242
Views
0
CrossRef citations to date
0
Altmetric
Review

Effects of Quinoa Intake on Markers of Cardiovascular Risk: A Systematic Literature Review and Meta-Analysis

, &

References

  • Geographic, N., What the World Eats. 2019, https://www.nationalgeographic.com/what-the-world-eats/ (accessed Apr 2009).
  • Van der Kamp, J. W.; Poutanen, K.; Seal, C. J.; Richardson, D. P. The HEALTHGRAIN Definition of ‘Whole Grain’. Food Nutr. Res. 2014, 58, 1–8. DOI: 10.3402/fnr.v58.22100.
  • Ye, E.; Chacko, S.; Chou, E.; Kugizaki, M.; Liu, S. Greater Whole-Grain Intake is Associated with Lower Risk of Type 2 Diabetes, Cardiovascular Disease, and Weight Gain1-3. J. Nutr. 2012, 142(7), 1304–1313. DOI: 10.3945/jn.111.155325.
  • Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L. T.; Boffetta, P.; Greenwood, D. C.; Tonstad, S.; Vatten, L. J.; Riboli, E.; Norat, T. Whole Grain Consumption and Risk of Cardiovascular Disease, Cancer, and All Cause and Cause Specific Mortality: Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Brit. Med. J. 2016, 353, i2716. DOI: 10.1136/bmj.i2716.
  • Chen, G. C.; Tong, X.; Xu, J. Y.; Han, S. F.; Wan, Z. X.; Qin, J. B.; Qin, L. Q. Whole-Grain Intake and Total, Cardiovascular, and Cancer Mortality: A Systematic Review and Meta-Analysis of Prospective Studies. Am. J. Clin. Nutr. 2016, 104(1), 164–172. DOI: 10.3945/ajcn.115.122432.
  • Tieri, M.; Ghelfi, F.; Vitale, M.; Vetrani, C.; Marventano, S.; Lafranconi, A.; Godos, J.; Titta, L.; Gambera, A.; Alonzo, E., et al. Whole Grain Consumption and Human Health: An Umbrella Review of Observational Studies. Int. J. Food Sci. Nutr . 2020, 71(6), 668–677 DOI: 10.1080/09637486.2020.1715354.
  • Neuenschwander, M.; Ballon, A.; Weber, K. S.; Norat, T.; Aune, D.; Schwingshackl, L.; Schlesinger, S. Role of Diet in Type 2 Diabetes Incidence: Umbrella Review of Meta-Analyses of Prospective Observational Studies. BMJ. 2019, 366, l2368. DOI: 10.1136/bmj.l2368.
  • Maki, K.; Palacios, O.; Koecher, K.; Sawicki, C.; Livingston, K.; Bell, M.; McKeown, N. The Relationship Between Whole Grain Intake and Body Weight: Results of Meta-Analyses of Observational Studies and Randomized Controlled Trials. Nutrients. 2019, 11(6), 1245. DOI: 10.3390/nu11061245.
  • Dagenais, G. R.; Leong, D. P.; Rangarajan, S.; Lanas, F.; Lopez-Jaramillo, P.; Gupta, R.; Diaz, R.; Avezum, A.; Oliveira, G. B. F.; Wielgosz, A., et al. Variations in Common Diseases, Hospital Admissions, and Deaths in Middle-Aged Adults in 21 Countries from Five Continents (PURE): A Prospective Cohort Study. Lancet. 2020, 395(10226), 785–794.
  • Bach Knudsen, K. E.; Nørskov, N. P.; Bolvig, A. K.; Hedemann, M. S.; Lærke, H. N. Dietary Fibers and Associated Phytochemicals in Cereals. Mol. Nutr. Food Res. 2017, 61(7), 1600518. DOI: 10.1002/mnfr.201600518.
  • Călinoiu, L. F.; Vodnar, D. C. Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients. 2018, 10(11), 1615. DOI: 10.3390/nu10111615.
  • Fardet, A. New Hypotheses for the Health-Protective Mechanisms of Whole-Grain Cereals: What is Beyond Fibre? Nutr. Res. Rev. 2010, 23(1), 65–134. DOI: 10.1017/S0954422410000041.
  • Zhu, Y.; Sang, S. Phytochemicals in Whole Grain Wheat and Their Health‐promoting Effects. Mol. Nutr. Food Res. 2017, 61(7), 1600852. DOI: 10.1002/mnfr.201600852.
