5,042
Views
0
CrossRef citations to date
0
Altmetric
Review

Blackcurrants: A Nutrient-Rich Source for the Development of Functional Foods for Improved Athletic Performance

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Cortez, R. E.; Gonzalez de Mejia, E. Blackcurrants (Ribes Nigrum): A Review on Chemistry, Processing, and Health Benefits. J. Food Sci. 2019, 84(9), 2387–2401. From NLM Medline. DOI: 10.1111/1750-3841.14781.
  • Pott, D. M.; Durán-Soria, S.; Allwood, J. W.; Pont, S.; Gordon, S. L.; Jennings, N.; Austin, C.; Stewart, D.; Brennan, R. M.; Masny, A., et al. Dissecting the Impact of Environment, Season and Genotype on Blackcurrant Fruit Quality Traits. Food Chem. 2023, 402, 134360. DOI: 10.1016/j.foodchem.2022.134360.
  • Paunović, S. M.; Mašković, P.; Milinković, M. Chemical Compounds and Biological Activity in Black Currant (Ribes Nigrum L.) Berries Depending on Soil Temperature and Moisture. Erwerbs-Obstbau. 2022, 64(4), 621–629. DOI: 10.1007/s10341-022-00712-8.
  • Trych, U.; Buniowska, M.; Skapska, S.; Kapusta, I.; Marszalek, K. Bioaccessibility of Antioxidants in Blackcurrant Juice After Treatment Using Supercritical Carbon Dioxide. Molecules. 2022, 27(3), 3. From NLM Medline. DOI: 10.3390/molecules27031036.
  • Tian, Y.; Laaksonen, O.; Haikonen, H.; Vanag, A.; Ejaz, H.; Linderborg, K.; Karhu, S.; Yang, B. Compositional Diversity Among Blackcurrant (Ribes Nigrum) Cultivars Originating from European Countries. J. Agric. Food. Chem. 2019, 67(19), 5621–5633. From NLM Medline. DOI: 10.1021/acs.jafc.9b00033.
  • Xue, B.; Hui, X.; Chen, X.; Luo, S.; Dilrukshi, H. N. N.; Wu, G.; Chen, C. Application, Emerging Health Benefits, and Dosage Effects of Blackcurrant Food Formats. J. Funct. Foods. 2022, 95, 105147. DOI: 10.1016/j.jff.2022.105147.
  • Azman, E. M.; Nor, N. D. M.; Charalampopoulos, D.; Chatzifragkou, A. Effect of Acidified Water on Phenolic Profile and Antioxidant Activity of Dried Blackcurrant (Ribes Nigrum L.) Pomace Extracts. LWT. 2022, 154, 112733. DOI: 10.1016/j.lwt.2021.112733.
  • Xu, Y.; Cai, F.; Yu, Z.; Zhang, L.; Li, X.; Yang, Y.; Liu, G. Optimisation of Pressurised Water Extraction of Polysaccharides from Blackcurrant and Its Antioxidant Activity. Food Chem. 2016, 194, 650–658. From NLM Medline. DOI: 10.1016/j.foodchem.2015.08.061.
  • Diaconeasa, Z.; Leopold, L.; Rugina, D.; Ayvaz, H.; Socaciu, C. Antiproliferative and Antioxidant Properties of Anthocyanin Rich Extracts from Blueberry and Blackcurrant Juice. Int. J. Mol. Sci. 2015, 16(2), 2352–2365. From NLM Medline. Diaconeasa, Z.; Iuhas, C.; I.; Ayvaz, H.; Rugina, D.; Stanila, A.; Dulf, F.; Bunea, A.; Socaci, S. A.; Socaciu, C.; Pintea, A. Phytochemical Characterization of Commercial Processed Blueberry, Blackberry, Blackcurrant, Cranberry, and Raspberry and Their Antioxidant Activity. Antioxidants (Basel). 2019, 8 (11). DOI: 10.3390/antiox8110540 From NLM PubMed From NLM PubMednotMEDLINE. DOI: 10.3390/antiox8110540.
