809
Views
0
CrossRef citations to date
0
Altmetric
Review

Rice Starch Phase Transition and Detection During Resistant Starch Formation

, , , , , , ORCID Icon & ORCID Icon show all

References

  • Birt, D. F.; Boylston, T.; Hendrich, S.; Jane, J.-L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G. J.; Rowling, M., et al. Resistant Starch: Promise for Improving Human Health. Adv. Nutr. 2013, 4(6), 587–601.
  • Gani, A.; Ashwar, B. A.; Akhter, G.; Gani, A.; Shah, A.; Masoodi, F. A.; Wani, I. A. Resistant Starch from Five Himalayan Rice Cultivars and Horse Chestnut: Extraction Method Optimization and Characterization. Sci. Rep. 2020, 10(1), 4097. DOI: 10.1038/s41598-020-60770-4.
  • Sahoo, B.; Roy, A. Structure–Function Relationship of Resistant Starch Formation: Enhancement Technologies and Need for More Viable Alternatives for Whole Rice Grains. J. Food Process. Eng. 2022, e14214. DOI: 10.1111/JFPE.14214.
  • Saha, S.; Roy, A. Puffed Rice: A Materialistic Understanding of Rice Puffing and Its Associated Changes in Physicochemical and Nutritional Characteristics. J. Food Process. Eng. 2020, 43(9), 1–14. DOI: 10.1111/jfpe.13479.
  • Saha, S.; Roy, A. Whole Grain Rice Fortification as a Solution to Micronutrient Deficiency: Technologies and Need for More Viable Alternatives. Food Chem. 2020, 326, 127049. DOI: 10.1016/J.FOODCHEM.2020.127049.
  • Liu, T.; Zhang, B.; Wang, L.; Zhao, S.; Qiao, D.; Zhang, L.; Xie, F. Microwave Reheating Increases the Resistant Starch Content in Cooked Rice with High Water Contents. Int. J. Biol. Macromol. 2021, 184, 804–811. DOI: 10.1016/J.IJBIOMAC.2021.06.136.
  • Englyst, K.; Goux, A.; Meynier, A.; Quigley, M.; Englyst, H.; Brack, O.; Vinoy, S. Inter-Laboratory Validation of the Starch Digestibility Method for Determination of Rapidly Digestible and Slowly Digestible Starch. Food Chem. 2018, 245, 1183–1189. DOI: 10.1016/j.foodchem.2017.11.037.
  • Goñi, I.; García-Diz, L.; Mañas, E.; Saura-Calixto, F. Analysis of Resistant Starch: A Method for Foods and Food Products. Food Chem. 1996, 56(4), 445–449. DOI: 10.1016/0308-8146(95)00222-7.
  • Tripathi, V.; Verma, J. Different Models Used to Induce Diabetes: A Comprehensive Review. Int. J. Pharm. Pharm. Sci. 2014, 6(6), 29–32.
  • Patindol, J.; Newton, J.; Wang, Y. J. Functional Properties as Affected by Laboratory-Scale Parboiling of Rough Rice and Brown Rice. J. Food Sci. 2008, 73(8), E370–377. DOI: 10.1111/j.1750-3841.2008.00926.x.
  • Dhital, S.; Butardo, V. M.; Jobling, S. A.; Gidley, M. J. Rice Starch Granule Amylolysis - Differentiating Effects of Particle Size, Morphology, Thermal Properties and Crystalline Polymorph. Carbohydr. Polym. 2014, 115, 305–316. DOI: 10.1016/j.carbpol.2014.08.091.
  • Wang, L.; Zhang, C.; Chen, Z.; Wang, X.; Wang, K.; Li, Y.; Wang, R.; Luo, X.; Li, Y.; Li, J. Effect of Annealing on the Physico-Chemical Properties of Rice Starch and the Quality of Rice Noodles. J. Cereal Sci. 2018, 84, 125–131. DOI: 10.1016/j.jcs.2018.10.004.
  • Yang, C. Z.; Shu, X. L.; Zhang, L. L.; Wang, X. Y.; Zhao, H. J.; Ma, C. X.; Wu, D. X. Starch Properties of Mutant Rice High in Resistant Starch. J. Agric. Food. Chem. 2005, 54(2), 523–528. DOI: 10.1021/JF0524123.