  • Schulz, R.; Slavin, J. Perspective: Defining Carbohydrate Quality for Human Health and Environmental Sustainability. Adv. Nutr. 2021, 12(4), 1108–1121. DOI: 10.1093/advances/nmab050.
  • Seal, C. J.; Courtin, C. M.; Venema, K.; de Vries, J. Health Benefits of Whole Grain: Effects on Dietary Carbohydrate Quality, the Gut Microbiome and Consequences of Processing. Compr. Rev. Food Sci. Food Saf. 2021, 20(3), 2742–2768. DOI: 10.1111/1541-4337.12728.
  • Bigliardi, B.; Galati, F. Innovation Trends in the Food Industry: The Case of Functional Foods. Trends Food Sci. Technol. 2013, 31(2), 118–129. DOI: 10.1016/j.tifs.2013.03.006.
  • McKeown, N.; Jacques, P.; Seal, C.; de Vries, J.; Jonnalagadda, S.; Clemens, R.; Webb, D.; Murphy, L.; van Klinken, J. -W.; Topping, D., et al. Whole Grains and Health: From Theory to Practice—highlights of the Grains for Health Foundation’s Whole Grains Summit 2012. J. Nutr. 2013, 143(5), 744S–758S.
  • Whole Grain Initiative Definition of Whole Grain as Food Ingredient. https://wgi.meetinghand.com/projectData/775/webData/Definition-of-Whole-Grain-as-Food-Ingredient-Version-20190501C.pdf (accessed August 2021).
  • Vega-Galvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martinez, E. A. Nutrition Facts and Functional Potential of Quinoa (Chenopodium Quinoa Willd.), an Ancient Andean Grain: A Review. J. Sci. Food Agric. 2010, 90(15), 2541–2547. DOI: 10.1002/jsfa.4158.
  • Alvarez-Jubete, L.; Arendt, E. K.; Gallagher, E. Nutritive Value and Chemical Composition of Pseudocereals as Gluten-Free Ingredients. Int. J. Food Sci. Nutr. 2009, 60(sup4), 240–257. DOI: 10.1080/09637480902950597.
  • Ando, H.; Chen, Y. C.; Tang, H. J.; Shimizu, M.; Watanabe, K.; Mitsunaga, T. Food Components in Fractions of Quinoa Seed. Food Sci. Technol. Res. 2002, 8(1), 80–84. DOI: 10.3136/fstr.8.80.
  • Bhargava, A.; Shukla, S.; Ohri, D. Chenopodium Quinoa—an Indian Perspective. Ind. Crop Prod. 2006, 23(1), 73–87. DOI: 10.1016/j.indcrop.2005.04.002.
  • Konishi, Y.; Hirano, S.; Tsuboi, H.; Wada, M. Distribution of Minerals in Quinoa (Chenopodium Quinoa Willd.) Seeds. Biosci. Biotechnol. Biochem. 2004, 68(1), 231–234. DOI: 10.1271/bbb.68.231.
  • Li, L.; Lietz, G.; Seal, C. J. Phenolic, Apparent Antioxidant and Nutritional Composition of Quinoa (Chenopodium Quinoa Willd.) Seeds. Int. J. Food Sci. Technol. 2021, 56, 3245–3254. DOI: 10.1111/ijfs.14962.
  • Tang, G.; Wang, D.; Long, J.; Yang, F.; Si, L. Meta-Analysis of the Association Between Whole Grain Intake and Coronary Heart Disease Risk. Am. J. Cardiol. 2015, 115(5), 625–629. DOI: 10.1016/j.amjcard.2014.12.015.
  • FAO Quinoa: An Ancient Crop to Contribute to World Food Security. http://www.fao.org/docrep/017/aq287e/aq287e.pdf (accessed August 2021).
  • Seal, C. J.; Brownlee, I. A. Whole-Grain Foods and Chronic Disease: Evidence from Epidemiological and Intervention Studies. Proc. Nutr. Soc. 2015, 74, 313–319. DOI: 10.1017/S0029665115002104.
  • Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D. G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Int. J. Surg. 2010, 8(5), 336–341. DOI: 10.1016/j.ijsu.2010.02.007.
  • Li, L.; Lietz, G.; Seal, C. Buckwheat and CVD Risk Markers: A Systematic Review and Meta-Analysis. Nutrients. 2018, 10, 5. DOI: 10.3390/nu10050619.
