728
Views
0
CrossRef citations to date
0
Altmetric
Review

Chia (Salvia Hispanica) Seed Oil Extraction By-Product and Its Edible Applications

References

  • Knez Hrnčič, M.; Ivanovski, M.; Cör, D.; Knez, Ž. Chia Seeds (Salvia Hispanica L.): An Overview—phytochemical Profile, Isolation Methods, and Application. Molecules. 2019, 25(1), 11. DOI: 10.3390/molecules25010011.
  • Jamshidi, A. M.; Amato, M.; Ahmadi, A.; Bochicchio, R.; Rossi, R. Chia (Salvia Hispanica L.) as a Novel Forage and Feed Source: A Review. Ital. J. Agron. 2019, 14(1), 1297. DOI: 10.4081/ija.2019.1297.
  • Ullah, R.; Nadeem, M.; Khalique, A.; Imran, M.; Mehmood, S.; Javid, A.; Hussain, J. Nutritional and Therapeutic Perspectives of Chia (Salvia Hispanica L.): A Review. J. Food Sci. Tech. 2016, 53(4), 1750–1758. DOI: 10.1007/s13197-015-1967-0.
  • Ayerza, R.; Coates, W. Influence of Environment on Growing Period and Yield, Protein, Oil and α-Linolenic Content of Three Chia (Salvia Hispanica L.) Selections. Ind. Crop Prod. 2009, 30(2), 321–324. DOI: 10.1016/j.indcrop.2009.03.009.
  • Grancieri, M.; Martino, H. S. D.; Gonzalez de Mejia, E. Chia Seed (Salvia Hispanica L.) as a Source of Proteins and Bioactive Peptides with Health Benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18(2), 480–499. DOI: 10.1111/1541-4337.12423.
  • Amato, M.; Caruso, M. C.; Guzzo, F.; Galgano, F.; Commisso, M.; Bochicchio, R.; Labella, R.; Favati, F. Nutritional Quality of Seeds and Leaf Metabolites of Chia (Salvia Hispanica L.) from Southern Italy. Eur. Food Res. Techno. 2015, 241(5), 615–625. DOI: 10.1007/s00217-015-2488-9.
  • Ayerza, R. Oil Content and Fatty Acid Composition of Chia (Salvia Hispanica L.) from Five Northwestern Locations in Argentina. J. Am. Oil Chem. Soc. 1995, 72(9), 1079–1081. DOI: 10.1007/BF02660727.
  • Ayerza, R. The Seed’s Protein and Oil Content, Fatty Acid Composition, and Growing Cycle Length of a Single Genotype of Chia (Salvia Hispanica L.) as Affected by Environmental Factors. J. Oleo. Sci. 2009, 58(7), 347–554. DOI: 10.5650/jos.58.347.
  • Ayerza, R.; Coates, W. Protein and Oil Content, Peroxide Index and Fatty Acid Composition of Chia (Salvia Hispanica L.) Grown in Six Tropical and Subtropical Ecosystems of South America. Trop. Sci. 2004, 44(3), 131–135. DOI: 10.1002/ts.154.
  • Hossain, Z.; Johnson, E. N.; Wang, L.; Blackshaw, R. E.; Gan, Y. Comparative Analysis of Oil and Protein Content and Seed Yield of Five Brassicaceae Oilseeds on the Canadian Prairie. Ind. Crop Prod. 2019, 136, 77–86. DOI: 10.1016/j.indcrop.2019.05.001.
  • Tetteh, E. T.; de Koff, J. P.; Pokharel, B.; Link, R.; Robbins, C. Effect of Winter Canola Cultivar on Seed Yield, Oil, and Protein Content. Agron. J. 2019, 111(6), 2811–2820. DOI: 10.2134/agronj2018.08.0494.
  • Saastamoinen, M.; Eurola, M.; Hietaniemi, V. Oil, Protein, Chlorophyll, Cadmium and Lead Contents of Seeds in Oil and Fiber Flax (Linum Usitatissimum L.) Cultivars and in Oil Hemp (Cannabis Sativa L.) Cultivar Finola Cultivated in South-Western Part of Finland. J. Food Chem. Nano. 2016, 2(2), 73–76. DOI: 10.17756/jfcn.2016-013.
  • Zhang, J.; Xie, Y.; Dang, Z.; Wang, L.; Li, W.; Zhao, L.; Dang, Z.; Dang, Z. Oil Content and Fatty Acid Components of Oilseed Flax Under Different Environments in China. Agron. J. 2016, 108(1), 365–372. DOI: 10.2134/agronj2015.0224.