  • Ye, J.; Luo, S.; Huang, A.; Chen, J.; Liu, C.; McClements, D. J. Synthesis and Characterization of Citric Acid Esterified Rice Starch by Reactive Extrusion: A New Method of Producing Resistant Starch. Food Hydrocoll. 2019, 92, 135–142. DOI: 10.1016/j.foodhyd.2019.01.064.
  • Yi, D.; Maike, W.; Yi, S.; Xiaoli, S.; Dianxing, W.; Wenjian, S. Physiochemical Properties of Resistant Starch and Its Enhancement Approaches in Rice. Rice Sci. 2021, 28(1), 31–42. DOI: 10.1016/J.RSCI.2020.11.005.
  • Shamai, K.; Bianco-Peled, H.; Shimoni, E. Polymorphism of Resistant Starch Type III. Carbohydr. Polym. 2003, 54(3), 363–369. DOI: 10.1016/S0144-8617(03)00192-9.
  • Buléon, A.; Gérard, C.; Riekel, C.; Vuong, R.; Chanzy, H. Details of the Crystalline Ultrastructure of C-Starch Granules, Revealed by Synchrotron Microfocus Mapping. Macromolecules. 1998, 31(19), 6605–6610. DOI: 10.1021/ma980739h.
  • Li, L.; Liu, Z.; Zhang, W.; Xue, B.; Luo, Z. Production and Applications of Amylose-Lipid Complexes as Resistant Starch: Recent Approaches. Starch - Stärke. 2021, 73(5–6), 5–6. DOI: 10.1002/STAR.202000249.
  • Chung, H. J.; Liu, Q.; Lee, L.; Wei, D. Relationship Between the Structure, Physicochemical Properties and in vitro Digestibility of Rice Starches with Different Amylose Contents. Food Hydrocoll. 2011, 25(5), 968–975. DOI: 10.1016/J.FOODHYD.2010.09.011.
  • Lockyer, S.; Nugent, A. P. Health Effects of Resistant Starch. Nutr. Bull. 2017, 42(1), 10–41. DOI: 10.1111/nbu.12244.
  • Ashwar, B. A.; Jan, N.; Gani, A.; Shah, A.; Masoodi, F. A. Physicochemical Properties, in-Vitro Digestibility and Structural Elucidation of RS4 from Rice Starch. Int. J. Biol. Macromol. 2017, 105(Pt 1), 471–477. DOI: 10.1016/j.ijbiomac.2017.07.057.
  • Eliasson, A. C. Interactions Between Starch and Lipids Studied by DSC. Thermochim. Acta. 1994, 246(2), 343–356. DOI: 10.1016/0040-6031(94)80101-0.
  • Zhang, H.; Zhou, L.; Xu, H.; Wang, L.; Liu, H.; Zhang, C.; Li, Q.; Gu, M.; Wang, C.; Liu, Q., et al. The QSAC3 Locus from Indica Rice Effectively Increases Amylose Content Under a Variety of Conditions. BMC. Plant Biol. 2019, 19(1), 275.
  • Marsono, Y.; Topping, D. L. Complex Carbohydrates in Australian Rice Products-Influence of Microwave Cooking and Food Processing. LWT - Food Sci. Technol. 1993, 26(4), 364–370. DOI: 10.1006/fstl.1993.1072.
  • Shi, M.; Gu, F.; Wu, J.; Yu, S.; Gao, Q. Preparation, Physicochemical Properties, and in vitro Digestibility of Cross-Linked Resistant Starch from Pea Starch. Starch - Stärke. 2013, 65(11–12), 947–953. DOI: 10.1002/star.201300008.
  • Mccleary, B. V. Total Dietary Fiber (CODEX Definition) in Foods and Food Ingredients by a Rapid Enzymatic-Gravimetric Method and Liquid Chromatography: Collaborative Study, First Action 2017.16. J. AOAC Int. 2018, 102(1), 196–207. DOI: 10.5740/JAOACINT.18-0180.
  • Muir, J. G.; O’Dea, K. Validation of an in vitro Assay for Predicting the Amount of Starch That Escapes Digestion in the Small Intestine of Humans. Am. J. Clin. Nutr. 1993, 57(4), 540–546. DOI: 10.1093/AJCN/57.4.540.
  • Zhou, Y.; Meng, S.; Chen, D.; Zhu, X.; Yuan, H. Structure Characterization and Hypoglycemic Effects of Dual Modified Resistant Starch from Indica Rice Starch. Carbohydr. Polym. 2014, 103(1), 81–86. DOI: 10.1016/j.carbpol.2013.12.020.
