.
  • Ghosh, T.; Nakano, K.; Katiyar, V. Curcumin Doped Functionalized Cellulose Nanofibers Based Edible Chitosan Coating on Kiwifruits. Int. J. Biol. Macromol. 2021, 184(June), 936–945. DOI: 10.1016/j.ijbiomac.2021.06.098.
  • Van Hai, L.; Choi, E. S.; Zhai, L.; Panicker, P. S.; Kim, J. Green Nanocomposite Made with Chitin and Bamboo Nanofibers and Its Mechanical, Thermal and Biodegradable Properties for Food Packaging. Int. J. Biol. Macromol. 2020, 144, 491–499. DOI: 10.1016/j.ijbiomac.2019.12.124.
  • Reshmy, R.; Madhavan, A.; Philip, E.; Paul, S. A.; Sindhu, R.; Binod, P.; Pugazhendhi, A.; Sirohi, R.; Pandey, A. Sugarcane Bagasse Derived Nanocellulose Reinforced with Frankincense (Boswellia Serrata): Physicochemical Properties, Biodegradability and Antimicrobial Effect for Controlling Microbial Growth for Food Packaging Application. Environ. Technol. Innovations. 2021, 21, 101335. DOI: 10.1016/j.eti.2020.101335.
  • Van Hai, L.; Zhai, L.; Kim, H. C.; Panicker, P. S.; Pham, D. H.; Kim, J. Chitosan Nanofiber and Cellulose Nanofiber Blended Composite Applicable for Active Food Packaging. Nanomaterials. 2020, 10(9), 1–14. DOI: 10.3390/nano10091752.
  • Menezes, D. B.; Diz, F. M.; Romanholo Ferreira, L. F.; Corrales, Y.; Baudrit, J. R. V.; Costa, L. P.; Hernández-Macedo, M. L. Starch-Based Biocomposite Membrane Reinforced by Orange Bagasse Cellulose Nanofibers Extracted from Ionic Liquid Treatment. Cellulose. 2021, 28, 4137–4149. DOI: 10.1007/s10570-021-03814-w.
  • Zabihollahi, N.; Alizadeh, A.; Almasi, H.; Hanifian, S.; Hamishekar, H. Development and Characterization of Carboxymethyl Cellulose Based Probiotic Nanocomposite Film Containing Cellulose Nanofiber and Inulin for Chicken Fillet Shelf Life Extension. Int. J. Biol. Macromol. 2020, 160, 409–417. DOI: 10.1016/j.ijbiomac.2020.05.066.
  • Otenda, B. V.; Kareru, P. G.; Madivoli, E. S.; Maina, E. G.; Wanakai, S. I.; Wanyonyi, W. C. Cellulose Nanofibrils from Sugarcane Bagasse as a Reinforcing Element in Polyvinyl Alcohol Composite Films for Food Packaging. J. Nat. Fibers. 2020, 00(00), 1–13. DOI: 10.1080/15440478.2020.1848712.
  • Moreirinha, C.; Vilela, C.; Silva, N. H. C. S.; Pinto, R. J. B.; Almeida, A.; Rocha, M. A. M.; Coelho, E.; Coimbra, M. A.; Silvestre, A. J. D.; Freire, C. S. R. Antioxidant and Antimicrobial Films Based on Brewers Spent Grain Arabinoxylans, Nanocellulose and Feruloylated Compounds for Active Packaging. Food Hydrocoll. 2020, 108(March), 105836. DOI: 10.1016/j.foodhyd.2020.105836.
  • Yang, Y.; Liu, H.; Wu, M.; Ma, J.; Lu, P. Bio-Based Antimicrobial Packaging from Sugarcane Bagasse Nanocellulose/Nisin Hybrid Films. Int. J. Biol. Macromol. 2020, 161, 627–635. DOI: 10.1016/j.ijbiomac.2020.06.081.