  • Finoto, E. L.; Soares, M. B. B.; de Anchieta Alves de Albuquerque, J.; Lopes Monteiro Neto, J. L.; da Silva Maia, S.; Doná, S.; Chagas, E. A.; Soares-da-Silva, E.; Abanto-Rodríguez, C. Selection of Soybean Genotypes for Yield, Size, and Oil and Protein Contents. Aust. J. Crop Sci. 2021, 15(1), 48–50. DOI: 10.21475/ajcs.21.15.01.2390.
  • Sobko, O.; Zikeli, S.; Claupein, W.; Gruber, S. Seed Yield, Seed Protein, Oil Content, and Agronomic Characteristics of Soybean (Glycine Max L. Merrill) Depending on Different Seeding Systems and Cultivars in Germany. Agronomy. 2020, 10(7), 1020. DOI: 10.3390/agronomy10071020.
  • Amaral, R. D. A.; Ferrari, R. A.; Rabonato, L. C.; Morgano, M. A.; Dalchiavon, F. C.; Oliveira, R. S. Essential Elements, Oil and Protein Contents of Sunflower Hybrids Grown in Brazil. Braz. J. Food Technol. 2018, 21, e2017065. DOI: 10.1590/1981-6723.06517.
  • Ciftci, O. N.; Przybylski, R.; Rudzińska, M. Lipid Components of Flax, Perilla, and Chia Seeds. Eur. J. Lipid Sci. Tech. 2012, 114(7), 794–800. DOI: 10.1002/ejlt.201100207.
  • de Falco, B.; Amato, M.; Lanzotti, V. Chia Seeds Products: An Overview. Phytochem Rev. 2017, 16(4), 745–760. DOI: 10.1007/s11101-017-9511-7.
  • Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The Chemical Composition and Nutritional Value of Chia Seeds—current State of Knowledge. Nutrients. 2019, 11(6), 1242. DOI: 10.3390/nu11061242.
  • Nitrayová, S.; Brestenský, M.; Heger, J.; Patráš, P.; Rafay, J.; Sirotkin, A. Amino Acids and Fatty Acids Profile of Chia (Salvia Hispanica L.) and Flax (Linum Usitatissimum L.) Seed. Potravinarstvo. 2014, 8(1), 72–76. DOI: 10.5219/332.
  • Reyes-Caudillo, E.; Tecante, A.; Valdivia-López, M. A. Dietary Fibre Content and Antioxidant Activity of Phenolic Compounds Present in Mexican Chia (Salvia Hispanica L.) Seeds. Food Chem. 2008, 107(2), 656–663. DOI: 10.1016/j.foodchem.2007.08.062.
  • McDowell, D.; Elliott, C. T.; Koidis, A. Pre-Processing Effects on Cold Pressed Rapeseed Oil Quality Indicators and Phenolic Compounds. Eur. J. Lipid Sci. Tech. 2017, 119(9), 1600357. DOI: 10.1002/ejlt.201600357.
  • Rȩkas, A.; Wroniak, M.; Szterk, A. Characterization of Some Quality Properties and Chemical Composition of Cold-Pressed Oils Obtained from Different Rapeseed Varieties Cultivated in Poland. Pol. J. Nat. Sci. 2016, 31(2), 249–261.
  • Szydłowska-Czerniak, A.; Bartkowiak-Broda, I.; Karlović, I.; Karlovits, G.; Szłyk, E. Antioxidant Capacity, Total Phenolics, Glucosinolates and Colour Parameters of Rapeseed Cultivars. Food Chem. 2011, 127(2), 556–563. DOI: 10.1016/j.foodchem.2011.01.040.
  • Wang, X.; Zhang, C.; Li, L.; Fritsche, S.; Endrigkeit, J.; Zhang, W.; Long, Y.; Jung, C.; Meng, J.; Nelson, J. C. Unraveling the Genetic Basis of Seed Tocopherol Content and Composition in Rapeseed (Brassica Napus L.). PLoS One. 2012, 7(11), e50038. DOI: 10.1371/journal.pone.0050038.
  • Kiczorowska, B.; Samolińska, W.; Andrejko, D.; Kiczorowski, P.; Antoszkiewicz, Z.; Zajac, M.; Winiarska-Mieczan, A.; Bąkowski, M. Comparative Analysis of Selected Bioactive Components (Fatty Acids, Tocopherols, Xanthophyll, Lycopene, Phenols) and Basic Nutrients in Raw and Thermally Processed Camelina, Sunflower, and Flax Seeds (Camelina Sativa L. Crantz, Helianthus L., and Linum L.). J. Food Sci. Tech. 2019, 56(9), 4296–4310.
  • Li, X.; Li, J.; Dong, S.; Li, Y.; Wei, L.; Zhao, C.; Li, J.; Liu, X.; Wang, Y. Effects of Germination on Tocopherol, Secoisolarlciresinol Diglucoside, Cyanogenic Glycosides and Antioxidant Activities in Flaxseed (Linum Usitatissimum L.). Int. J. Food Sci. Technol. 2019, 54(7), 2346–2354. DOI: 10.1111/ijfs.14098.
