122
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Activation of Endothelial Nitric Oxide Synthase by Natural Products: An Effects and Mechanisms Review

, , ORCID Icon &

References

  • Widlansky, M. -E.; Gokce, N.; Keaney, J. -F.; Vita, J. -A. The Clinical Implications of Endothelial Dysfunction. J. Am. Coll. Cardiol. 2003, 42(7), 1149–1160. DOI: 10.1016/S0735-1097(03)00994-X.
  • Huang, P. -L. eNOS, Metabolic Syndrome and Cardiovascular Disease. Trends. Endocrin. Met. 2009, 20(6), 295–302. DOI: 10.1016/j.tem.2009.03.005.
  • Daiber, A.; Xia, N.; Steven, S.; Oelze, M.; Hanf, A.; Kröller-Schön, S.; Münzel, T.; Li, H. New Therapeutic Implications of Endothelial Nitric Oxide Synthase (eNOS) Function/Dysfunction in Cardiovascular Disease. Int. J. Mol. Sci. 2019, 20(1), 1–34. DOI: 10.3390/ijms20010187.
  • VanhoutRte, P. -M. How We Learned to Say NO. Arterioscler. Thromb. Vasc. Biol. 2009, 29(8), 1156–1160. DOI: 10.1161/ATVBAHA.109.190215.
  • Palmer, R.; Ashton, D. -S.; Moncada, S. Vascular Endothelial Cells Synthesize Nitric Oxide from L-Arginine. Nature. 1988, 333(6174), 664–666. DOI: 10.1038/333664a0.
  • Schulz, E.; Wenzel, P.; Munzel, T.; Daiber, A. Mitochondrial Redox Signaling: Interaction of Mitochondrial Reactive Oxygen Species with Other Sources of Oxidative Stress. Antioxid. Redox. Signal. 2014, 20(2), 308–324. DOI: 10.1089/ars.2012.4609.
  • Chalupsky, K.; Cai, H. Endothelial Dihydrofolate Reductase: Critical for Nitric Oxide Bioavailability and Role in Angiotensin II Uncoupling of Endothelial Nitric Oxide Synthase. Proc. Natl. Acad. Sci. USA. 2005, 102(25), 9056–9061. DOI: 10.1073/pnas.0409594102.
  • Kurowska, E. -M. Nitric Oxide Therapies in Vascular Diseases. Curr. Pharm. Des. 2002, 8, 155–166. DOI: 10.2174/1567204043396299.
  • Nishida, K.; Harrison, D. -G.; Navas, J. -P.; Fisher, A. -A.; Dockery, S. -P.; Uematsu, M.; Nerem, R. -M.; Alexander, R. -W.; Murphy, T. -J. Molecular Cloning and Characterization of the Constitutive Bovine Aortic Endothelial Cell Nitric Oxide Synthase. J. Clin. Invest. 1992, 90(5), 2092–2096. DOI: 10.1172/JCI116092.
  • Mount, P. -F.; Kemp, B. -E.; Power, D. -A. Regulation of Endothelial and Myocardial NO Synthesis by Multi-Site eNOS Phosphorylation. J. Mol. Cell .Cardiol. 2007, 42(2), 271–279. DOI: 10.1016/j.yjmcc.2006.05.023.
  • Michell, B. -J.; Chen, Z.; Tiganis, T.; Stapleton, D.; Katsis, F.; Power, D. -A.; Sim, A. -T.; Kemp, B. -E. Coordinated Control of Endothelial Nitric-Oxide Synthase Phosphorylation by Protein Kinase C and the CAMP-Dependent Protein Kinase. J. Biol. Chem. 2001, 276(21), 17625–17628. DOI: 10.1074/jbc.C100122200.
  • Fleming, I.; Bauersachs, J.; Fisslthaler, B.; Busse, R. Ca2+-Independent Activation of the Endothelial Nitric Oxide Synthase in Response to Tyrosine Phosphatase Inhibitors and Fluid Shear Stress. Circ. Res. 1998, 82(6), 686e695. DOI: 10.1161/01.res.82.6.686.
  • Arif, T.; Bhosale, J. -D.; Kumar, N.; Mandal, T. -K.; Bendre, R. -S.; Lavekar, G. -S.; Dabur, R. Natural Products – Antifungal Agents Derived from Plants. J. Asian. Nat. Prod. Res. 2009, 11(7), 621–638. DOI: 10.1080/10286020902942350.