  • Farinazzi-Machado, F. M. V.; Barbalho, S. M.; Oshiiwa, M.; Goulart, R.; Pessan, O. Use of Cereal Bars with Quinoa (Chenopodium Quinoa W) to Reduce Risk Factors Related to Cardiovascular Diseases. Ciencia e Tecnologia de Alimentos. 2012, 32(2), 239–244. DOI: 10.1590/S0101-20612012005000040.
  • De Carvalho, F. G.; Ovídio, P. P.; Padovan, G. J.; Jordão Junior, A. A.; Marchini, J. S.; Navarro, A. M. Metabolic Parameters of Postmenopausal Women After Quinoa or Corn Flakes Intake – a Prospective and Double-Blind Study. Int. J. Food Sci. Nutr. 2014, 65(3), 380–385. DOI: 10.3109/09637486.2013.866637.
  • Zevallos, V. F.; Herencia, L. I.; Chang, F. J.; Donnelly, S.; Ellis, H. J.; Ciclitira, P. J. Gastrointestinal Effects of Eating Quinoa (Chenopodium Quinoa Willd.) in Celiac Patients. Am. J. Gastroent. 2014, 109(2), 270–278. DOI: 10.1038/ajg.2013.431.
  • Yu, F.; Guan, H. Randomized Clinical Trial of Quinoa’s Curing Effect on Elderly Hyperlipidemia. Acad. Pap. Complies Chin. Nutr. Soc. Conf. 2016, 7, 84–87.
  • Li, L. K.; Lietz, G.; Bal, W.; Watson, A.; Morfey, B.; Seal, C. Effects of Quinoa (Chenopodium Quinoa Willd.) Consumption on Markers of CVD Risk. Nutrients. 2018, 10, 6. DOI: 10.3390/nu10060777.
  • Pourshahidi, L. K.; Caballero, E.; Osses, A.; Hyland, B. W.; Ternan, N. G.; Gill, C. I. R. Modest Improvement in CVD Risk Markers in Older Adults Following Quinoa (Chenopodium Quinoa Willd.) Consumption: A Randomized-Controlled Crossover Study with a Novel Food Product. Eur. J. Nutr. 2020, 59(7), 3313–3323. DOI: 10.1007/s00394-019-02169-0.
  • Navarro-Perez, D.; Radcliffe, J.; Tierney, A.; Jois, M. Quinoa Seed Lowers Serum Triglycerides in Overweight and Obese Subjects: A Dose-Response Randomized Controlled Clinical Trial. Curr. Dev. Nutr. 2017, 1(9), e001321. DOI: 10.3945/cdn.117.001321.
  • Meneguetti, Q. A.; Brenzan, M. A.; Batista, M. R.; Bazotte, R. B.; Silva, D. R.; Cortez, D. A. G. Biological Effects of Hydrolyzed Quinoa Extract from Seeds of Chenopodium Quinoa Willd. J. Med. Food. 2011, 14(6), 653–657. DOI: 10.1089/jmf.2010.0096.
  • Konishi, Y.; Arai, N.; Umeda, J.; Gunji, N.; Saeki, S.; Takao, T.; Minoguchi, R.; Kensho, G. Cholesterol Lowering Effect of the Methanol Insoluble Materials from the Quinoa Seed Pericarp. Hydrocolloids. 1999, Pt 2, 417–422.
  • Ogawa, H.; Watanabe, K.; Mitsunaga, T.; Meguro, T. Effect of Quinoa on Blood Pressure and Lipid Metabolism in Diet-Induced Hyperlipidemic Spontaneously Hypertensive Rats (SHR). J. Japanese Soc. Nutr. Food Sci. 2001, 54, 221–227. DOI: 10.4327/jsnfs.54.221.
  • Takao, T.; Watanabe, N.; Yuhara, K.; Itoh, S.; Suda, S.; Tsuruoka, Y.; Nakatsugawa, K.; Konishi, Y. Hypocholesterolemic Effect of Protein Isolated from Quinoa (Chenopodium Quinoa Willd.) Seeds. Food Sci. Technol. Res. 2005, 11(2), 161–167. DOI: 10.3136/fstr.11.161.
  • Matsuo, M. Serum Cholesterol Reduction by Quinoa Tempe, Quinoa Fermented with Rhizopus Oligosporus, in Rats Fed with a Cholesterol-Free Diet. J. Home Econ. Jpn. 2005, 56(11), 791–795.