  • Pająk, P.; Socha, R.; Broniek, J.; Królikowska, K.; Fortuna, T. Antioxidant Properties, Phenolic and Mineral Composition of Germinated Chia, Golden Flax, Evening Primrose, Phacelia and Fenugreek. Food Chem. 2019, 275, 69–76. DOI: 10.1016/j.foodchem.2018.09.081.
  • Wondołowska-Grabowska, A. Effect of Diversified Fertilization with Nitrogen, Sulphur and Boron on Fatty Acids Profile in Oil Flax Seeds. J. Elementol. 2014, 19(4), 1131–1142. DOI: 10.5601/jelem.2014.19.3.713.
  • Bursać, M.; Krstonošić, M. A.; Miladinović, J.; Malenčićc, Đ.; Gvozdenović, L.; Cvejić, J. H. Isoflavone Composition, Total Phenolic Content and Antioxidant Capacity of Soybeans with Colored Seed Coat. Nat. Prod. Commun. 2017, 12(4), 527–532. DOI: 10.1177/1934578X1701200417.
  • Choi, Y. -M.; Yoon, H.; Lee, S.; Ko, H. -C.; Shin, M. -J.; Lee, M. C.; Hur, O. S.; Ro, N. Y.; Desta, K. T. Isoflavones, Anthocyanins, Phenolic Content, and Antioxidant Activities of Black Soybeans (Glycine Max (L.) Merrill) as Affected by Seed Weight. Sci. Rep. 2020, 10(1), 19960. DOI: 10.1038/s41598-020-76985-4.
  • Ghosh, S.; Zhang, S.; Azam, M.; Qi, J.; Abdelghany, A. M.; Shaibu, A. S.; Gebregziabher, B. S.; Feng, Y.; Huai, Y.; Paing Htway, H. T., et al. Seed Tocopherol Assessment and Geographical Distribution of 1151 Chinese Soybean Accessions from Diverse Ecoregions. J. Food Compos. Anal. 2021, 100, 103932. DOI: 10.1016/j.jfca.2021.103932.
  • Szpunar-Krok, E.; Wondołowska-Grabowska, A.; Bobrecka-Jamro, D.; Janczak-Pieniazek, M.; Kotecki, A.; Kozak, M. Effect of Nitrogen Fertilisation and Inoculation with Bradyrhizobium Japonicum on the Fatty Acid Profile of Soybean (Glycine Max (L.) Merrill) Seeds. Agronomy. 2021, 11(5), 11. DOI: 10.3390/agronomy11050941.
  • Del Moral, L.; Pérez-Vich, B.; Velasco, L. Tocopherols in Sunflower Seedlings Under Light and Dark Conditions. Sci. World J. 2015, 146782. DOI: 10.1155/2015/146782.
  • Prasifka, J. R.; Wallis, C. M. Concentrations of Sunflower Phenolics Appear Insufficient to Explain Resistance to Floret‑ and Seed‑feeding Caterpillars. Arthropod-Plant Inte. 2019, 13(6), 915–921. DOI: 10.1007/s11829-019-09706-y.
  • Mondor, M.; Hernández-Álvarez, A. J. Camelina Sativa Composition, Attributes, and Applications: A Review. Eur. J. Lipid Sci. Tech. 2022, 124(3), 2100035. DOI: 10.1002/ejlt.202100035.
  • Brandán, J. P.; Izquierdo, N.; Acreche, M. M. Oil and Protein Concentration and Fatty Acid Composition of Chia (Salvia Hispanica L.) as Affected by Environmental Conditions. Ind. Crop Prod. 2022, 177, 114496. DOI: 10.1016/j.indcrop.2021.114496.
  • Ayerza, R. Crop Year Effects on Seed Yields, Growing Cycle Length, and Chemical Composition of Chia (Salvia Hispanica L) Growing in Ecuador and Bolivia. Emir J. Food Agr. 2016, 28(3), 196–200. DOI: 10.9755/ejfa.2015-05-323.
  • Calder, P. C. Dietary Fatty Acids, Lipid Mediators, Immunity, and Inflammation. Food Lipids: Chem. Nutr. Biotechnol. Fourth Ed. 2017, 627–638.
  • Segura-Campos, M. R. Isolation and Functional Characterization of Chia (Salvia Hispanica) Proteins. Food Sci. Technol. 2020, 40(2), 334–339. DOI: 10.1590/fst.41618.