  • Tang, F.; Yan, H. -L.; Wang, L. -X.; Xu, J. -F.; Tan, Y. -Z.; Ao, H.; Tan, Y. -Z. Review of Natural Resources with Vasodilation: Traditional Medicinal Plants, Natural Products, and Their Mechanism and Clinical Efficacy. Front. Pharmacol. 2021, 12, 627458. DOI: 10.3389/fphar.2021.627458.
  • Schmitt, C. -A.; Dirsch, V. -M. Modulation of Endothelial Nitric Oxide by Plant-Derived Products. Nitric. Oxide. 2009, 21(2), 77–91. DOI: 10.1016/j.niox.2009.05.006.
  • Dimmeler, S.; Fleming, I.; Fisslthaler, B.; Hermann, C.; Busse, R.; Zeiher, A. -M. Activation of Nitric Oxide Synthase in Endothelial Cells by Akt-Dependent Phosphorylation. Nature. 1999, 399(6736), 601–605. DOI: 10.1038/21224.
  • Fulton, D.; Gratton, J. -P.; Mccabe, T. -J.; Fontana, J.; Fujio, Y.; Walsh, K.; Franke, T. -F.; Papapetropoulos, A.; Sessa, W. -C. Regulation of Endothelium-Derived Nitric Oxide Production by the Protein Kinase Akt. Nature. June 10, 1999. http://www.nature.com (accessed April 19, 1999).
  • Chen, X. -N.; Yao, F.; Song, J.; Fu, B. -Y.; Sun, G.; Song, X. -Y.; Fu, C. -G.; Jiang, R.; Sun, L. -W. Protective Effects of Phenolic Acid Extract from Ginseng on Vascular Endothelial Cell Injury Induced by Palmitate via Activation of PI3K/Akt/eNOS Pathway. J. Food. Sci. 2020, 85(3), 576–581. DOI: 10.1111/1750-3841.15071.
  • Seok, L. -Y.; Heeeun, K.; Jinhye, K.; Hee, S. -G.; Kwang-Won, L. Lancemaside A, a Major Triterpene Saponin of Codonopsis Lanceolata Enhances Regulation of Nitric Oxide Synthesis via eNOS Activation. BMC. Complem. Altern. M. 2019, 19(1), 110–118. DOI: 10.1186/s12906-019-2516-6.
  • Tettey, C. -O.; Yang, I. -J.; Shin, H. -M. Endothelium-Dependent Vasodilatory Effect of Smilax China Linn. Water Extract via PI3K/Akt Signaling. Arch. Physiol. Biochem. 2018, 126(3), 209–213. DOI: 10.1080/13813455.2018.1508237.
  • Wood, E.; Hein, S.; Heiss, C.; Williams, C.; Rodriguez-Mateos, A. Blueberries and Cardiovascular Disease Prevention. Food. Funct. 2019, 10(12), 7621–7633. DOI: 10.1039/C9FO02291K.
  • Park, S. -H.; Jeong, S. -O.; Chung, H. -T.; Pae, H. -O. Pterostilbene, an Active Constituent of Blueberries, Stimulates Nitric Oxide Production via Activation of Endothelial Nitric Oxide Synthase in Human Umbilical Vein Endothelial Cells. Plant. Food. Hum. 2015, 70(3), 263–268. DOI: 10.1007/s11130-015-0488-3.
  • Klinge, C. -M.; Wickramasinghe, N. -S.; Ivanova, M. -M.; Dougherty, S. -M. Resveratrol Stimulates Nitric Oxide Production by Increasing Estrogen Receptor α-Src-Caveolin-1 Interaction and Phosphorylation in Human Umbilical Vein Endothelial Cells. FASEB. J. 2008, 22(7), 2185–2197. DOI: 10.1096/fj.07-103366.
  • Woodcock, M. -E.; Hollands, W. -J.; Konic‐ristic, A.; Glibetic, M.; Boyko, N.; Koaoglu, B.; Kroon, P. -A. Bioactive-Rich Extracts of Persimmon, but Not Nettle, Sideritis , Dill or Kale, Increase eNOS Activation and NO Bioavailability and Decrease Endothelin-1 Secretion by Human Vascular Endothelial Cells. J. Sci. Food .Agr. 2013, 93(14), 3574–3580. DOI: 10.1002/jsfa.6251.
  • Ramirez-Sanchez, I.; Maya, L.; Ceballos, G.; Villarreal, F. (−)-Epicatechin Induces Calcium and Translocation Independent eNOS Activation in Arterial Endothelial Cells. Am. J. Physiol. Cell. Physiol. 2011, 300(4), C880–887. DOI: 10.1152/ajpcell.00406.2010.