  • Zhao, K.; Wang, W.; Teng, A.; Zhang, K.; Ma, Y.; Duan, S.; Li, S.; Guo, Y. Using Cellulose Nanofibers to Reinforce Polysaccharide Films: Blending Vs Layer-By-Layer Casting. Carbohydr. Polym. 2020, 227(August), 115264. DOI: 10.1016/j.carbpol.2019.115264.
  • Tibolla, H.; Czaikoski, A.; Pelissari, F. M.; Menegalli, F. C.; Cunha, R. L. Starch-Based Nanocomposites with Cellulose Nanofibers Obtained from Chemical and Mechanical Treatments. Int. J. Biol. Macromol. 2020, 161, 132–146. DOI: 10.1016/j.ijbiomac.2020.05.194.
  • Zhang, C.; Yang, X.; Li, Y.; Wang, S.; Zhang, Y.; Yang, H.; Chai, J.; Li, T. Multifunctional Hybrid Composite Films Based on Biodegradable Cellulose Nanofibers, Aloe Juice, and Carboxymethyl Cellulose. Cellulose. 2021, 28(8), 4927–4941. DOI: 10.1007/s10570-021-03838-2.
  • Bastante, C. C.; Silva, N. H. C. S.; Cardoso, L. C.; Serrano, C. M.; Martínez de la Ossa, E. J.; Freire, C. S. R.; Vilela, C. Biobased Films of Nanocellulose and Mango Leaf Extract for Active Food Packaging: Supercritical Impregnation versus Solvent Casting. Food Hydrocoll. 2021, 117(February), 106709. DOI: 10.1016/j.foodhyd.2021.106709.
  • Kim, J. K.; Choi, B.; Jin, J. Transparent, Water-Stable, Cellulose Nanofiber-Based Packaging Film with a Low Oxygen Permeability. Carbohydr. Polym. 2020, 249(July), 116823. DOI: 10.1016/j.carbpol.2020.116823.
  • Roy, S.; Kim, H. C.; Panicker, P. S.; Rhim, J. W.; Kim, J. Cellulose Nanofiber-Based Nanocomposite Films Reinforced with Zinc Oxide Nanorods and Grapefruit Seed Extract. Nanomaterials. 2021, 11(4), 877. DOI: 10.3390/nano11040877.
  • Soni, R.; Asoh, T. A.; Uyama, H. Cellulose Nanofiber Reinforced Starch Membrane with High Mechanical Strength and Durability in Water. Carbohydr. Polym. 2020, 238(March), 116203. DOI: 10.1016/j.carbpol.2020.116203.
  • Huang, L.; Zhao, H.; Yi, T.; Qi, M.; Xu, H.; Mo, Q.; Huang, C.; Wang, S.; Liu, Y. Reparation and Properties of Cassava Residue Cellulose Nanofibril/Cassava Starch Composite Films. Nanomaterials. 2020, 10(4), 755. DOI: 10.3390/nano10040755.
  • Oyeoka, H. C.; Ewulonu, C. M.; Nwuzor, I. C.; Obele, C. M.; Nwabanne, J. T. Packaging and Degradability Properties of Polyvinyl Alcohol/Gelatin Nanocomposite Films Filled Water Hyacinth Cellulose Nanocrystals. J. Bioresour. Bioprod. 2021, 6(2), 168–185. DOI: 10.1016/j.jobab.2021.02.009.
  • Rader, C.; Weder, C.; Marti, R. Biobased Polyester-Amide/cellulose Nanocrystal Nanocomposites for Food Packaging. Macromol. Mater. Eng. 2021, 306(3), 1–9. DOI: 10.1002/mame.202000668.
  • Syafiq, R.; Sapuan, S. M.; Zuhri, M. R. M. Antimicrobial Activity, Physical, Mechanical and Barrier Properties of Sugar Palm Based Nanocellulose/Starch Biocomposite Films Incorporated with Cinnamon Essential Oil. J. Mater. Res. Technol. 2021, 11, 144–157. DOI: 10.1016/j.jmrt.2020.12.091.