  • Strugała, P.; Gładkowski, W.; Kucharska, A. Z.; Sokół‐łętowska, A.; Gabrielska, J. Antioxidant Activity and Anti‐inflammatory Effect of Fruit Extracts from Blackcurrant, Chokeberry, Hawthorn, and Rosehip, and Their Mixture with Linseed Oil on a Model Lipid Membrane. Eur. J. Lipid Sci. Technol. 2015, 118(3), 461–474. DOI: 10.1002/ejlt.201500001.
  • Balstad, T. R.; Paur, I.; Poulsen, M.; Markowski, J.; Kolodziejczyk, K.; Dragsted, L. O.; Myhrstad, M. C.; Blomhoff, R. Apple, Cherry, and Blackcurrant Increases Nuclear Factor Kappa B Activation in Liver of Transgenic Mice. Nutr. Cancer. 2010, 62(6), 841–848. From NLM Medline. DOI: 10.1080/01635581003695749.
  • Luis, A.; Domingues, F.; Pereira, L. Association Between Berries Intake and Cardiovascular Diseases Risk Factors: A Systematic Review with Meta-Analysis and Trial Sequential Analysis of Randomized Controlled Trials. Food Funct. 2018, 9(2), 740–757. From NLM Medline. DOI: 10.1039/c7fo01551h.
  • Vendrame, S.; Adekeye, T. E.; Klimis-Zacas, D. The Role of Berry Consumption on Blood Pressure Regulation and Hypertension: An Overview of the Clinical Evidence. Nutrients. 2022, 14(13), 13. From NLM Medline. DOI: 10.3390/nu14132701.
  • Tjelle, T. E.; Holtung, L.; Bohn, S. K.; Aaby, K.; Thoresen, M.; Wiik, S. A.; Paur, I.; Karlsen, A. S.; Retterstol, K.; Iversen, P. O., et al. Polyphenol-Rich Juices Reduce Blood Pressure Measures in a Randomised Controlled Trial in High Normal and Hypertensive Volunteers. Br. J. Nutr. 2015, 114(7), 1054–1063. From NLM Medline. DOI: 10.1017/S0007114515000562.
  • Cook, M. D.; Sandu, B. H. A. K.; Joyce Ph, D. J. Effect of New Zealand Blackcurrant on Blood Pressure, Cognitive Function and Functional Performance in Older Adults. J. Nutr. Gerontol. Geriatr. 2020, 39(2), 99–113. From NLM Medline. DOI: 10.1080/21551197.2019.1707740.
  • Coleman, S. L.; Shaw, O. M. Progress in the Understanding of the Pathology of Allergic Asthma and the Potential of Fruit Proanthocyanidins as Modulators of Airway Inflammation. Food Funct. 2017, 8(12), 4315–4324. From NLM Medline. DOI: 10.1039/c7fo00789b.
  • Burton-Freeman, B.; Brzezinski, M.; Park, E.; Sandhu, A.; Xiao, D.; Edirisinghe, I. A Selective Role of Dietary Anthocyanins and Flavan-3-Ols in Reducing the Risk of Type 2 Diabetes Mellitus: A Review of Recent Evidence. Nutrients. 2019, 11(4), 4. From NLM Medline. DOI: 10.3390/nu11040841.
  • Bowtell, J.; Kelly, V. Fruit-Derived Polyphenol Supplementation for Athlete Recovery and Performance. Sports Med. 2019, 49(Suppl 1), 3–23. From NLM Medline. DOI: 10.1007/s40279-018-0998-x.
  • Al-Horani, R. A. A Narrative Review of Exercise-Induced Oxidative Stress: Oxidative DNA Damage Underlined. Open Sports Sci. J. 2022, 15(1), 1. DOI: 10.2174/1875399X-v15-e2202220.