  • Tokoudagba, J. -M.; Auger, C.; Bréant, L.; N’Gom, S.; Chabert, P.; Idris-Khodja, N.; Gbaguidi, F.; Gbenou, J.; Moudachirou, M.; Lobstein, A., et al. Procyanidin-Rich Fractions from Parkia Biglobosa (Mimosaceae) Leaves Cause Redox-Sensitive Endothelium-Dependent Relaxation Involving NO and EDHF in Porcine Coronary Artery. J. Ethnopharmacol. 2010, 132(1), 246–250. DOI: 10.1016/j.jep.2010.08.031.
  • Zhang, Z. -Z.; Koike, K.; Jiaa, Z.; Nikaidoa, T.; Guob, D.; Zheng, J. -H. Triterpenoidal Saponins from Gleditsia Sinensis. Phytochemistry. 1999, 52(4), 715–722. DOI: 10.1016/S0031-9422(99)00238-1.
  • Lai, P.; Liu, Y. Echinocystic Acid, Isolated from Gleditsia Sinensis Fruit, Protects Endothelial Progenitor Cells from Damage Caused by Oxldl via the Akt/eNOS Pathway. Life. sci. 2014, 114(2), 62–69. DOI: 10.1016/j.lfs.2014.07.026.
  • Raj, D.; Uczkiewicz, M. Securinega Suffruticosa. Fitoterapia. 2008, 79(6), 419–427. DOI: 10.1016/j.fitote.2008.02.011.
  • Gong, D. -S.; Kang, S. -W.; Sharma, K.; Kim, D. -W.; Oak, M. -H. The Vasorelaxatory Effect of Nelumbo Nucifera Spornioderm on Porcine Coronary Artery. J. Nanosci. Nanotechnol. 2019, 19(2), 1176–1179. DOI: 10.1166/jnn.2019.15904.
  • Han, B. -H.; Song, C. -H.; Yoon, J. -J.; Kim, H. -Y.; Seo, C. -S.; Kang, D. -G.; Lee, Y. -J.; Lee, H. -S. Anti-Vascular Inflammatory Effect of Ethanol Extract from Securinega Suffruticosa in Human Umbilical Vein Endothelial Cells. Nutrients. 2020, 12(11), 3448–3465. DOI: 10.3390/nu12113448.
  • Dudgeon, S.; Benson, D. -P.; Mackenzie, A.; Paisley‐zyszkiewicz, K.; Martin, W. Recovery by Ascorbate of Impaired Nitric Oxide-Dependent Relaxation Resulting from Oxidant Stress in Rat Aorta. Br. J. Pharmacol. 1998, 125(4), 782–786. DOI: 10.1038/sj.bjp.0702120.
  • Edirisinghe, I.; Banaszewski, K.; Cappozzo, J.; Mccarthy, D.; Burton-Freeman, B. -M. Effect of Black Currant Anthocyanins on the Activation of Endothelial Nitric Oxide Synthase (eNOS) in Vitro in Human Endothelial Cells. J. Agric. Food. Chem. 2011, 59(16), 8616–8624. DOI: 10.1021/jf201116y.
  • Anselm, E.; Chataigneau, M.; Ndiaye, M.; Chataigneau, T.; Schini-Kerth, V. -B. Grape Juice Causes Endothelium-Dependent Relaxation via a Redox-Sensitive Src- and Akt-Dependent Activation of eNOS. Cardiovasc. Res. 2007, 73(2), 404–413. DOI: 10.1016/j.cardiores.2006.08.004.
  • Auger, C.; Kim, J. -H.; Trinh, S.; Chataigneau, T.; Popkenb, A. -M.; Schini-Kerth, V. -B. Fruit Juice-Induced Endothelium-Dependent Relaxations in Isolated Porcine Coronary Arteries: Evaluation of Different Fruit Juices and Purees and Optimization of a Red Fruit Juice Blend. Food. Funct. 2011, 2(5), 245–250. DOI: 10.1039/c1fo10040h.
  • Kim, J. -H.; Auger, C.; Kurita, I.; Anselm, E.; Rivoarilala, L. -O.; Lee, H. -J.; Lee, K. -W.; Schini-Kerth, V. -B. Aronia Melanocarpa Juice, a Rich Source of Polyphenols, Induces Endothelium-Dependent Relaxations in Porcine Coronary Arteries via the Redox-Sensitive Activation of Endothelial Nitric Oxide Synthase. Nitric. Oxide. 2013, 35, 54–64. DOI: 10.1016/j.niox.2013.08.002.