  • Vázquez-Ovando, J. A.; Rosado-Rubio, J. G.; Chel-Guerrero, L. A.; Betancur-Ancona, D. Procesamiento en Seco de Harina de Chia (Salvia Hispanica L.): Caracterización Química de Fibra y Proteina. CYTA J. Food. 2010, 2(2), 117–127. DOI: 10.1080/19476330903223580.
  • Valenzuela Zamudio, F.; Hidalgo-Figueroa, S. N.; Ortíz Andrade, R. R.; Hernández Álvarez, A. J.; Segura-Campos, M. R. Identification of Antidiabetic Peptides Derived from in silico Hydrolysis of Three Ancient Grains: Amaranth, Quinoa and Chia. Food Chem. 2022, 394, 133479. DOI: 10.1016/j.foodchem.2022.133479.
  • Valenzuela Zamudio, F.; Segura-Campos, M. R. Amaranth, Quinoa and Chia Bioactive Peptides: A Comprehensive Review on Three Ancient Grains and Their Potential Role in Management and Prevention of Type 2 Diabetes. Crit. Rev. Food Sci. Nutr. 2022, 62(10), 2707–2721. DOI: 10.1080/10408398.2020.1857683.
  • Quintal-Bojórquez, N. D. C.; Carrillo-Cocom, L. M.; Hernández-Álvarez, A. J.; Segura-Campos, M. R. Anticancer Activity of Protein Fractions from Chia (Salvia Hispanica L.). J. Food Sci. 2021, 86(7), 2861–2871. DOI: 10.1111/1750-3841.15780.
  • León Madrazo, A.; Segura-Campos, M. R. In Silico Prediction of Peptide Variants from Chia (S. Hispanica L.) with Antimicrobial, Antibiofilm, and Antioxidant Potential. Comput. Biol. Chem. 2022, 98, 107695. DOI: 10.1016/j.compbiolchem.2022.107695.
  • Barber, T. M.; Kabisch, S.; Pfeier, A. F. H.; Weickert, M. O. The Health Benefits of Dietary Fibre. Nutrients. 2020, 12(10), 3209. DOI: 10.3390/nu12103209.
  • Ayerza, R. Seed Composition of Two Chia (Salvia Hispanica L.) Genotypes Which Differ In seed Color. Emir. J. Food Agric. 2013, 25(7), 495–500. DOI: 10.9755/ejfa.v25i7.13569.
  • Vázquez-Ovando, A.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betancur-Ancona, D. Physicochemical Properties of a Fibrous Fraction from Chia (Salvia Hispanica L.). Lwt—food Sci. Technol. 2009, 42(1), 168–217. DOI: 10.1016/j.lwt.2008.05.012.
  • Tolba, R.; Guosheng, W.; Aicheng, C. Adsorption of Dietary Oils Onto Lignin for Promising Pharmaceutical and Nutritional Applications. BioResources. 2011, 6(2), 1322–1335.
  • Da Silva, B. P.; Anunciaçao, P. C.; Matyelka, J. C. D. S.; Della Lucia, C. M.; Martino, H. S. D.; Pinheiro-Sant’Ana, H. M. Chemical Composition of Brazilian Chia Seeds Grown in Different Places. Food Chem. 2017, 221, 1709–1716. DOI: 10.1016/j.foodchem.2016.10.115.
  • Kataria, A.; Sharma, S.; Singh, A.; Singh, B. Effect of Hydrothermal and Thermal Processing on the Antioxidative, Antinutritional and Functional Characteristics of Salvia Hispanica. J. Food Meas. Charact. 2022, 16(1), 332–343. DOI: 10.1007/s11694-021-01161-9.
  • de Souza, A. P. A.; Marinheiro Nascimento, L. M. A.; Oliveira de Lima, V. C.; Coimbra de Carvalho, F. M.; dos Santos, E. A.; de Araújo Morais, E. H. Anti-Tryptic Activity in Seed and Food Product of Chia (Salvia Hispanica L.). Demetra. 2017, 12(1), 319–331. DOI: 10.12957/demetra.2017.25636.
  • Gilani, G. S.; Xiao, C. W.; Cockell, K. A. Impact of Antinutritional Factors in Food Proteins on the Digestibility of Protein and the Bioavailability of Amino Acids and on Protein Quality. Br. J. Nutr. 2012, 108(S2), S315–332. DOI: 10.1017/S0007114512002371.
  • Campos-Vega, R.; Loarca-Piña, G.; Oomah, B. D. Minor Components of Pulses and Their Potential Impact on Human Health. Food. Res. Int. 2010, 43(2), 461–482. DOI: 10.1016/j.foodres.2009.09.004.
  • Aranibar, C.; Pigni, N. B.; Martínez, M. L.; Aguirre, A.; Ribotta, P. D.; Wunderlin, D. A.; Borneo, R. Influence of the Extraction Conditions on Chia Oil Quality and Partially Defatted Flour Antioxidant Properties. J. Food Sci. Technol. 2022, 59(5), 1982–1993. DOI: 10.1007/s13197-021-05213-2.