  • Paśko, P.; Zagrodzki, P.; Bartoń, H.; Chlopicka, J.; Gorinstein, S. Effect of Quinoa Seeds (Chenopodium Quinoa) in Diet on Some Biochemical Parameters and Essential Elements in Blood of High Fructose-Fed Rats. Plant Foods Human Nutr. 2010, 65(4), 333–338. DOI: 10.1007/s11130-010-0197-x.
  • Foucault, A. -S.; Mathe, V.; Lafont, R.; Even, P.; Dioh, W.; Veillet, S.; Tome, D.; Huneau, J. -F.; Hermier, D.; Quignard-Boulange, A. Quinoa Extract Enriched in 20-Hydroxyecdysone Protects Mice from Diet-Induced Obesity and Modulates Adipokines Expression. Obesity. 2011, 20(2), 270–277. DOI: 10.1038/oby.2011.257.
  • Foucault, A. -S.; Even, P.; Lafont, R.; Dioh, W.; Veillet, S.; Tomé, D.; Huneau, J. -F.; Hermier, D.; Quignard-Boulangé, A. Quinoa Extract Enriched in 20-Hydroxyecdysone Affects Energy Homeostasis and Intestinal Fat Absorption in Mice Fed a High-Fat Diet. Physiol. Beh. 2014, 128, 226–231. DOI: 10.1016/j.physbeh.2014.02.002.
  • Mithila, M. V.; Khanum, F. Effectual Comparison of Quinoa and Amaranth Supplemented Diets in Controlling Appetite; a Biochemical Study in Rats. J. Food Sci. Technol. 2015, 52(10), 6735–6741. DOI: 10.1007/s13197-014-1691-1.
  • Hejazi, M. A. Preparation of Different Formulae from Quinoa and Different Sources Dietary Fiber to Treat Obesity in Rats. Nat. Sci. 2016, 14(2), 55–65.
  • Lopes, C. D. O.; Barcelos, M. D. F. P.; Vieira, C. N. D. G.; De Abreu, W. C.; Ferreira, E. B.; Pereira, R. C.; De Angelis-Pereira, M. C. Effects of Sprouted and Fermented Quinoa (Chenopodium Quinoa) on Glycemic Index of Diet and Biochemical Parameters of Blood of Wistar Rats Fed High Carbohydrate Diet. J. Food Sci. Technol. 2019, 56(1), 40–48. DOI: 10.1007/s13197-018-3436-z.
  • Noratto, G. D.; Murphy, K.; Chew, B. P. Quinoa Intake Reduces Plasma and Liver Cholesterol, Lessens Obesity-Associated Inflammation, and Helps to Prevent Hepatic Steatosis in Obese Db/Db Mouse. Food Chem. 2019, 287, 107–114. DOI: 10.1016/j.foodchem.2019.02.061.
  • Cao, Y.; Zou, L.; Li, W.; Song, Y.; Zhao, G.; Hu, Y. Dietary Quinoa (Chenopodium Quinoa Willd.) Polysaccharides Ameliorate High-Fat Diet-Induced Hyperlipidemia and Modulate Gut Microbiota. Int. J. Biol. Macromol. 2020, 163, 55–65. DOI: 10.1016/j.ijbiomac.2020.06.241.
  • Fotschki, B.; Juśkiewicz, J.; Jurgoński, A.; Amarowicz, R.; Opyd, P.; Bez, J.; Muranyi, I.; Lykke Petersen, I.; Laparra Llopis, M. Protein-Rich Flours from Quinoa and Buckwheat Favourably Affect the Growth Parameters, Intestinal Microbial Activity and Plasma Lipid Profile of Rats. Nutrients. 2020, 12(9), 2781. DOI: 10.3390/nu12092781.
  • Obaroakpo, J. U.; Nan, W.; Hao, L.; Liu, L.; Zhang, S.; Lu, J.; Pang, X.; Lv, J. The Hyperglycemic Regulatory Effect of Sprouted Quinoa Yoghurt in High-Fat-Diet and Streptozotocin-Induced Type 2 Diabetic Mice via Glucose and Lipid Homeostasis. Food Funct. 2020, 11, 8354–8368. DOI: 10.1039/D0FO01575J.
  • Andrews, J. C.; Schünemann, H. J.; Oxman, A. D.; Pottie, K.; Meerpohl, J. J.; Coello, P. A.; Rind, D.; Montori, V. M.; Brito, J. P.; Norris, S., et al. GRADE Guidelines: 15. Going from Evidence to Recommendation; Determinants of a Recommendation’s Direction and Strength. J. Clin. Epidemiol. 2013, 66(7), 726–735.