  • Lau, Y. -S.; Ling, W. -C.; Murugan, D.; Kwan, C. -Y.; Mustafa, M. -R. Endothelium-Dependent Relaxation Effect of Apocynum Venetum Leaf Extract via Src/PI3K/Akt Signalling Pathway. Nutrients. 2015, 7(7), 5239–5253. DOI: 10.3390/nu7075220.
  • Shiojima, I.; Walsh, K. Role of Akt Signaling in Vascular Homeostasis and Angiogenesis. Circ. Res. 2002, 90(12), 1243–1250. DOI: 10.1161/01.res.0000022200.71892.9f.
  • Kim, N. -D.; Kang, S. -Y.; Schini, V. -B. Ginsenosides Evoke Endothelium-Dependent Vascular Relaxation in Rat Aorta. Gen. Pharmac. 1994, 25(6), 1071–1077. DOI: 10.1016/0306-3623(94)90121-x.
  • Kim, N. -D.; Kang, S. -Y.; Min, J. -K.; Park, J. -H.; Schini-Kerth, V. -B. The Ginsenoside Rg3 Evokes Endothelium-Independent Relaxation in Rat Aortic Rings: Role of K+ Channels. Eur. J. Pharm. Sci. 1999, 367(1), 51–57. DOI: 10.1016/s0014-2999(98)00899-1.
  • Hien, T. -T.; Kim, N. -D.; Pokharel, Y. -R.; Oh, S. -J.; Lee, M. -Y.; Kang, K. -W. Ginsenoside Rg3 Increases Nitric Oxide Production via Increases in Phosphorylation and Expression of Endothelial Nitric Oxide Synthase: Essential Roles of Estrogen Receptor-Dependent PI3-Kinase and Amp-Activated Protein Kinase. Toxicol. Appl. Pharmacol. 2010, 246(3), 171–183. DOI: 10.1016/j.taap.2010.05.008.
  • Hu, Z. -L.; Chen, J.; Wei, Q.; Xia, Y. Bidirectional Actions of Hydrogen Peroxide on Endothelial Nitric-Oxide Synthase Phosphorylation and Function. J. Biol. Chem. 2008, 283(37), 25256–25263. DOI: 10.1074/jbc.M802455200.
  • Meezan, E.; Meezan, E. -M.; Jones, K.; Moore, R.; Barnes, S.; Prasain, J. -K. Contrasting Effects of Puerarin and Daidzin on Glucose Homeostasis in Mice. J. Agric. Food. Chem. 2005, 53(22), 8760–8767. DOI: 10.1021/jf058105e.
  • Feng, Z. -Q.; Wang, Y. -Y.; Guo, Z. -R.; Chu, F. -M.; Sun, P. -Y. The Synthesis of Puerarin Derivatives and Their Protective Effect on the Myocardial Ischemia and Reperfusion Injury. J. Asian. Nat. Prod. Res. 2010, 12(10), 843–850. DOI: 10.1080/10286020.2010.505563.
  • Zhang, S. -Y.; Chen, G.; Wei, P. -F.; Huang, X. -S.; Xu, H. -X.; Shen, Y. -J.; Chen, S. -L.; Sun-Chi, C. -A.; Xu, H. -X. The Effect of Puerarin on Serum Nitric Oxide Concentration and Myocardial eNOS Expression in Rats with Myocardial Infarction. J. Asian. Nat. Prod. Res. 2008, 10(4), 373–381. DOI: 10.1080/10286020801892250.
  • Yong, P. -H.; Kim, H. -G.; Hien, T. -T.; Jeong, M. -H.; Jeong, T. -C.; Jeong, H. -G. Puerarin Activates Endothelial Nitric Oxide Synthase Through Estrogen Receptor-Dependent PI3-Kinase and Calcium-Dependent Amp-Activated Protein Kinase. Toxicol. Appl. Pharmacol. 2011, 257(1), 48–58. DOI: 10.1016/j.taap.2011.08.017.
  • Lee, E. -B. Pharmacological Studies on Platycodon Grandiflorum A. Dc. Iv. A Comparison of Experimental Pharmacological Effects of Crude Platycodin with Clinical Indications of Platycodi Radix. Yakugaku. Zasshi. 1973, 93(9), 1188. DOI: 10.1248/yakushi1947.93.9_1188.