  • Ixtaina, V. Y.; Martinez, M. L.; Spotorno, V.; Mateo, C. M.; Maestri, D. M.; Diehl, B. W. K.; Nolasco, S. M.; Tomás, M. C. Characterization of Chia Seed Oils Obtained by Pressing and Solvent Extraction. J. Food Compos. Anal. 2011, 24(2), 166–174. DOI: 10.1016/j.jfca.2010.08.006.
  • Arrutia, F.; Binner, E.; Williams, P.; Waldron, K. W. Oilseeds Beyond Oil: Press Cakes and Meals Supplying Global Protein Requirements. Trends Food Sci. Tech. 2020, 100, 88–102. DOI: 10.1016/j.tifs.2020.03.044.
  • Geow, C. H.; Tan, M. C.; Yeap, S. P.; Chin, N. L. A Review on Extraction Techniques and Its Future Applications in Industry. Eur. J. Lipid Sci. Tech. 2021, 123(4), 2000302. DOI: 10.1002/ejlt.202000302.
  • Ishak, I.; Ghani, M. A.; Yuen, J. Z. Effects of Extraction Solvent and Time on the Oil Yield, Total Phenolic Content, Carotenoid and Antioxidant Activity of Australian Chia Seed (Salvia Hispanica L.) Oil. Food Res. 2020, 4(Suppl. 4), 27–37. DOI: 10.26656/fr.2017.4(S4).006.
  • Guindani, C.; Podestá, R.; Block, J. M.; Rossi, M. J.; Mezzomo, N.; Ferreira, S. R. S. Valorization of Chia (Salvia Hispanica) Seed Cake by Means of Supercritical Fluid Extraction. J. Supercrit. Fluid. 2016, 112, 67–75. DOI: 10.1016/j.supflu.2016.02.010.
  • Dąbrowski, G.; Konopka, I.; Czaplicki, S.; Tanska, M. Composition and Oxidative Stability of Oil from Salvia Hispanica L. Seeds in Relation to Extraction Method. Eur. J. Lipid Sci. Technol.119, 5, 1600209. DOI: 10.1002/ejlt.201600209.
  • Fernandes, S. S.; Tonato, D.; Mazutti, M. A.; de Abreu, B. R.; da Costa Cabrera, D.; Da Ros Montes D’Oca, C.; Prentice-Hernández, C.; de las Mercedes Salas-Mellado, M. Yield and Quality of Chia Oil Extracted via Different Methods. J. Food Eng. 2019, 262, 200–208. DOI: 10.1016/j.jfoodeng.2019.06.019.
  • Tak, Y.; Kaur, M.; Kumar, R.; Gautam, C.; Singh, P.; Kaur, H.; Kaur, A.; Bhatia, S.; Jha, N. K.; Gupta, P. K., et al. Repurposing Chia Seed Oil: A Versatile Novel Functional Food. J. Food Sci. 2022, 87(7), 2798–2819. DOI: 10.1111/1750-3841.16211.
  • Fernández-López, J.; Lucas-González, R.; Viuda-Martos, M.; Sayas-Barberá, E.; Pérez-Alvarez, J. A. Chia Oil Extraction Coproduct as a Potential New Ingredient for the Food Industry: Chemical, Physicochemical, Techno-Functional and Antioxidant Properties. Plant Foods Hum. Nutr. 2018, 73(2), 130–136. DOI: 10.1007/s11130-018-0670-5.
  • Global Trade Tracker. https://www.globaltradetracker.com/?gclid=EAIaIQobChMIj4bjotmU-wIVK8qUCR0jNglyEAAYASAAEgLHb_D_BwE (accessed on November 3, 2022).
  • Aranibar, C.; Pigni, N. B.; Martinez, M.; Aguirre, A.; Ribotta, P.; Wunderlin, D.; Borneo, R. Utilization of a Partially-Deoiled Chia Flour to Improve the Nutritional and Antioxidant Properties of Wheat Pasta. LWT - Food Sci. Technol. 2018, 89, 381–387. DOI: 10.1016/j.lwt.2017.11.003.
  • Coelho, M. S.; Salas-Mellado, M. D. L. M. How Extraction Method Affects the Physicochemical and Functional Properties of Chia Proteins. LWT - Food Sci. Technol. 2018, 96, 26–33. DOI: 10.1016/j.lwt.2018.05.010.
  • Guiotto, E. N.; Tomás, M. C.; Haros, C. M. Development of Highly Nutritional Breads with By-Products of Chia (Salvia Hispanica L.) Seeds. Foods. 2020, 9(6), 819. DOI: 10.3390/foods9060819.