  • Jin, K.; Tang, Y.; Zhu, X.; Zhou, Y. Polylactic Acid Based Biocomposite Films Reinforced with Silanized Nanocrystalline Cellulose. Int. J. Biol. Macromol. 2020, 162, 1109–1117. DOI: 10.1016/j.ijbiomac.2020.06.201.
  • Cao, L.; Ge, T.; Meng, F.; Xu, S.; Li, J.; Wang, L. An Edible Oil Packaging Film with Improved Barrier Properties and Heat Sealability from Cassia Gum Incorporating Carboxylated Cellulose Nano Crystal Whisker. Food Hydrocoll. 2020, 98(May), 105251. DOI: 10.1016/j.foodhyd.2019.105251.
  • Coelho, C. C. D. S.; Silva, R. B. S.; Carvalho, C. W. P.; Rossi, A. L.; Teixeira, J. A.; Freitas-Silva, O.; Cabral, L. M. C. Cellulose Nanocrystals from Grape Pomace and Their Use for the Development of Starch-Based Nanocomposite Films. Int. J. Biol. Macromol. 2020, 159, 1048–1061. DOI: 10.1016/j.ijbiomac.2020.05.046.
  • Haghighi, H.; Gullo, M.; La China, S.; Pfeifer, F.; Siesler, H. W.; Licciardello, F.; Pulvirenti, A. Characterization of Bio-Nanocomposite Films Based on Gelatin/Polyvinyl Alcohol Blend Reinforced with Bacterial Cellulose Nanowhiskers for Food Packaging Applications. Food Hydrocoll. 2021, 113(June), 106454. DOI: 10.1016/j.foodhyd.2020.106454.
  • Liu, Z.; Lin, D.; Lopez-Sanchez, P.; Yang, X. Characterizations of Bacterial Cellulose Nanofibers Reinforced Edible Films Based on Konjac Glucomannan. Int. J. Biol. Macromol. 2020, 145, 634–645. DOI: 10.1016/j.ijbiomac.2019.12.109.
  • Abral, H.; Pratama, A. B.; Handayani, D.; Mahardika, M.; Aminah, I.; Sandrawati, N.; Sugiarti, E.; Muslimin, A. N.; Sapuan, S. M.; Ilyas, R. A., et al. Antimicrobial Edible Film Prepared from Bacterial Cellulose Nanofibers/Starch/Chitosan for a Food Packaging Alternative. Int. J. Polym. Sci. 2021, 2021, 1–11. DOI: 10.1155/2021/6641284.
  • Sharma, C.; Bhardwaj, N. K.; Pathak, P. Static Intermittent Fed-Batch Production of Bacterial Nanocellulose from Black Tea and Its Modification Using Chitosan to Develop Antibacterial Green Packaging Material. J. Clean. Prod. 2021, 279, 123608. DOI: 10.1016/j.jclepro.2020.123608.
  • Yekta, R.; Mirmoghtadaie, L.; Hosseini, H.; Norouzbeigi, S.; Hosseini, S. M.; Shojaee-Aliabadi, S. Development and Characterization of a Novel Edible Film Based on Althaea Rosea Flower Gum: Investigating the Reinforcing Effects of Bacterial Nanocrystalline Cellulose. Int. J. Biol. Macromol. 2020, 158, 327–337. DOI: 10.1016/j.ijbiomac.2020.04.021.
  • Zahan, K. A.; Azizul, N. M.; Mustapha, M.; Tong, W. Y.; Rahman, M. S. A.; Sahuri, I. S. Application of Bacterial Cellulose Film as a Biodegradable and Antimicrobial Packaging Material. Mater. Today Proc. 2020, 31, 83–88. DOI: 10.1016/j.matpr.2020.01.201.
  • Yang, Y. N.; Lu, K. Y.; Wang, P.; Ho, Y. C.; Tsai, M. L.; Mi, F. L. Development of Bacterial Cellulose/Chitin Multi-Nanofibers Based Smart Films Containing Natural Active Microspheres and Nanoparticles Formed in situ. Carbohydr. Polym. 2020, 228(September), 115370. DOI: 10.1016/j.carbpol.2019.115370.