  • Kim, K. -S.; Ezaki, O.; Ikemoto, S.; Itakura, H. Effects of Platycodon Grandiflorum Feeding on Serum and Liver Lipid Concentrations in Rats with Diet-Induced Hyperlipidemia. J. Nutr. Sci. Vitaminol. 1995, 41(4), 485–491. DOI: 10.3177/jnsv.41.485.
  • Kim, J. -Y.; Kim, D. -H.; Kim, H. -G.; Song, G. -Y.; Chung, Y. -C.; Roh, S. -H.; Jeong, H. -G. Inhibition of Tumor Necrosis Factor-Α-Induced Expression of Adhesion Molecules in Human Endothelial Cells by the Saponins Derived from Roots of Platycodon Grandiflorum. Toxicol. Appl. Pharmacol. 2006, 210(1–2), 150–156. DOI: 10.1016/j.taap.2005.09.015.
  • Kim, H. -G.; Hien, T. -T.; Han, E. -H.; Chung, Y. -C.; Jeong, H. -G. Molecular Mechanism of Endothelial Nitric-Oxide Synthase Activation by Platycodon Grandiflorum Root-Derived Saponins. Toxicol. Lett. 2010, 195(2–3), 106–113. DOI: 10.1016/j.toxlet.2010.03.006.
  • Lee, J. -O.; Oak, M. -H.; Jung, S. -H.; Park, D. -H.; Auger, C.; Kim, K. -R.; Lee, S. -W.; Schini-Kerth, V. -B. An Ethanolic Extract of Lindera Obtusiloba Stems Causes NO-Mediated Endothelium-Dependent Relaxations in Rat Aortic Rings and Prevents Angiotensin II-Induced Hypertension and Endothelial Dysfunction in Rats. N-S. Arch. Pharmacol. 2011, 383(6), 635–645. DOI: 10.1007/s00210-011-0643-9.
  • Romero, M.; Toral, M.; Gómez-Guzmán, M.; Jiménez, R.; Galindo, P.; Sánchez, M.; Olivares, M.; Gálvez, J.; Duarte, J. Antihypertensive Effects of Oleuropein-Enriched Olive Leaf Extract in Spontaneously Hypertensive Rats. Food. Funct. 2015, 7(1), 584–593. DOI: 10.1039/c5fo01101a.
  • Pan, C.; Huo, Y.; An, X.; Singh, G.; Meng, C.; Yang, Z.; Pu, J.; Jian, L. Panax Notoginseng and Its Components Decreased Hypertension via Stimulation of Endothelial-Dependent Vessel Dilatation. Vasc. Pharmacol. 2012, 56(3–4), 150–158. DOI: 10.1016/j.vph.2011.12.006.
  • Bhatia, J.; Tabassum, F.; Sharma, A. -K.; Bharti, S.; Golechha, M.; Joshi, S.; Akhatar, M. -S.; Srivastava, A. -K.; Arya, D. -S. Emblica Officinalis Exerts Antihypertensive Effect in a Rat Model of Doca-Salt-Induced Hypertension: Role of (P) eNOS, NO and Oxidative Stress. Cardiovasc. Toxicol. 2011, 11(3), 272–279. DOI: 10.1007/s12012-011-9122-2.
  • Zhao, W.; Yu, J.; Su, Q.; Liang, J.; Zhao, L.; Zhang, Y.; Sun, W. Antihypertensive Effects of Extract from Picrasma Quassiodes (D. Don) Benn. in Spontaneously Hypertensive Rats. J. Ethnopharmacol. 2013, 145(1), 187–192. DOI: 10.1016/j.jep.2012.10.049.
  • Hou, Z.; Hu, Y.; Yang, X.; Chen, W. Antihypertensive Effects of Tartary Buckwheat Flavonoids by Improvement of Vascular Insulin Sensitivity in Spontaneously Hypertensive Rats. Food. Chem. 2017, 8, 11, 4217–4228. DOI: 8(11):4217-4228. DOI: 10.1039/C7FO00975E.
  • Carrizzo, A.; Ambrosio, M.; Damato, A.; Madonna, M.; Vecchione, C.; Capocci, L.; Campiglia, P.; Sommella, E.; Trimarco, V.; Rozza, F., et al. Morus Alba Extract Modulates Blood Pressure Homeostasis Through eNOS Signaling. Mol. Nutr. Food. Res. 2016, 60(10), 2304–2311. DOI: 10.1002/mnfr.201600233.