  • Strozyk, S.; Rogowicz-Frontczak, A.; Pilacinski, S.; Lethanh-Blicharz, J.; Koperska, A.; Zozulinska-Ziolkiewicz, D. Influence of Resistant Starch Resulting from the Cooling of Rice on Postprandial Glycemia in Type 1 Diabetes. Nutr Diabetes. 2022, 12(1), 21. DOI: 10.1038/s41387-022-00196-1.
  • Sun, H.; Ma, X.; Zhang, S.; Zhao, D.; Liu, X. Resistant Starch Produces Antidiabetic Effects by Enhancing Glucose Metabolism and Ameliorating Pancreatic Dysfunction in Type 2 Diabetic Rats. Int. J. Biol. Macromol. 2018, 110, 276–284. DOI: 10.1016/j.ijbiomac.2017.11.162.
  • Lei, Z.; Ting, L. I. H.; Li, S.; Chen, F. Q.; Ling, Q. L.; Ping, J. I. A. W. Effect of Dietary Resistant Starch on Prevention and Treatment of Obesity-Related Diseases and Its Possible Mechanisms. Biomed. Environ. Sci. 2015, 28(4), 291–297. DOI: 10.3967/bes2015.040.
  • Aziz, A. A.; Kenney, L. S.; Goulet, B.; Abdel-Aal, E. S. Dietary Starch Type Affects Body Weight and Glycemic Control in Freely Fed but Not Energy-Restricted Obese Rats. J. Nutr. 2009, 139(10), 1881–1889. DOI: 10.3945/jn.109.110650.
  • Shen, L.; Keenan, M. J.; Raggio, A.; Williams, C.; Martin, R. J. Dietary-Resistant Starch Improves Maternal Glycemic Control in Goto-Kakizaki Rat. Mol. Nutr Food Res. 2011, 55(10), 1499–1508. DOI: 10.1002/mnfr.201000605.
  • Kim, W. K.; Chung, M. K.; Kang, N. E.; Kim, M. H.; Park, O. J. Effect of Resistant Starch from Corn or Rice on Glucose Control, Colonic Events, and Blood Lipid Concentrations in Streptozotocin-Induced Diabetic Rats. J. Nutr Biochem. 2003, 14(3), 166–172. DOI: 10.1016/S0955-2863(02)00281-4.
  • Kumar, S.; Prasad, K. Effect of Parboiling and Puffing Processes on the Physicochemical, Functional, Optical, Pasting, Thermal, Textural and Structural Properties of Selected Indica Rice. J. Food Meas. Charact. 2018, 12(3), 1707–1722. DOI: 10.1007/s11694-018-9786-4.
  • Wu, J.; McClements, D. J.; Chen, J.; Hu, X.; Liu, C. Improvement in Nutritional Attributes of Rice Using Superheated Steam Processing. J. Funct. Foods. 2016, 24, 338–350. DOI: 10.1016/j.jff.2016.04.019.
  • Zhong, C.; Xiong, Y.; Lu, H.; Luo, S.; Wu, J.; Ye, J.; Liu, C. Preparation and Characterization of Rice Starch Citrates by Superheated Steam: A New Strategy of Producing Resistant Starch. LWT. 2022, 154, 112890. DOI: 10.1016/J.LWT.2021.112890.
  • Sha, X. S.; Xiang, Z. J.; Bin, L.; Jing, L.; Bin, Z.; Jiao, Y. J.; Kun, S. R. Preparation and Physical Characteristics of Resistant Starch (Type 4) in Acetylated Indica Rice. Food Chem. 2012, 134(1), 149–154. DOI: 10.1016/j.foodchem.2012.02.081.
  • Derycke, V.; Vandeputte, G. E.; Vermeylen, R.; De Man, W.; Goderis, B.; Koch, M. H. J.; Delcour, J. A. Starch Gelatinization and Amylose–Lipid Interactions During Rice Parboiling Investigated by Temperature Resolved Wide Angle X-Ray Scattering and Differential Scanning Calorimetry. J. Cereal Sci. 2005, 42(3), 334–343. DOI: 10.1016/J.JCS.2005.05.002.
  • Ashwar, B. A.; Gani, A.; Wani, I. A.; Shah, A.; Masoodi, F. A.; Saxena, D. C. Production of Resistant Starch from Rice by Dual Autoclaving-Retrogradation Treatment: Invitro Digestibility, Thermal and Structural Characterization. Food Hydrocoll. 2016, 56, 108–117. DOI: 10.1016/j.foodhyd.2015.12.004.