  • Naidu, D. S.; John, M. J. Cellulose Nanofibrils Reinforced Xylan-Alginate Composites: Mechanical, Thermal and Barrier Properties. Int. J. Biol. Macromol. 2021, 179, 448–456. DOI: 10.1016/j.ijbiomac.2021.03.035.
  • Yadav, M.; Behera, K.; Chang, Y. H.; Chiu, F. C. Cellulose Nanocrystal Reinforced Chitosan Based UV Barrier Composite Films for Sustainable Packaging. Polymers (Basel). 2020, 12(1), 202. DOI: 10.3390/polym12010202.
  • Garavand, F.; Rouhi, M.; Razavi, S. H.; Cacciotti, I.; Mohammadi, R. Improving the Integrity of Natural Biopolymer Films Used in Food Packaging by Crosslinking Approach: A Review. Int. J. Biol. Macromol. 2017, 104, 687–707. DOI: 10.1016/j.ijbiomac.2017.06.093.
  • Jafarzadeh, S.; Jafari, S. M. Impact of Metal Nanoparticles on the Mechanical, Barrier, Optical and Thermal Properties of Biodegradable Food Packaging Materials. Crit. Rev. Food Sci. Nutr. 2020, 0(0), 1–19. DOI: 10.1080/10408398.2020.1783200.
  • Xu, J.; Sagnelli, D.; Faisal, M.; Perzon, A.; Taresco, V.; Mais, M.; Giosafatto, C. V. L.; Hebelstrup, K. H.; Ulvskov, P.; Jørgensen, B., et al. Amylose/Cellulose Nanofiber Composites for All-Natural, Fully Biodegradable and Flexible Bioplastics. Carbohydr. Polym. 2021, 253(June), 117277.
  • Jafarzadeh, S.; Alias, A. K.; Ariffin, F.; Mahmud, S.; Najafi, A. Preparation and Characterization of Bionanocomposite Films Reinforced with Nano Kaolin. J. Food Sci. Technol. 2016, 53(2), 1111–1119. DOI: 10.1007/s13197-015-2017-7.
  • Vilela, C.; Kurek, M.; Hayouka, Z.; Röcker, B.; Yildirim, S.; Antunes, M. D. C.; Nilsen-Nygaard, J.; Pettersen, M. K.; Freire, C. S. R. A Concise Guide to Active Agents for Active Food Packaging. Trends Food Sci. Technol. 2018, 80(April), 212–222. DOI: 10.1016/j.tifs.2018.08.006.
  • Marrez, D. A.; Abdelhamid, A. E.; Darwesh, O. M. Eco-Friendly Cellulose Acetate Green Synthesized Silver Nano-Composite as Antibacterial Packaging System for Food Safety. Food Packag. Shelf Life. 2019, 20, 100302. DOI: 10.1016/j.fpsl.2019.100302.
  • Gedarawatte, S. T. G.; Ravensdale, J. T.; Al-Salami, H.; Dykes, G. A.; Coorey, R. Antimicrobial Efficacy of Nisin-Loaded Bacterial Cellulose Nanocrystals Against Selected Meat Spoilage Lactic Acid Bacteria. Carbohydr. Polym. 2021, 251(June), 117096. DOI: 10.1016/j.carbpol.2020.117096.
  • Kalpana, S.; Priyadarshini, S. R.; Maria Leena, M.; Moses, J. A.; Anandharamakrishnan, C. Intelligent Packaging: Trends and Applications in Food Systems. Trends Food Sci. Technol. 2019, 93(October), 145–157. DOI: 10.1016/j.tifs.2019.09.008.
  • Roy, S.; Rhim, J. W. Fabrication of Cellulose Nanofiber-Based Functional Color Indicator Film Incorporated with Shikonin Extracted from Lithospermum Erythrorhizon Root. Food Hydrocoll. 2021, 114(December), 106566. DOI: 10.1016/j.foodhyd.2020.106566.