  • Li, S.; Fasipe, B.; Laher, I. Potential Harms of Supplementation with High Doses of Antioxidants in Athletes. J. Exerc. Sci. Fit. 2022, 20(4), 269–275. From NLM PubMed-not-MEDLINE. DOI: 10.1016/j.jesf.2022.06.001.
  • Wang, H.; Yang, Z.; Zhang, X.; Xie, J.; Xie, Y.; Gokulnath, P.; Vulugundam, G.; Xiao, J. Antioxidants Supplementation During Exercise: Friends or Enemies for Cardiovascular Homeostasis? J. Cardiovasc. Transl. Res. 2022. From NLM Publisher. DOI: 10.1007/s12265-022-10297-y.
  • Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. From NLM Medline. DOI: 10.1155/2017/8416763.
  • Heiberg, N.; Måge, F.; Haffner, K. Chemical Composition of Ten Blackcurrant (Ribes nigrumL.) Cultivars. Acta Agric. Scand. - B Soil Plant Sci. 1992, 42(4), 251–254. DOI: 10.1080/09064719209410221.
  • Boccorh, R. K.; Paterson, A.; Piggott, J. R. Factors Influencing Quantities of Sugars and Organic Acids in Blackcurrant Concentrates. Zeitschrift für Lebensmitteluntersuchung und -Forschung A. 1998, 206(4), 273–278. DOI: 10.1007/s002170050256.
  • Déniel, M.; Haarlemmer, G.; Roubaud, A.; Weiss-Hortala, E.; Fages, J. Hydrothermal Liquefaction of Blackcurrant Pomace and Model Molecules: Understanding of Reaction Mechanisms. Sustain. Energy Fuels. 2017, 1(3), 555–582. DOI: 10.1039/c6se00065g.
  • Takata, R.; Yamamoto, R.; Yanai, T.; Konno, T.; Okubo, T. Immunostimulatory Effects of a Polysaccharide-Rich Substance with Antitumor Activity Isolated from Black Currant (Ribes Nigrum L.). Biosci. Biotechnol. Biochem. 2005, 69(11), 2042–2050. DOI: 10.1271/bbb.69.2042.
  • Xu, Y.; Guo, Y.; Duan, S.; Wei, H.; Liu, Y.; Wang, L.; Huo, X.; Yang, Y. Effects of Ultrasound Irradiation on the Characterization and Bioactivities of the Polysaccharide from Blackcurrant Fruits. Ultrason. Sonochem. 2018, 49, 206–214. From NLM Medline. DOI: 10.1016/j.ultsonch.2018.08.005.
  • Ersoy, N.; Kupe, M.; Gundogdu, M.; Ilhan, G.; Ercisli, S. Phytochemical and Antioxidant Diversity in Fruits of Currant (Ribes Spp.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2018, 46(2), 381–387. DOI: 10.15835/nbha46211103.
  • Nigmatzyanov, R.; Sorokopudov, V.; Nazaryuk, N. Biochemical Composition of Black Currant Berries (Ribes Nigrum L.) for Development of New Cultivars in Bashkortostan. BIO Web Conf. 2021, 30, 04004. DOI: 10.1051/bioconf/20213004004.
  • Alba, K.; MacNaughtan, W.; Laws, A. P.; Foster, T. J.; Campbell, G. M.; Kontogiorgos, V. Fractionation and Characterisation of Dietary Fibre from Blackcurrant Pomace. Food Hydrocoll. 2018, 81, 398–408. DOI: 10.1016/j.foodhyd.2018.03.023.
  • U.S. Department of Agriculture. FoodData Central - Currants, European Black, Raw. 2019. https://fdc.nal.usda.gov/fdc-app.html#/food-details/173963/nutrients (accessed Oct 16 2022).
  • Gopalan, A.; Reuben, S. C.; Ahmed, S.; Darvesh, A. S.; Hohmann, J.; Bishayee, A. The Health Benefits of Blackcurrants. Food Funct. 2012, 3(8), 795–809. From NLM Medline. DOI: 10.1039/c2fo30058c.