  • Higgins, J. P. T.; Thompson, S. G.; Deeks, J. J.; Altman, D. G. Measuring Inconsistency in Meta-Analyses. Br. Med. J. 2003, 327(7414), 557–560. DOI: 10.1136/bmj.327.7414.557.
  • Borenstein, M.; Hedges, L. V.; Higgins, J. P. T.; Rothstein, H. R. A Basic Introduction to Fixed-Effect and Random-Effects Models for Meta-Analysis. Res. Synth. Met. 2010, 1(2), 97–111. DOI: 10.1002/jrsm.12.
  • Egger, M.; Smith, G. D.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. Br. Med. J. 1997, 315(7109), 629–634. DOI: 10.1136/bmj.315.7109.629.
  • Jenkins, D. J. A.; Kendall, C. W. C.; McKeown-Eyssen, G.; Josse, R. G.; Silverberg, J.; Booth, G. L.; Vidgen, E.; Josse, A. R.; Nguyen, T. H.; Corrigan, S., et al. Effect of a Low-Glycemic Index or a High-Cereal Fiber Diet on Type 2 Diabetes a Randomized Trial. J. Am. Med. Assoc. 2008, 300(23), 2742–2753.
  • Higgins, J.; Green, S. E., Cochrane Handbook for Systematic Reviews of Interventions; Version 5.1.0 [Updated March 2011]; The Cochrane Collaboration. http://handbook-5-1.cochrane.org/ (accessed on 1 May 2018).
  • Coutinho, M.; Gerstein, H. C.; Wang, Y.; Yusuf, S. The Relationship Between Glucose and Incident Cardiovascular Events. A Metaregression Analysis of Published Data from 20 Studies of 95,783 Individuals Followed for 12.4 Years. Diabetes Care. 1999, 22(2), 233–240. DOI: 10.2337/diacare.22.2.233.
  • Uwaifo, G. I.; Ratner, R. E. The Roles of Insulin Resistance, Hyperinsulinemia, and Thiazolidinediones in Cardiovascular Disease. Am. j. med. 2003, 115(8), 12–19. DOI: 10.1016/j.amjmed.2003.08.009.
  • Song, S.; Paik, H. -Y.; Song, Y. High Intake of Whole Grains and Beans Pattern is Inversely Associated with Insulin Resistance in Healthy Korean Adult Population. Diabetes Res. Clin. Pract. 2012, 98(3), e28–31. DOI: 10.1016/j.diabres.2012.09.038.
  • Kärkkäinen, O.; Lankinen, M. A.; Vitale, M.; Jokkala, J.; Leppänen, J.; Koistinen, V.; Lehtonen, M.; Giacco, R.; Rosa-Sibakov, N.; Micard, V., et al. Diets Rich in Whole Grains Increase Betainized Compounds Associated with Glucose Metabolism. Am. J. Clin. Nutr. 2018, 108(5), 971–979.
  • Graf, B. L.; Poulev, A.; Kuhn, P.; Grace, M. H.; Lila, M. A.; Raskin, I. Quinoa Seeds Leach Phytoecdysteroids and Other Compounds with Anti-Diabetic Properties. Food Chem. 2014, 163, 178–185. DOI: 10.1016/j.foodchem.2014.04.088.
  • Bjorck, I.; Granfeldt, Y.; Liljeberg, H.; Tovar, J.; Asp, N. G. Food Properties Affecting the Digestion and Absorption of Carbohydrates. Am. J. Clin. Nutr. 1994, 59(3), 699s–705s. DOI: 10.1093/ajcn/59.3.699S.
  • McIntyre, A.; Vincent, R. M.; Perkins, A. C.; Spiller, R. C. Effect of Bran, Ispaghula, and Inert Plastic Particles on Gastric Emptying and Small Bowel Transit in Humans: The Role of Physical Factors. Gut. 1997, 40(2), 223–227. DOI: 10.1136/gut.40.2.223.
  • Hallfrisch, J.; Behall, K. M. Mechanisms of the Effects of Grains on Insulin and Glucose Responses. J. Am. Coll. Nutr. 2000, 19(3), 320s–325s. DOI: 10.1080/07315724.2000.10718967.
  • Ylönen, K.; Saloranta, C.; Kronberg-Kippilä, C.; Groop, L.; Aro, A.; Virtanen, S. Associations of Dietary Fiber with Glucose Metabolism in Nondiabetic Relatives of Subjects with Type 2 Diabetes. Diabetes Care. 2003, 26(7), 1979–1985. DOI: 10.2337/diacare.26.7.1979.