  • Zdybel, B.; Różyło, R.; Sagan, A. Use of a Waste Product from the Pressing of Chia Seed Oil in Wheat and Gluten‐free Bread Processing. J. Food Process. Pres. 2019, 43(8), e14002. DOI: 10.1111/jfpp.14002.
  • Gaber, M. A. F. M.; Trujillo, F. J.; Mansour, M. P.; Taylor, C.; Juliano, P. Megasonic-Assisted Aqueous Extraction of Canola Oil from Canola Cake. J. Food Eng. 2019, 252, 60–68. DOI: 10.1016/j.jfoodeng.2019.02.017.
  • Zardo, I.; Rodrigues, N. P.; Sarkis, J. R.; Marczak, L. D. F. Extraction and Identification by Mass Spectrometry of Phenolic Compounds from Canola Seed Cake. J. Sci. Food Agri. 2020, 100(2), 578–586. DOI: 10.1002/jsfa.10051.
  • Rani, R.; Badwaik, L. S. Functional Properties of Oilseed Cakes and Defatted Meals of Mustard, Soybean and Flaxseed. Waste Biomass Valorization. 2021, 12(10), 5639–5647. DOI: 10.1007/s12649-021-01407-z.
  • Tirgar, M.; Silcock, P.; Carne, A.; Birch, E. J. Effect of Extraction Method on Functional Properties of Flaxseed Protein Concentrates. Food Chem. 2017, 215, 417–424. DOI: 10.1016/j.foodchem.2016.08.002.
  • Rosset, M.; Acquaro, V. R.; Beléia, A. D. P. Protein Extraction from Defatted Soybean Flour with Viscozyme L Pretreatment. J. Food Process. Pres. 2014, 38(3), 784–790. DOI: 10.1111/jfpp.12030.
  • Silva, C.; Garcia, V. A. S.; Zanette, C. M. Chia (Salvia Hispanica L.) Oil Extraction Using Different Organic Solvents: Oil Yield, Fatty Acids Profile and Technological Analysis of Defatted Meal. Int. Food Res. J. 2016, 23(3), 998–1004.
  • MarketsandMarkets. https://www.marketsandmarkets.com/Market-Reports/plant-based-protein-market-14715651.html?gclid=EAIaIQobChMIwcGJi8jt6gIVg8DICh2eBQviEAAYASAAEgIyKPD_BwE (accessed on November 2, 2022).
  • Sari, Y. W.; Mulder, W. J.; Sanders, J. P. M.; Bruins, M. E. Towards Plant Protein Refinery: Review on Protein Extraction Using Alkali and Potential Enzymatic Assistance. Biotech. J. 2015, 10(8), 1138–1157. DOI: 10.1002/biot.201400569.
  • Timilsena, Y. P.; Adhikari, R.; Barrow, C. J.; Adhikari, B. Physicochemical and Functional Properties of Protein Isolate Produced from Australian Chia Seeds. Food Chem. 2016, 212, 648–656. DOI: 10.1016/j.foodchem.2016.06.017.
  • Karaca, A. C.; Low, N.; Nickerson, M. Emulsifying Properties of Canola and Flaxseed Protein Isolates Produced by Isoelectric Precipitation and Salt Extraction. Food. Res. Int. 2011, 44(9), 2991–2998. DOI: 10.1016/j.foodres.2011.07.009.
  • Cárdenas, M.; Carpio, C.; Welbaum, J.; Vilcacundo, E.; Carrillo, W. Chia Protein Concentrate (Salvia Hispanica L.) Anti-Inflammatory and Antioxidant Activity. Asian J. Pharm. Clin. Res. 2018, 11(2), 382–386. DOI: 10.22159/ajpcr.2018.v11i2.17225.
  • Otto, T.; Baik, B. K.; Czuchajowska, Z. Wet Fractionation of Garbanzo Bean and Pea Flours. Cereal Chem. 1997, 74(2), 141–146. DOI: 10.1094/CCHEM.1997.74.2.141.
  • López, D. N.; Ingrassia, R.; Busti, P.; Bonino, J.; Delgado, J. F.; Wagner, J.; Boeris, V.; Spelzini, D. Structural Characterization of Protein Isolates Obtained from Chia (Salvia Hispanica L.) Seeds. LWT-Food Sci. Technol.2018a, 90, 396–402. DOI: 10.1016/j.lwt.2017.12.060.
  • López, D. N.; Ingrassia, R.; Busti, P.; Wagner, J.; Boeris, V.; Spelzini, D. Effects of Extraction pH of Chia Protein Isolates on Functional Properties. Foods.2018b, 97, 523–529. DOI: 10.1016/j.lwt.2018.07.036.