  • Szajdek, A.; Borowska, E. J. Bioactive Compounds and Health-Promoting Properties of Berry Fruits: A Review. Plant Foods Hum. Nutr. 2008, 63(4), 147–156. From NLM Medline. DOI: 10.1007/s11130-008-0097-5.
  • Khoo, G. M.; Clausen, M. R.; Pedersen, H. L.; Larsen, E. Bioactivity and Chemical Composition of Blackcurrant (Ribes Nigrum) Cultivars with and Without Pesticide Treatment. Food Chem. 2012, 132(3), 1214–1220. From NLM PubMed-not-MEDLINE. DOI: 10.1016/j.foodchem.2011.11.087.
  • Paunović, S. M.; Nikolić, M.; Miletić, R.; Mašković, P. Vitamin and Mineral Content in Black Currant (Ribes Nigrum L.) Fruits as Affected by Soil Management System. Acta Sci. Pol. Hortoru. Cultus. 2017, 16(5), 135–144. DOI: 10.24326/asphc.2017.5.14.
  • Nour, V.; Trandafir, I.; Ionica, M. E. Ascorbic Acid, Anthocyanins, Organic Acids and Mineral Content of Some Black and Red Currant Cultivars. Fruits. 2011, 66(5), 353–362. DOI: 10.1051/fruits/2011049.
  • Alchera, F.; Ginepro, M.; Giacalone, G. Microwave-Assisted Extraction of Polyphenols from Blackcurrant By-Products and Possible Uses of the Extracts in Active Packaging. Foods. 2022, 11(18), 18. From NLM PubMed-not-MEDLINE. DOI: 10.3390/foods11182727.
  • Orjuela-Palacio, J. M.; Zamora, M. C.; Lanari, M. C. Physicochemical and Dynamic Sensory Characterization of a Yerba Mate/Blackcurrant Instant Beverage Powder Rich in Natural Antioxidants. J. Berry Res. 2019, 9(2), 195–208. DOI: 10.3233/jbr-180342.
  • Staszowska-Karkut, M.; Materska, M. Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes Nigrum L.), Raspberry (Rubus Idaeus), and Aronia (Aronia Melanocarpa). Nutrients. 2020, 12(2), 2. From NLM Medline. DOI: 10.3390/nu12020463.
  • Simerdova, B.; Bobrikova, M.; Lhotska, I.; Kaplan, J.; Krenova, A.; Satinsky, D. Evaluation of Anthocyanin Profiles in Various Blackcurrant Cultivars Over a Three-Year Period Using a Fast HPLC-DAD Method. Foods. 2021, 10(8), 8. From NLM PubMed-not-MEDLINE. DOI: 10.3390/foods10081745.
  • Yang, W.; Ma, X.; Laaksonen, O.; He, W.; Kallio, H.; Yang, B. Effects of Latitude and Weather Conditions on Proanthocyanidins in Blackcurrant (Ribes Nigrum) of Finnish Commercial Cultivars. J. Agric. Food. Chem. 2019, 67(51), 14038–14047. From NLM Medline. DOI: 10.1021/acs.jafc.9b06031.
  • Hollands, W.; Brett, G. M.; Radreau, P.; Saha, S.; Teucher, B.; Bennett, R. N.; Kroon, P. A. Processing Blackcurrants Dramatically Reduces the Content and Does Not Enhance the Urinary Yield of Anthocyanins in Human Subjects. Food Chem. 2008, 108(3), 869–878. From NLM PubMed-not-MEDLINE. DOI: 10.1016/j.foodchem.2007.11.052.
  • Ruiz Del Castillo, M. L.; Dobson, G. Varietal Differences in Terpene Composition of Blackcurrant (Ribes Nigrum L) Berries by Solid Phase Microextraction/Gas Chromatography. J. Sci. Food Agric. 2002, 82(13), 1510–1515. DOI: 10.1002/jsfa.1210.