  • Raungrusmee, S.; Anal, A. K. Effects of Lintnerization, Autoclaving, and Freeze-Thaw Treatments on Resistant Starch Formation and Functional Properties of Pathumthani 80 Rice Starch. Foods. 2019, 8(11), 558. DOI: 10.3390/FOODS8110558.
  • Van Hung, P.; Binh, V. T.; Nhi, P. H. Y.; Phi, N. T. L. Effect of Heat-Moisture Treatment of Unpolished Red Rice on Its Starch Properties and in vitro and in vivo Digestibility. Int. J. Biol. Macromol. 2020, 154, 1–8. DOI: 10.1016/J.IJBIOMAC.2020.03.071.
  • Li, J.; Han, W.; Xu, J.; Xiong, S.; Zhao, S. Comparison of Morphological Changes and in vitro Starch Digestibility of Rice Cooked by Microwave and Conductive Heating. Starch - Stärke. 2014, 66(5–6), 549–557. DOI: 10.1002/STAR.201300208.
  • Butardo, V. M.; Fitzgerald, M. A.; Bird, A. R.; Gidley, M. J.; Flanagan, B. M.; Larroque, O.; Resurreccion, A. P.; Laidlaw, H. K. C.; Jobling, S. A.; Morell, M. K., et al. Impact of Down-Regulation of Starch Branching Enzyme IIb in Rice by Artificial MicroRna-And Hairpin RNA-Mediated RNA Silencing. J. Exp. Bot. 2011, 62(14), 4927–4941.
  • Shi, M. M.; Gao, Q. Y. Physicochemical Properties, Structure and in vitro Digestion of Resistant Starch from Waxy Rice Starch. Carbohydr. Polym. 2011, 84(3), 1151–1157. DOI: 10.1016/j.carbpol.2011.01.004.
  • Lugay, J. C.; Juliano, B. O. Crystallinity of Rice Starch and Its Fractions in Relation to Gelatinization and Pasting Characteristics. J. Appl. Polym. Sci. 1965, 9(11), 3775–3790. DOI: 10.1002/app.1965.070091124.
  • Chang, R.; Jin, Z.; Lu, H.; Qiu, L.; Sun, C.; Tian, Y. Type III Resistant Starch Prepared from Debranched Starch: Structural Changes Under Simulated Saliva, Gastric, and Intestinal Conditions and the Impact on Short-Chain Fatty Acid Production. J. Agric. Food. Chem. 2021, 69(8), 2595–2602. DOI: 10.1021/ACS.JAFC.0C07664.
  • Iturriaga, L.; Lopez, B.; Añon, M. Thermal and Physicochemical Characterization of Seven Argentine Rice Flours and Starches. Food. Res. Int. 2004, 37(5), 439–447. DOI: 10.1016/j.foodres.2003.12.005.
  • Kiatponglarp, W.; Tongta, S.; Rolland-Sabaté, A.; Buléon, A. Crystallization and Chain Reorganization of Debranched Rice Starches in Relation to Resistant Starch Formation. Carbohydr. Polym. 2015, 122, 108–114. DOI: 10.1016/J.CARBPOL.2014.12.070.
  • Ye, J.; Hu, X.; Luo, S.; McClements, D. J.; Liang, L.; Liu, C. Effect of Endogenous Proteins and Lipids on Starch Digestibility in Rice Flour. Food. Res. Int. 2018, 106, 404–409. DOI: 10.1016/J.FOODRES.2018.01.008.
  • Tsuiki, K.; Fujisawa, H.; Itoh, A.; Sato, M.; Fujita, N. Alterations of Starch Structure Lead to Increased Resistant Starch of Steamed Rice: Identification of High Resistant Starch Rice Lines. J. Cereal Sci. 2016, 68, 88–92. DOI: 10.1016/j.jcs.2016.01.002.
  • Mahadevamma, S.; Tharanathan, R. N. Processed Rice Starch Characteristics and Morphology. Eur. Food Res. Technol. 2007, 225(3–4), 603–612. DOI: 10.1007/s00217-006-0419-5.
  • Khunae, P.; Tran, T.; Sirivongpaisal, P. Effect of Heat-Moisture Treatment on Structural and Thermal Properties of Rice Starches Differing in Amylose Content. Starch/Staerke. 2007, 59(12), 593–599. DOI: 10.1002/star.200700618.