  • Fabian, C.; Ju, Y. -H. A Review on Rice Bran Protein: Its Properties and Extraction Methods. Crit. Rev. Food Sci. Nutr. 2011, 51(9), 816–827. DOI: 10.1080/10408398.2010.482678.
  • Mondor, M.; Ippersiel, D.; Lamarche, F.; Boye, J. I. Production of Soy Protein Concentrates Using a Combination of Electroacidification and Ultrafiltration. J. Agric. Food. Chem. 2004, 52(23), 6991–6996. DOI: 10.1021/jf0400922.
  • Alcântara, M. A.; de Lima Brito Polari, I.; de Albuquerque Meireles, B. R. L.; Alcântara de Lima, A. E.; da Silva Junior, J. C.; de Andrade Vieira, E.; dos Santos, N. A.; de Magalhães Cordeiro, A. M. T. Effect of the Solvent Composition on the Profile of Phenolic Compounds Extracted from Chia Seeds. Food Chem. 2019, 25, 489–496. DOI: 10.1016/j.foodchem.2018.09.133.
  • Martínez-Cruz, O.; Paredes-López, O. Phytochemical Profile and Nutraceutical Potential of Chia Seeds (Salvia Hispanica L.) by Ultra High Performance Liquid Chromatography. J. Chromatogr. A. 1346, 2014, 43–48. DOI: 10.1016/j.chroma.2014.04.007.
  • Oliveira-Alves, S. C.; Vendramini-Costa, D. B.; Betim Cazarin, C. B.; Maróstica Júnior, M. R.; Borges Ferreira, J. P.; Silva, A. B.; Prado, M. A.; Bronze, M. R. Characterization of Phenolic Compounds in Chia (Salvia Hispanica L.) Seeds, Fiber Flour and Oil. Food Chem. 2017, 232, 295–305. DOI: 10.1016/j.foodchem.2017.04.002.
  • Capitani, M. I.; Spotorno, V.; Nolasco, S. M.; Tomás, M. C. Physicochemical and Functional Characterization of By-Products from Chia (Salvia Hispanica L.) Seeds of Argentina. LWT - Food Sci. Technol. 2012, 45(1), 94–102. DOI: 10.1016/j.lwt.2011.07.012.
  • Fernández-López, J.; Lucas-González, R.; Viuda-Martos, M.; Sayas-Barberá, E.; Navarro, C.; Haros, C.M.; Pérez-Alvarez, J.A. Chia (Salvia hispanica L.) Products as Ingredients for Reformulating Frankfurters: Effects on Quality Properties and Shelf-Life. Meat Sci, 2019, 156, 139–145.
  • Pizarro, M. L.; Becerra, M.; Sayago, A.; Beltrán, M.; Beltrán, R. Comparison of Different Extraction Methods to Determine Phenolic Compounds in Virgin Olive Oil. Food Anal. Method. 2013. 6. 123–132. 1 10.1007/s12161-012-9420-8
  • Albuquerque, B. R.; Heleno, S. A.; Oliveira, M. B. P. P.; Barros, L.; Ferreira, I. C. F. R. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12(1), 14–29. DOI: 10.1039/D0FO02324H.
  • Hijazi, T.; Karasu, S.; Tekin-Çakmak, Z. H.; Bozkurt, F. Extraction of Natural Gum from Cold-Pressed Chia Seed, Flaxseed, and Rocket Seed Oil By-Product and Application in Low Fat Vegan Mayonnaise. Foods. 2022, 11(3), 363. DOI: 10.3390/foods11030363.
  • Muñoz-Tebar, N.; Molina, A.; Carmona, M.; Berruga, M. I. Use of Chia By-Products Obtained from the Extraction of Seeds Oil for the Development of New Biodegradable Films for the Agri-Food Industry. Foods. 2021, 10(3), 620. DOI: 10.3390/foods10030620.
  • Muñoz-Tebar, N.; Carmona, M.; Ortiz de Elguea-Culebras, G.; Molina, A.; Berruga, M. I. Chia Seed Mucilage Edible Films with Origanum Vulgare and Satureja Montana Essential Oils: Characterization and Antifungal Properties. Membranes. 2022, 12(2), 213. DOI: 10.3390/membranes12020213.
  • Sayed-Ahmad, B.; Talou, T.; Straumite, E.; Sabovics, M.; Kruma, Z.; Saad, Z.; Hijazi, A.; Merah, O. Evaluation of Nutritional and Technological Attributes of Whole Wheat Based Bread Fortified with Chia Flour. Foods. 2018, 7(9), 135. DOI: 10.3390/foods7090135.