  • Seal, C. J. Whole Grains and CVD Risk. P. Nutr. Soc. 2006, 65(1), 24–34. DOI: 10.1079/PNS2005482.
  • Nishikura, T.; Koba, S.; Yokota, Y.; Hirano, T.; Tsunoda, F.; Shoji, M.; Hamazaki, Y.; Suzuki, H.; Itoh, Y.; Katagiri, T., et al. Elevated Small Dense Low-Density Lipoprotein Cholesterol as a Predictor for Future Cardiovascular Events in Patients with Stable Coronary Artery Disease. J. Atheroscler. Thromb. 2014, 21(8), 755–767.
  • Akbar, A.; Mohammad, K.; Elham, M.; Bahram Pourghassem, G.; Farnaz, T.; Mahdieh Abbasalizad, F.; Hossein, B.; Parvin, D. A Combination of Prebiotic Inulin and Oligofructose Improve Some of Cardiovascular Disease Risk Factors in Women with Type 2 Diabetes: A Randomized Controlled Clinical Trial. Adv. Pharm. Bull. 2015, 5(4), 507–514. DOI: 10.15171/apb.2015.069.
  • Ho, H. V. T.; Jovanovski, E.; Zurbau, A.; Blanco Mejia, S.; Sievenpiper, J. L.; Au-Yeung, F.; Jenkins, A. L.; Duvnjak, L.; Leiter, L.; Vuksan, V. A Systematic Review and Meta-Analysis of Randomized Controlled Trials of the Effect of Konjac Glucomannan, a Viscous Soluble Fiber, on LDL Cholesterol and the New Lipid Targets Non-HDL Cholesterol and Apolipoprotein B. Am. J. Clin. Nutr. 2017, 105(5), 1239–1247. DOI: 10.3945/ajcn.116.142158.
  • Anderson, J.; Tietyen-Clark, J. Dietary Fiber: Hyperlipidemia, Hypertension and Coronary Artery Disease. Am. J. Gastroenterol. 1986, 81, 907–919.
  • Slavin, J. L.; Martini, M. C.; Jacobs, D. R., Jr.; Marquart, L. Plausible Mechanisms for the Protectiveness of Whole Grains. Am. J. Clin. Nutr. 1999, 70(3 Suppl), 459S–463S. DOI: 10.1093/ajcn/70.3.459s.
  • Blundell, J. E.; Burley, V. J. Satiation, Satiety and the Action of Fibre on Food Intake. Int. J. Obes. 1987, 11 Suppl 1, 9–25.
  • Schneeman, B. O. Dietary Fiber and Gastrointestinal Function. Nutr. rev. 1987, 45(5), 129–132. DOI: 10.1111/j.1753-4887.1987.tb06343.x.
  • Gee, J. M.; Price, K. R.; Ridout, C. L.; Wortley, G. M.; Hurrell, R. F.; Johnson, I. T. Saponins of Quinoa (Chenopodium Quinoa) - Effects of Processing on Their Abundance in Quinoa Products and Their Biological Effects on Intestinal Mucosal Tissue. J. Sci. Food Agric. 1993, 63(2), 201–209. DOI: 10.1002/jsfa.2740630206.
  • Berger, A.; Gremaud, R.; Baumgartner, M.; Rein, D.; Monnard, I.; Kratky, E.; Geiger, W.; Burri, J.; Dionisi, F.; Allan, M., et al. Cholesterol-Lowering Properties of Amaranth Grain and Oil in Hamsters. Int. J. Vitam. Nutr. Res. 2003, 73(1), 39–47.
  • Tomotake, H.; Yamamoto, N.; Kitabayashi, H.; Kwakami, A.; Kayashita, J.; Ohinata, H.; Karasawa, H.; Kato, N. Preparation of Tartary Buckwheat Protein Product and Its Improving Effect on Cholesterol Metabolism in Rats and Mice Fed Cholesterol-Enriched Diet. J. Food Sci. 2007, 72(7), S528–533. DOI: 10.1111/j.1750-3841.2007.00474.x.
  • Wang, M.; Liu, J.; Gao, J. M.; Parry, J. W.; Wei, Y. M. Antioxidant Activity of Tartary Buckwheat Bran Extract and Its Effect on the Lipid Profile of Hyperlipidemic Rats. J. Agric. Food Chem. 2009, 57(11), 5106–5112. DOI: 10.1021/jf900194s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.