  • Roy, S.; Kim, H. J.; Rhim, J. W. Synthesis of Carboxymethyl Cellulose and Agar-Based Multifunctional Films Reinforced with Cellulose Nanocrystals and Shikonin. ACS Appl. Polym. Mater. 2021, 3, 1060–1069. DOI: 10.1021/acsapm.0c01307.
  • Moradi, M.; Tajik, H.; Almasi, H.; Forough, M.; Ezati, P. A Novel pH-Sensing Indicator Based on Bacterial Cellulose Nanofibers and Black Carrot Anthocyanins for Monitoring Fish Freshness. Carbohydr. Polym. 2019, 222(June), 115030. DOI: 10.1016/j.carbpol.2019.115030.
  • Jafarzadeh, S.; Mohammadi Nafchi, A.; Salehabadi, A.; Oladzad-Abbasabadi, N.; Jafari, S. M. Application of Bio-Nanocomposite Films and Edible Coatings for Extending the Shelf Life of Fresh Fruits and Vegetables. Adv. Colloid Interface Sci. 2021, 291, 102405. DOI: 10.1016/j.cis.2021.102405.
  • Montoya, Ú.; Zuluaga, R.; Castro, C.; Vélez, L.; Gañán, P. Starch and Starch/Bacterial Nanocellulose Films as Alternatives for the Management of Minimally Processed Mangoes. Starch/Staerke. 2019, 71(5–6), 1–8. DOI: 10.1002/star.201800120.
  • Pacaphol, K.; Seraypheap, K.; Aht-Ong, D. Development and Application of Nanofibrillated Cellulose Coating for Shelf Life Extension of Fresh-Cut Vegetable During Postharvest Storage. Carbohydr. Polym. 2019, 224(August), 115167. DOI: 10.1016/j.carbpol.2019.115167.
  • Criado, P.; Fraschini, C.; Becher, D.; Mendonça Pereira, F. G.; Salmieri, S.; Lacroix, M. Modified Cellulose Nanocrystals (CNCs) Loaded in Gellan Gum Matrix Enhance the Preservation of Agaricus Bisporus Mushrooms. J. Food Process Preserv. 2020, 44(11), 1–7. DOI: 10.1111/jfpp.14846.
  • Xu, Y.; Rehmani, N.; Alsubaie, L.; Kim, C.; Sismour, E.; Scales, A. Tapioca Starch Active Nanocomposite Films and Their Antimicrobial Effectiveness on Ready-To-Eat Chicken Meat. Food Packag. Shelf Life. 2018, 16(January), 86–91. DOI: 10.1016/j.fpsl.2018.02.006.
  • Shavisi, N.; Khanjari, A.; Basti, A. A.; Misaghi, A.; Shahbazi, Y. Effect of PLA Films Containing Propolis Ethanolic Extract, Cellulose Nanoparticle and Ziziphora Clinopodioides Essential Oil on Chemical, Microbial and Sensory Properties of Minced Beef. Meat Sci. 2017, 124(July), 95–104. DOI: 10.1016/j.meatsci.2016.10.015.
  • Dey, D.; Dharini, V.; Periyar Selvam, S.; Rotimi Sadiku, E.; Mahesh Kumar, M.; Jayaramudu, J.; Nath Gupta, U. Physical, Antifungal, and Biodegradable Properties of Cellulose Nanocrystals and Chitosan Nanoparticles for Food Packaging Application. Mater. Today Proc. 2021, 38, 860–869. DOI: 10.1016/j.matpr.2020.04.885.
  • Fakhouri, F. M.; Casari, A. C. A.; Mariano, M.; Yamashita, F.; Mei, L. H. I.; Soldi, V.; Martelli, S. M. Effect of a Gelatin-Based Edible Coating Containing Cellulose Nanocrystals (CNC) on the Quality and Nutrient Retention of Fresh Strawberries During Storage. IOP Conf. Ser Mater. Sci. Eng. 2014, 64(1), 012024. DOI: 10.1088/1757-899X/64/1/012024.