  • Ewerling, M.; Steinmacher, N. C.; dos Santos, M. R.; Kalschne, D. L.; de Souza, N. E.; Arcanjo, F. M.; de Souza, A. H. P.; Rodrigues, A. C. Defatted Chia Flour Improves Gluten-Free Bread Nutritional Aspects: A Model Approach. Food Sci. Technol-Brazil. 2020, 40(Suppl. 1), 68–75. DOI: 10.1590/fst.42118.
  • Lucini Mas, A.; Brigante, F. I.; Salvucci, E.; Pigni, N. B.; Martinez, M. L.; Ribotta, P.; Wunderlin, D. A.; Baroni, M. V. Defatted Chia Flour as Functional Ingredient in Sweet Cookies. How Do Processing, Simulated Gastrointestinal Digestion and Colonic Fermentation Affect Its Antioxidant Properties? Food Chem. 2020, 316, 126279. DOI: 10.1016/j.foodchem.2020.126279.
  • Martínez, E.; García-Martínez, R.; Álvarez-Ortí, M.; Rabadán, A.; Pardo-Giménez, A.; Pardo, J. E. Elaboration of Gluten-Free Cookies with Defatted Seed Flours: Effects on Technological, Nutritional, and Consumer Aspects. Foods. 2021, 10(6), 1213–1219. DOI: 10.3390/foods10061213.
  • Aranibar, C.; Aguirre, A.; Borneo, R. Utilization of a By-Product of Chia Oil Extraction as a Potential Source for Value Addition in Wheat Muffins. J. Food Sci. Technol. 2019, 56(9), 4189–4197. DOI: 10.1007/s13197-019-03889-1.
  • Pigni, N. B.; Aranibar, C.; Lucini Mas, A.; Aguirre, A.; Borneo, R.; Wunderlin, D.; Baroni, M. V. Chemical Profile and Bioaccessibility of Polyphenols from Wheat Pasta Supplemented with Partially-Deoiled Chia Flour. LWT - Food Sci. Technol. 2020, 124, 109134. DOI: 10.1016/j.lwt.2020.109134.
  • Souza, A. H. P.; Gohara, A. K.; Rotta, E. M.; Chaves, M. A.; Silva, C. M.; Dias, L. F.; Gomes, S. T. M.; Souza, N. E.; Matsushita, M. Effect of the Addition of Chia’s By-Product on the Composition of Fatty Acids in Hamburgers Through Chemometric Methods. J. Sci. Food Agric. 2015, 95(5), 928–935. DOI: 10.1002/jsfa.6764.
  • Rabadán, A.; Álvarez-Ortí, M.; Martínez, E.; Pardo-Giménez, A.; Zied, D. C.; Pardo, J. E. Effect of Replacing Traditional Ingredients for Oils and Flours from Nuts and Seeds on the Characteristics and Consumer Preferences of Lamb Meat Burgers. LWT - Food Sci. Technol. 2021, 136, 110307. DOI: 10.1016/j.lwt.2020.110307.
  • Gök, V.; Akkaya, L.; Obuz, E.; Bulut, S. Effect of Ground Poppy Seed as a Fat Replacer on Meat Burgers. Meat Sci. 2011, 89(4), 400–404. DOI: 10.1016/j.meatsci.2011.04.032.
  • Akcicek, A.; Karasu, S. Utilization of Cold Pressed Chia Seed Oil Waste in a Low-Fat Salad Dressing as Natural Fat Replacer. J. Food Process. Eng. 2018, 41(5), e12694. DOI: 10.1111/jfpe.12694.
  • Atik, I.; Tekin Cakmak, Z. H.; Avcı, E.; Karasu, S. The Effect of Cold Press Chia Seed Oil By-Products on the Rheological, Microstructural, Thermal, and Sensory Properties of Low-Fat Ice Cream. Foods. 2021, 10(10), 2302. DOI: 10.3390/foods10102302.
  • Naji-Tabasi, S.; Razavi, S. M. A.; Mohebbi, M.; Malaekeh-Nikouei, B. New Studies on Basil (Ocimum Bacilicum L.) Seed Gum: Part I—Fractionation, Physicochemical and Surface Activity Characterization. Food Hydrocolloid. 2016, 52, 350–358. DOI: 10.1016/j.foodhyd.2015.07.011.
  • Mondor, M.; Hernández-Álvarez, A. J. Processing Technologies to Produce Plant Protein Concentrates and Isolates. In Plant Protein Foods; Manickavasagan, A., Lim, L. and Ali, A., Eds.; Springer: Switzerland, 2022; pp. 61–108.
  • Nevara, G. A.; Giwa Ibrahim, S.; Syed Muhammad, S. K.; Zawawi, N.; Mustapha, N. A.; Karim, R. Oilseed Meals into Foods: An Approach for the Valorization of Oilseed By-Products. Crit. Rev. Food Sci. Nutr. 2022. in press, 1–14. DOI: 10.1080/10408398.2022.2031092.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.