  • D’Angelo, S. Polyphenols: Potential Beneficial Effects of These Phytochemicals in Athletes. Curr. Sports Med. Rep. 2020, 19(17), 260–265. DOI: 10.1249/JSR.0000000000000729.
  • Hargreaves, M.; Spriet, L. L. Skeletal Muscle Energy Metabolism During Exercise. Nat. Metab. 2020, 2(9), 817–828. From NLM Medline. DOI: 10.1038/s42255-020-0251-4.
  • Maughan, R. J.; Burke, L. M.; Dvorak, J.; Larson-Meyer, D. E.; Peeling, P.; Phillips, S. M.; Rawson, E. S.; Walsh, N. P.; Garthe, I.; Geyer, H., et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Br. J. Sports Med. 2018, 52(7), 439–455. From NLM Medline. DOI: 10.1136/bjsports-2018-099027.
  • Hawley, J. A.; Lundby, C.; Cotter, J. D.; Burke, L. M. Maximizing Cellular Adaptation to Endurance Exercise in Skeletal Muscle. Cell Metab. 2018, 27(5), 962–976. From NLM Medline. DOI: 10.1016/j.cmet.2018.04.014.
  • Mason, S. A.; Trewin, A. J.; Parker, L.; Wadley, G. D. Antioxidant Supplements and Endurance Exercise: Current Evidence and Mechanistic Insights. Redox Biol. 2020, 35, 101471. From NLM Medline. DOI: 10.1016/j.redox.2020.101471.
  • Awang Daud, D. M.; Ahmedy, F.; Baharuddin, D. M. P.; Zakaria, Z. A. Oxidative Stress and Antioxidant Enzymes Activity After Cycling at Different Intensity and Duration. Appl. Sci. 2022, 12(18), 18. DOI: 10.3390/app12189161.
  • Hudson, M. B.; Smuder, A. J.; Nelson, W. B.; Wiggs, M. P.; Shimkus, K. L.; Fluckey, J. D.; Szeto, H. H.; Powers, S. K. Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect Against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis. PLoS One. 2015, 10(9), e0137693. From NLM Medline. DOI: 10.1371/journal.pone.0137693.
  • Powers, S. K.; Deminice, R.; Ozdemir, M.; Yoshihara, T.; Bomkamp, M. P.; Hyatt, H. Exercise-Induced Oxidative Stress: Friend or Foe? J. Sport Health Sci. 2020, 9(5), 415–425. From NLM Medline. DOI: 10.1016/j.jshs.2020.04.001.
  • Ma, Y.; Feng, Y.; Diao, T.; Zeng, W.; Zuo, Y. Experimental and Theoretical Study on Antioxidant Activity of the Four Anthocyanins. J. Mol. Struct. 2020, 1204, 127509. DOI: 10.1016/j.molstruc.2019.127509.
  • Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C. K. Structure-Antioxidant Activity Relationship of Methoxy, Phenolic Hydroxyl, and Carboxylic Acid Groups of Phenolic Acids. Sci. Rep. 2020, 10(1), 2611. From NLM PubMed-not-MEDLINE. DOI: 10.1038/s41598-020-59451-z.
  • Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 Signaling in Oxidative and Reductive Stress. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865(5), 721–733. From NLM Medline. DOI: 10.1016/j.bbamcr.2018.02.010.
  • Visioli, F. Chapter 6 - Polyphenols in Sport: Facts or Fads? In Antioxidants in Sport Nutrition; Lamprecht, M., Ed.; Boca Raton: CRC Press/Taylor & Francis, 2015.
  • Carey, C. C.; Lucey, A.; Doyle, L. Flavonoid Containing Polyphenol Consumption and Recovery from Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis. Sports Med. 2021, 51(6), 1293–1316. From NLM Medline. DOI: 10.1007/s40279-021-01440-x.