  • Dutta, H.; Mahanta, C. L. Effect of Hydrothermal Treatment Varying in Time and Pressure on the Properties of Parboiled Rices with Different Amylose Content. Food. Res. Int. 2012, 49(2), 655–663. DOI: 10.1016/j.foodres.2012.09.014.
  • Zhong, Y.; Tian, Y.; Liu, X.; Ding, L.; Kirkensgaard, J. J. K.; Hebelstrup, K.; Putaux, J. L.; Blennow, A. Influence of Microwave Treatment on the Structure and Functionality of Pure Amylose and Amylopectin Systems. Food Hydrocoll. 2021, 119, 106856. DOI: 10.1016/J.FOODHYD.2021.106856.
  • Biliaderis, C. G. Differential Scanning Calorimetry in Food Research—a Review. Food Chem. Apr, 1983, 10(4), 239–265. DOI: 10.1016/0308-8146(83)90081-X.
  • Abd-Elghany, M.; Klapötke, T. M. A Review on Differential Scanning Calorimetry Technique and Its Importance in the Field of Energetic Materials. Phys. Sci. Rev. 2018, 3(4). DOI: 10.1515/psr-2017-0103.
  • Patindol, J.; Wang, Y. J.; Jane, J. L. Structure-Functionality Changes in Starch Following Rough Rice Storage. Starch/Staerke. 2005, 57(5), 197–207. DOI: 10.1002/star.200400367.
  • Thirathumthavorn, D.; Charoenrein, S. Thermal and Pasting Properties of Native and Acid-Treated Starches Derivatized by 1-Octenyl Succinic Anhydride. Carbohydr. Polym. 2006, 66(2), 258–265. DOI: 10.1016/j.carbpol.2006.03.016.
  • Moin, A.; Ali, T. M.; Hasnain, A. Thermal, Morphological, and Physicochemical Characteristics of Succinylated–Crosslinked Rice Starches. Cereal Chem. 2019, 96(5), 885–894. DOI: 10.1002/cche.10191.
  • Lamberts, L.; Gomand, S. V.; Derycke, V.; Delcour, J. A. Presence of Amylose Crystallites in Parboiled Rice. J. Agric. Food. Chem. 2009, 57(8), 3210–3216. DOI: 10.1021/JF803385M.
  • Mahanta, C. L.; Bhattacharya, K. R. Relationship of Starch Changes to Puffing Expansion of Parboiled Rice. J. Food Sci. Technol. 2010, 47(2), 182–187. DOI: 10.1007/s13197-010-0038-9.
  • Saha, S.; Roy, A. Selecting High Amylose Rice Variety for Puffing: A Correlation Between Physicochemical Parameters and Sensory Preferences. Meas. Food. 2022, 5, 100021. DOI: 10.1016/J.MEAFOO.2021.100021.
  • Cao, W.; Nishiyama, Y.; Koide, S. Physicochemical, Mechanical and Thermal Properties of Brown Rice Grain with Various Moisture Contents. Int. J. Food Sci. Technol. 2004, 39(9), 899–906. DOI: 10.1111/j.1365-2621.2004.00849.x.
  • Normand, F. L.; Marshall, W. E. Differential Scanning Calorimetry of Whole Grain Milled Rice and Milled Rice Flour. Cereal Chem. 1989, 66, 317–320.
  • Gunaratne, A.; Hoover, R. Effect of Heat-Moisture Treatment on the Structure and Physicochemical Properties of Tuber and Root Starches. Carbohydr. Polym. 2002, 49(4), 425–437. DOI: 10.1016/S0144-8617(01)00354-X.
  • Lim, S. T.; Chang, E. H.; Chung, H. J. Thermal Transition Characteristics of Heat-Moisture Treated Corn and Potato Starches. Carbohydr. Polym. 2001, 46(2), 107–115. DOI: 10.1016/S0144-8617(00)00287-3.
  • Jane, J.; Chen, Y. Y.; Lee, L. F.; McPherson, A. E.; Wong, K. S.; Radosavljevic, M.; Kasemsuwan, T. Effects of Amylopectin Branch Chain Length and Amylose Content on the Gelatinization and Pasting Properties of Starch. Cereal Chem. 1999, 76(5), 629–637. DOI: 10.1094/CCHEM.1999.76.5.629.
  • Ong, M. H.; Blanshard, J. M. V. Texture Determinants of Cooked, Parboiled Rice. II: Physicochemical Properties and Leaching Behaviour of Rice. J. Cereal Sci. 1995, 21(3), 261–269. DOI: 10.1006/JCRS.1995.0029.