  • Giannakourou, M. C.; Tsironi, T. N. Application of Processing and Packaging Hurdles for Fresh-Cut Fruits and Vegetables Preservation. Foods. 2021, 10(4). DOI: 10.3390/foods10040830.
  • Fang, Z.; Zhao, Y.; Warner, R. D.; Johnson, S. K. Active and Intelligent Packaging in Meat Industry. Trends Food Sci. Technol. 2017, 61, 60–71. DOI: 10.1016/j.tifs.2017.01.002.
  • Umaraw, P.; Munekata, P. E. S.; Verma, A. K.; Barba, F. J.; Singh, V. P.; Kumar, P.; Lorenzo, J. M. Edible Films/Coating with Tailored Properties for Active Packaging of Meat, Fish and Derived Products. Trends Food Sci. Technol. 2020, 98, 10–24. DOI: 10.1016/j.tifs.2020.01.032.
  • Lamri, M.; Bhattacharya, T.; Boukid, F.; Chentir, I.; Dib, A. L.; Das, D.; Djenane, D.; Gagaoua, M. Nanotechnology as a Processing and Packaging Tool to Improve Meat Quality and Safety. Foods. 2021, 10(11), 2633. DOI: 10.3390/foods10112633.
  • Sharma, R.; Jafari, S. M.; Sharma, S. Antimicrobial Bio-Nanocomposites and Their Potential Applications in Food Packaging. Food Control. 2020, 112(January), 107086. DOI: 10.1016/j.foodcont.2020.107086.
  • European Commission. Regulation (EC) No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on Materials and Articles Intended to Come into Contact with Food and Repealing Directives 80/590/EEC and 89/109/EEC. Off. J. Eur. Union L338. 2004, 47, 4–17.
  • Commission of the European Communities. Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food. J. Eur. Union L. 2011, 12, 1–89.
  • Salwa, H. N.; Sapuan, S. M.; Mastura, M. T.; Zuhri, M. Y. M.; Ilyas, R. A. Life Cycle Assessment of Bio-Based Packaging Products. Bio‐based Packag., 381–411. May 24, 2021. 10.1002/9781119381228.ch22
  • Ponnusamy, P. G.; Mani, S. Life Cycle Assessment of Manufacturing Cellulose Nanofibril-Reinforced Chitosan Composite Films for Packaging Applications. Int. J. Life Cycle Assess. 2022, 27, 380–394. DOI: 10.1007/s11367-022-02035-y.
  • Petrucci, R.; Fortunati, E.; Puglia, D.; Luzi, F.; Kenny, J. M.; Torre, L. Life Cycle Analysis of Extruded Films Based on Poly(lactic Acid)/Cellulose Nanocrystal/Limonene: A Comparative Study with ATBC Plasticized PLA/OMMT Systems. J Polym. Environ. 2018, 26(5), 1891–1902. DOI: 10.1007/s10924-017-1085-3.
  • Hervy, M.; Evangelisti, S.; Lettieri, P.; Lee, K.-Y. Life Cycle Assessment of Nanocellulose-Reinforced Advanced Fibre Composites. Compos. Sci. Technol. 2015, 118, 154–162. DOI: 10.1016/j.compscitech.2015.08.024.
  • Nadeem, H.; Dehghani, M.; Garnier, G.; Batchelor, W. Life Cycle Assessment of Cellulose Nanofibril Films via Spray Deposition and Vacuum Filtration Pathways for Small Scale Production. J. Clean. Prod. 2022, 342, 130890. DOI: 10.1016/j.jclepro.2022.130890.
  • Lumby, N.; (Jay) Park, J. Chapter 16 - Packaging for Probiotic Beverages. Panda, S.K., Kellershohn, J. and Russell, I.-B.-T.-P.-B., Eds.; United Kingdom and United States: Academic Press, 2021; pp. 339–363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.