  • Braakhuis, A. J.; Somerville, V. X.; Hurst, R. D. The Effect of New Zealand Blackcurrant on Sport Performance and Related Biomarkers: A Systematic Review and Meta-Analysis. J. Int. Soc. Sports Nutr. 2020, 17(1), 25. From NLM Medline. DOI: 10.1186/s12970-020-00354-9.
  • Cook, M. D.; Myers, S. D.; Blacker, S. D.; Willems, M. E. New Zealand Blackcurrant Extract Improves Cycling Performance and Fat Oxidation in Cyclists. Eur. J. Appl. Physiol. 2015, 115(11), 2357–2365. From NLM Medline. DOI: 10.1007/s00421-015-3215-8.
  • Cook, M. D.; Dunne, A.; Bosworth, M.; Willems, M. E. T. Effect of New Zealand Blackcurrant Extract on Force Steadiness of the Quadriceps Femoris Muscle During Sustained Submaximal Isometric Contraction. J. Funct. Morphol. Kinesiol. 2022, 7(2), 2. From NLM PubMed-not-MEDLINE. DOI: 10.3390/jfmk7020044.
  • Potter, J. A.; Hodgson, C. I.; Broadhurst, M.; Howell, L.; Gilbert, J.; Willems, M. E. T.; Perkins, I. C. Effects of New Zealand Blackcurrant Extract on Sport Climbing Performance. Eur. J. Appl. Physiol. 2020, 120(1), 67–75. From NLM Medline. DOI: 10.1007/s00421-019-04226-2.
  • Cook, M. D.; Myers, S. D.; Gault, M. L.; Edwards, V. C.; Willems, M. E. T. Dose Effects of New Zealand Blackcurrant on Substrate Oxidation and Physiological Responses During Prolonged Cycling. Eur. J. Appl. Physiol. 2017, 117(6), 1207–1216. From NLM Medline. DOI: 10.1007/s00421-017-3607-z.
  • Fryer, S.; Giles, D.; Bird, E.; Stone, K.; Paterson, C.; Balas, J.; Willems, M. E. T.; Potter, J. A.; Perkins, I. C. New Zealand Blackcurrant Extract Enhances Muscle Oxygenation During Repeated Intermittent Forearm Muscle Contractions in Advanced and Elite Rock Climbers. Eur. J. Sport. Sci. 2021, 21(9), 1290–1298. From NLM Medline. DOI: 10.1080/17461391.2020.1827048.
  • Willems, M. E. T.; Banic, M.; Cadden, R.; Barnett, L. Enhanced Walking-Induced Fat Oxidation by New Zealand Blackcurrant Extract is Body Composition-Dependent in Recreationally Active Adult Females. Nutrients. 2022, 14(7), 7. From NLM Medline. DOI: 10.3390/nu14071475.
  • Strauss, J. A.; Willems, M. E. T.; Shepherd, S. O. New Zealand Blackcurrant Extract Enhances Fat Oxidation During Prolonged Cycling in Endurance-Trained Females. Eur. J. Appl. Physiol. 2018, 118(6), 1265–1272. From NLM Medline. DOI: 10.1007/s00421-018-3858-3.
  • Hiles, A. M.; Flood, T. R.; Lee, B. J.; Wheeler, L. E. V.; Costello, R.; Walker, E. F.; Ashdown, K. M.; Kuennen, M. R.; Willems, M. E. T. Dietary Supplementation with New Zealand Blackcurrant Extract Enhances Fat Oxidation During Submaximal Exercise in the Heat. J. Sci. Med. Sport. 2020, 23(10), 908–912. From NLM Medline. DOI: 10.1016/j.jsams.2020.02.017.
  • Fryer, S.; Paterson, C.; Perkins, I. C.; Gloster, C.; Willems, M. E. T.; Potter, J. A. New Zealand Blackcurrant Extract Enhances Muscle Oxygenation During Forearm Exercise in Intermediate-Level Rock Climbers. Int. J. Sport Nutr. Exerc. Metab. 2020, 30(4), 258–263. From NLM Medline. DOI: 10.1123/ijsnem.2019-0365.