  • Xu, F.; Chen, Z.; Huang, M.; Li, C.; Zhou, W. Effect of Intermittent Microwave Drying on Biophysical Characteristics of Rice. J. Food Process. Eng. 2017, 40(6), e12590. DOI: 10.1111/jfpe.12590.
  • Anastasakis, K.; Ross, A. B.; Jones, J. M. Pyrolysis Behaviour of the Main Carbohydrates of Brown Macro-Algae. Fuel. 2011, 90(2), 598–607. DOI: 10.1016/j.fuel.2010.09.023.
  • Yao, C.; Wang, X.; Zhou, Y.; Jin, X.; Song, L.; Hu, Y.; Zeng, W. Thermogravimetric Analysis and Kinetics Characteristics of Typical Grains. J. Therm. Anal. Calorim. 2020, 143(1), 647–659. DOI: 10.1007/s10973-019-09213-5.
  • Tian, Y.; Li, Y.; Xu, X.; Jin, Z. Starch Retrogradation Studied by Thermogravimetric Analysis (TGA). Carbohydr. Polym. 2011, 84(3), 1165–1168. DOI: 10.1016/j.carbpol.2011.01.006.
  • Totaro, G.; Sisti, L.; Vannini, M.; Marchese, P.; Tassoni, A.; Lenucci, M. S.; Lamborghini, M.; Kalia, S.; Celli, A. A New Route of Valorization of Rice Endosperm By-Product: Production of Polymeric Biocomposites. Compos. Part B Eng. 2018, 139, 195–202. DOI: 10.1016/j.compositesb.2017.11.055.
  • Henning, F. G.; Schnitzler, E.; Demiate, I. M.; Lacerda, L. G.; Ito, V. C.; Malucelli, L. C.; da Silva Carvalho Filho, M. A. Fortified Rice Starches: The Role of Hydrothermal Treatments in Zinc Entrapment. Starch/Staerke. 2019, 71(1–2), 1800130. DOI: 10.1002/star.201800130.
  • Qiu, C.; Cao, J.; Xiong, L.; Sun, Q. Differences in Physicochemical, Morphological, and Structural Properties Between Rice Starch and Rice Flour Modified by Dry Heat Treatment. Starch/Staerke. 2015, 67(9–10), 756–764. DOI: 10.1002/star.201500016.
  • Teramoto, N.; Motoyama, T.; Yosomiya, R.; Shibata, M. Synthesis, Thermal Properties, and Biodegradability of Propyl-Etherified Starch. Eur. Polym. J. 2003, 39(2), 255–261. DOI: 10.1016/S0014-3057(02)00199-4.
  • Stawski, D. New Determination Method of Amylose Content in Potato Starch. Food Chem. 2008, 110(3), 777–781. DOI: 10.1016/j.foodchem.2008.03.009.
  • Liu, X.; Wang, Y.; Yu, L.; Tong, Z.; Chen, L.; Liu, H.; Li, X. Thermal Degradation and Stability of Starch Under Different Processing Conditions. Starch - Stärke. 2013, 65(1–2), 48–60. DOI: 10.1002/star.201200198.
  • Aburto, J.; Alric, I.; Thiebaud, S.; Borredon, E.; Bikiaris, D.; Prinos, J.; Panayiotou, C. Synthesis, Characterization, and Biodegradability of Fatty-Acid Esters of Amylose and Starch. J. Appl. Polym. Sci. 1999, 74(6), 1440–1451. DOI: 10.1002/SICI1097-46281999110774:6<1440:AID-APP17>3.0.CO;2-V.
  • Elomaa, M.; Asplund, T.; Soininen, P.; Laatikainen, R.; Peltonen, S.; Hyvärinen, S.; Urtti, A. Determination of the Degree of Substitution of Acetylated Starch by Hydrolysis, 1H NMR and TGA/IR. Carbohydr. Polym. 2004, 57(3), 261–267. DOI: 10.1016/j.carbpol.2004.05.003.
  • Wahengbam, E. D.; Green, B. D.; Hazarika, M. K. Characterization of a Novel Folic Acid-Fortified Ready-To-Eat Parboiled Rice. Cereal Chem. 2019, 96(3), 439–446. DOI: 10.1002/cche.10143.
  • Ramazan, K.; Joseph, I.; Seetharaman, K. Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. J. Agric. Food. Chem. 2002, 50(14), 3912–3918. DOI: 10.1021/JF011652P.