  • Perkins, I. C.; Vine, S. A.; Blacker, S. D.; Willems, M. E. New Zealand Blackcurrant Extract Improves High-Intensity Intermittent Running. Int. J. Sport Nutr. Exerc. Metab. 2015, 25(5), 487–493. From NLM Medline. DOI: 10.1123/ijsnem.2015-0020.
  • Willems, M. E.; Myers, S. D.; Gault, M. L.; Cook, M. D. Beneficial Physiological Effects with Blackcurrant Intake in Endurance Athletes. Int. J. Sport Nutr. Exerc. Metab. 2015, 25(4), 367–374. From NLM Medline. DOI: 10.1123/ijsnem.2014-0233.
  • Hunt, J. E. A.; Coelho, M. O. C.; Buxton, S.; Butcher, R.; Foran, D.; Rowland, D.; Gurton, W.; Macrae, H.; Jones, L.; Gapper, K. S., et al. Consumption of New Zealand Blackcurrant Extract Improves Recovery from Exercise-Induced Muscle Damage in Non-Resistance Trained Men and Women: A Double-Blind Randomised Trial. Nutrients. 2021, 13(8), 8. From NLM Medline. DOI: 10.3390/nu13082875.
  • Hutchison, A. T.; Flieller, E. B.; Dillon, K. J.; Leverett, B. D. Black Currant Nectar Reduces Muscle Damage and Inflammation Following a Bout of High-Intensity Eccentric Contractions. J. Diet. Suppl. 2016, 13(1), 1–15. From NLM Medline. DOI: 10.3109/19390211.2014.952864.
  • Cook, M. D.; Myers, S. D.; Gault, M. L.; Willems, M. E. T. Blackcurrant Alters Physiological Responses and Femoral Artery Diameter During Sustained Isometric Contraction. Nutrients. 2017, 9(6), 6. From NLM Medline. DOI: 10.3390/nu9060556.
  • Cook, M. D.; Myers, S. D.; Gault, M. L.; Edwards, V. C.; Willems, M. E. Cardiovascular Function During Supine Rest in Endurance-Trained Males with New Zealand Blackcurrant: A Dose-Response Study. Eur. J. Appl. Physiol. 2017, 117(2), 247–254. From NLM Medline. DOI: 10.1007/s00421-016-3512-x.
  • Orru, S.; Imperlini, E.; Nigro, E.; Alfieri, A.; Cevenini, A.; Polito, R.; Daniele, A.; Buono, P.; Mancini, A. Role of Functional Beverages on Sport Performance and Recovery. Nutrients. 2018, 10(10), 10. From NLM Medline. DOI: 10.3390/nu10101470.
  • Carvalho-Peixoto, J.; Moura, M. R.; Cunha, F. A.; Lollo, P. C.; Monteiro, W. D.; Carvalho, L. M.; Farinatti Pde, T. Consumption of Acai (Euterpe Oleracea Mart.) Functional Beverage Reduces Muscle Stress and Improves Effort Tolerance in Elite Athletes: A Randomized Controlled Intervention Study. Appl. Physiol. Nutr. Metab. 2015, 40(7), 725–733. From NLM Medline. DOI: 10.1139/apnm-2014-0518.
  • Raikos, V.; Ni, H.; Hayes, H.; Ranawana, V. Antioxidant Properties of a Yogurt Beverage Enriched with Salal (Gaultheria Shallon) Berries and Blackcurrant (Ribes Nigrum) Pomace During Cold Storage. Beverages. 2018, 5(1), 1. DOI: 10.3390/beverages5010002.
  • Jakubczyk, K.; Koprowska, K.; Gottschling, A.; Janda-Milczarek, K. Edible Flowers as a Source of Dietary Fibre (Total, Insoluble and Soluble) as a Potential Athlete’s Dietary Supplement. Nutrients. 2022, 14(12), 12. From NLM Medline. DOI: 10.3390/nu14122470.