  • Cael, S. J.; Koenig, J. L.; Blackwell, J. Infrared and Raman Spectroscopy of Carbohydrates. Part III: Raman Spectra of the Polymorphic Forms of Amylose. Carbohydr. Res. 1973, 29(1), 123–134. DOI: 10.1016/S0008-6215(00)82075-3.
  • Zhang, J.; Chen, F.; Liu, F.; Wang, Z. W. Study on Structural Changes of Microwave Heat-Moisture Treated Resistant Canna Edulis Ker Starch During Digestion in vitro. Food Hydrocoll. 2010, 24(1), 27–34. DOI: 10.1016/j.foodhyd.2009.07.005.
  • Acquistucci, R.; Melini, V.; Cecconi, S.; Mecozzi, M. Evaluation of Rheological Properties of Four Italian Rice Samples and Starch Thereof by Rva and Ftir Spectroscopy Supported by Double Two-Dimensional Correlation Analysis: Evidence of Lipid-Carbohydrate Interactions. Cereal Chem. 2016, 93(5), 456–464. DOI: 10.1094/CCHEM-08-15-0160-R.
  • Gamonpilas, C.; Pongjaruvat, W.; Fuongfuchat, A.; Methacanon, P.; Seetapan, N.; Thamjedsada, N. Physicochemical and Rheological Characteristics of Commercial Chili Sauces as Thickened by Modified Starch or Modified Starch/Xanthan Mixture. J. Food Eng. 2011, 105(2), 233–240. DOI: 10.1016/j.jfoodeng.2011.02.024.
  • Ye, L.; Wang, C.; Wang, S.; Zhou, S.; Liu, X. Thermal and Rheological Properties of Brown Flour from Indica Rice. J. Cereal Sci. 2016, 70, 270–274. DOI: 10.1016/j.jcs.2016.07.007.
  • Muñoz, L. A.; Pedreschi, F.; Leiva, A.; Aguilera, J. M. Loss of Birefringence and Swelling Behavior in Native Starch Granules: Microstructural and Thermal Properties. J. Food Eng. 2015, 152, 65–71. DOI: 10.1016/J.JFOODENG.2014.11.017.
  • Budi, F. S.; Hariyadi, P.; Budijanto, S.; Syah, D. Effect of Extrusion Temperature and Moisture Content of Corn Flour on Crystallinity and Hardness of Rice Analogues. AIP Conf. Proc. 2015, 1699(1), 030001. DOI: 10.1063/1.4938286.
  • Krishnan, V.; Awana, M.; Samota, M. K.; Warwate, S. I.; Kulshreshtha, A.; Ray, M.; Bollinedi, H.; Singh, A. K.; Thandapilly, S. J.; Praveen, S., et al. Pullulanase Activity: A Novel Indicator of Inherent Resistant Starch in Rice (Oryza Sativa. L). Int. J. Biol. Macromol. 2020, 152, 1213–1223. DOI: 10.1016/j.ijbiomac.2019.10.218.
  • Shu, X.; Sun, J.; Wu, D. Effects of Grain Development on Formation of Resistant Starch in Rice. Food Chem. 2014, 164, 89–97. DOI: 10.1016/j.foodchem.2014.05.014.
  • Behera, G.; Sutar, P. P. Effect of Convective, Infrared and Microwave Heating on Drying Rates, Mass Transfer Characteristics, Milling Quality and Microstructure of Steam Gelatinized Paddy. J. Food Process. Eng. 2018, 41(8), e12900. DOI: 10.1111/jfpe.12900.
  • Taechapairoj, C.; Prachayawarakorn, S.; Soponronnarit, S. Characteristics of Rice Dried in Superheated-Steam Fluidized-Bed. Dry. Technol. 2004, 22(4), 719–743. DOI: 10.1081/DRT-120034259.
  • Kim, B. S.; Kim, H. S.; Hong, J. S.; Huber, K. C.; Shim, J. H.; Yoo, S. H. Effects of Amylosucrase Treatment on Molecular Structure and Digestion Resistance of Pre-Gelatinised Rice and Barley Starches. Food Chem. 2013, 138(2–3), 966–975. DOI: 10.1016/j.foodchem.2012.11.028.
  • Nguyen Doan, H. X.; Song, Y.; Lee, S.; Lee, B. H.; Yoo, S. H. Characterization of Rice Starch Gels Reinforced with Enzymatically-Produced Resistant Starch. Food Hydrocoll. 2019, 91, 76–82. DOI: 10.1016/j.foodhyd.2019.01.014.
  • Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch Retrogradation: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2015, 14(5), 568–585. DOI: 10.1111/1541-4337.12143.
  • Cardoso, M. B.; Putaux, J. L.; Samios, D.; da Silveira, N. P. Influence of Alkali Concentration on the Deproteinization And/Or Gelatinization of Rice Starch. Carbohydr. Polym. 2007, 70(2), 160–165. DOI: 10.1016/j.carbpol.2007.03.014.
  • Rachtanapun, P.; Simasatitkul, P.; Chaiwan, W.; Watthanaworasakun, Y. Effect of Sodium Hydroxide Concentration on Properties of Carboxymethyl Rice Starch. Int. Food Res. J. 2012, 19(3), 923–931.
  • Alcázar-Alay, S. C.; Meireles, M. A. A. Physicochemical Properties, Modifications and Applications of Starches from Different Botanical Sources. Food Sci. Technol. 2015, 35(2), 215–236. DOI: 10.1590/1678-457X.6749.
  • Hsu, R. J. C.; Lu, S.; Chang, Y. H.; Chiang, W. Effects of Added Water and Retrogradation on Starch Digestibility of Cooked Rice Flours with Different Amylose Content. J. Cereal Sci. 2015, 61, 1–7. DOI: 10.1016/j.jcs.2014.03.002.
  • Zhang, G.; Hamaker, B. R. A Three Component Interaction Among Starch, Protein, and Free Fatty Acids Revealed by Pasting Profiles. J. Agric. Food. Chem. 2003, 51(9), 2797–2800. DOI: 10.1021/jf0300341.
  • Bao, J.; Zhou, X.; Xu, F.; He, Q.; Park, Y. J. Genome-Wide Association Study of the Resistant Starch Content in Rice Grains. Starch/Staerke. 2017, 69(7–8), 1600343. DOI: 10.1002/star.201600343.
  • Smith, D. L.; Atungulu, G. G.; Sadaka, S.; Rogers, S. Implications of Microwave Drying Using 915 MHz Frequency on Rice Physicochemical Properties. Cereal Chem. 2018, 95(2), 211–225. DOI: 10.1002/cche.10012.
  • Tester, R. F.; Morrison, W. R. Swelling and Gelatinization of Cereal Starches. VI. Starches from Waxy Hector and Hector Barleys at Four Stages of Grain Development. J. Cereal Sci. 1993, 17(1), 11–18. DOI: 10.1006/jcrs.1993.1002.
  • Meadows, F. Pasting Process in Rice Flour Using Rapid Visco Analyser Curves and First Derivatives. Cereal Chem. 2002, 79(4), 559–562. DOI: 10.1094/CCHEM.2002.79.4.559.
  • Kraithong, S.; Lee, S.; Rawdkuen, S. Physicochemical and Functional Properties of Thai Organic Rice Flour. J. Cereal Sci. 2018, 79, 259–266. DOI: 10.1016/j.jcs.2017.10.015.
  • Lee, Y.; Mauromoustakos, A.; Wang, Y. J. Effects of Heat Treatments on the Milling, Physicochemical, and Cooking Properties of Two Long-Grain Rice Cultivars During Storage. Cereal Chem. 2014, 91(1), 56–64. DOI: 10.1094/CCHEM-02-13-0029-R.
  • Singh, Y.; Prasad, K. Effect of Grinding Methods for Flour Characterisation of Pusa 1121 Basmati Rice Brokens. J. Food Meas. Charact. 2016, 10(1), 80–87. DOI: 10.1007/s11694-015-9279-7.
  • Han, X. Z.; Hamaker, B. R. Amylopectin Fine Structure and Rice Starch Paste Breakdown. J. Cereal Sci. 2001, 34(3), 279–284. DOI: 10.1006/jcrs.2001.0374.
  • Vandeputte, G. E.; Derycke, V.; Geeroms, J.; Delcour, J. A. Rice Starches II. Structural Aspects Provide Insight into Swelling and Pasting Properties. J. Cereal Sci. 2003, 38(1), 53–59. DOI: 10.1016/S0733-5210(02)00141-8.
  • Kumar, S.; Haq, R. U.; Prasad, K. Studies on Physico-Chemical, Functional, Pasting and Morphological Characteristics of Developed Extra Thin Flaked Rice. J. Saudi Soc. Agric. Sci. 2018, 17(3), 259–267. DOI: 10.1016/j.jssas.2016.05.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.