  • Prasad, K. N.; Bondy, S. C. Dietary Fibers and Their Fermented Short-Chain Fatty Acids in Prevention of Human Diseases. Bioact. Carbohydr. Dietary Fibre. 2019, 17, 100170. DOI: 10.1016/j.bcdf.2018.09.001.
  • Sugiyama, F.; Yamaguchi, T.; Hu, A.; Kobayashi, A.; Kobayashi, H. Effects of Fiber Supplementation for Four Weeks on Athletic Performance in Japanese College Athletes: A Case Study—Measurement of the Athletic Performance, Salivary Biomarkers of Stress, and Mood, Affect Balance. Health. 2017, 9(3), 556–567. DOI: 10.4236/health.2017.93039.
  • Schmidt, C.; Geweke, I.; Struck, S.; Zahn, S.; Rohm, H. Blackcurrant Pomace from Juice Processing as Partial Flour Substitute in Savoury Crackers: Dough Characteristics and Product Properties. Int. J. Food Sci. Technol. 2017, 53(1), 237–245. DOI: 10.1111/ijfs.13639.
  • Drożdż, W.; Boruczkowska, H.; Boruczkowski, T.; Tomaszewska-Ciosk, E.; Zdybel, E. Use of Blackcurrant and Chokeberry Press Residue in Snack Products. Pol. J. Chem. Technol. 2019, 21(1), 13–19. DOI: 10.2478/pjct-2019-0003.
  • Schopf, M.; Scherf, K. A. Water Absorption Capacity Determines the Functionality of Vital Gluten Related to Specific Bread Volume. Foods. 2021, 10, 2. From NLM PubMed-not-MEDLINE. DOI: 10.3390/foods10020228.
  • Ortolan, F.; Steel, C. J. Protein Characteristics That Affect the Quality of Vital Wheat Gluten to Be Used in Baking: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16(3), 369–381. From NLM PubMed-not-MEDLINE. DOI: 10.1111/1541-4337.12259.
  • Pourmohammadi, K.; Abedi, E. Enzymatic Modifications of Gluten Protein: Oxidative Enzymes. Food Chem. 2021, 356, 129679. From NLM Medline. DOI: 10.1016/j.foodchem.2021.129679.
  • Sharma, N.; Bhatia, S.; Chunduri, V.; Kaur, S.; Sharma, S.; Kapoor, P.; Kumari, A.; Garg, M. Pathogenesis of Celiac Disease and Other Gluten Related Disorders in Wheat and Strategies for Mitigating Them. Front Nutr. 2020, 7, 6. From NLM PubMed-not-MEDLINE. DOI: 10.3389/fnut.2020.00006.
  • Kreutz, J. M.; Adriaanse, M. P. M.; van der Ploeg, E. M. C.; Vreugdenhil, A. C. E. Narrative Review: Nutrient Deficiencies in Adults and Children with Treated and Untreated Celiac Disease. Nutrients. 2020, 12(2), 2. From NLM Medline. DOI: 10.3390/nu12020500.
  • Korus, J.; Juszczak, L.; Ziobro, R.; Witczak, M.; Grzelak, K.; SÓJka, M. Defatted Strawberry and Blackcurrant Seeds as Functional Ingredients of Gluten-Free Bread. J. Texture Stud. 2012, 43(1), 29–39. DOI: 10.1111/j.1745-4603.2011.00314.x.
  • Gagneten, M.; Archaina, D. A.; Salas, M. P.; Leiva, G. E.; Salvatori, D. M.; Schebor, C. Gluten‐free Cookies Added with Fibre and Bioactive Compounds from Blackcurrant Residue. Int. J. Food Sci. Technol. 2020, 56(4), 1734–1740. DOI: 10.1111/ijfs.14798.