  • Yoshitomi, H.; Zhou, J.; Nishigaki, T.; Li, W.; Gao, M.; Wu, L.; Gao, M. Morinda Citrifolia (Noni) Fruit Juice Promotes Vascular Endothelium Function in Hypertension via Glucagon-Like Peptide-1 Receptor-CaMKKβ-AMPK-eNOS Pathway. Phytother. Res. 2020, 34(9), 2341–2350. DOI: 10.1002/ptr.6685.
  • Guo, W.; Ouyang, H.; Liu, M.; Wu, J.; He, X.; Yang, S.; He, M.; Feng, Y. Based on Plasma Metabonomics and Network Pharmacology Exploring the Therapeutic Mechanism of Gynura Procumbens on Type 2 Diabetes. Front. Pharmacol. 2021, 12, 674379–674389. DOI: 10.3389/fphar.2021.674379.
  • Zhang, J.; Fan, S.; Mao, Y.; Ji, Y.; Jin, L.; Lu, J.; Chen, X. Cardiovascular Protective Effect of Polysaccharide from Ophiopogon Japonicus in Diabetic Rats. Int. J. Biol. Macromol. 2016, 82, 505–513. DOI: 10.1016/j.ijbiomac.2015.09.069.
  • Zhang, X. -N.; Ma, Z. -J.; Wang, Y.; Sun, B.; Guo, X.; Pan, C. -Q.; Chen, L. -M.; Angelica Dahurica Ethanolic Extract Improves Impaired Wound Healing by Activating Angiogenesis in Diabetes. PLoS. One. 2017, 12(5), 1–18. DOI: 10.1371/journal.pone.0177862.
  • Lia, Y. -J.; Huanga, C.; Fu, W. -W.; Zhang, H.; Lao, Y. -Z.; Zhouc, H.; Tanb, H. -S.; Xu, H. -X. Screening of the Active Fractions from the Coreopsis Tinctoria Nutt. Flower on Diabetic Endothelial Protection and Determination of the Underlying Mechanism. J. Ethnopharmacol. 2020, 253, 112645–112655. DOI: 10.1016/j.jep.2020.112645.
  • Cheng, L. -C.; Guo, B. -C.; Chen, C. -H.; Chang, C. -J.; Lee, T. -S.; Lee, T. -S. Endothelial Nitric Oxide Mediates the Anti-Atherosclerotic Action of Torenia Concolor Lindley Var. Formosama Yamazaki. Int. J. Mol. Sci. 2020, 21(4), 1532–1548. DOI: 10.3390/ijms21041532.
  • Li, W.; Tang, C.; Jin, H.; Du, J. Effects of Onion Extract on Endogenous Vascular H2S and Adrenomedulin in Rat Atherosclerosis. Curr. Pharm. Biotechnol. 2011, 12(9), 1427–1439. DOI: 10.2174/138920111798281135.
  • Lu, H. -K.; Huang, Y.; Liang, X. -Y.; Dai, Y. -Y.; Liu, X. -T. Pinellia Ternata Attenuates Carotid Artery Intimal Hyperplasia and Increases Endothelial Progenitor Cell Activity via the PI3K/Akt Signalling Pathway in Wire-Injured Rats. Pharm. Biol. 2020, 58(1), 1184–1191. DOI: 10.1080/13880209.2020.1845748.
  • Hsu, S. -W.; Chang, T. -C.; Wu, Y. -K.; Lin, K. -T.; Shi, L. -S.; Lee, S. -Y. Rhodiola Crenulata Extract Counteracts the Effect of Hypobaric Hypoxia in Rat Heart via Redirection of the Nitric Oxide and Arginase 1 Pathway. BMC. Complem. Altern. M. 2017, 17(1), 29–38. DOI: 10.1186/s12906-016-1524-z.
  • Park, S. -H.; Ji, H. -K.; Park, S. -J.; Sun, S. -B.; Choi, Y. -W.; Jin, W. -H.; Choi, B. -T.; Shin, H. -K. Protective Effect of Hexane Extracts of Uncaria Sinensis Against Photothrombotic Ischemic Injury in Mice. J. Ethnopharmacol. 2011, 138(3), 774–779. DOI: 10.1016/j.jep.2011.10.026.
  • Li, X.; Wang, X.; Guo, Y.; Denga, N.; Zheng, P.; Xu, Q.; Wu, Y.; Dai, G. Regulation of Endothelial Nitric Oxide Synthase and Asymmetric Dimethylarginine by Matrine Attenuates Isoproterenol‐Induced Acute Myocardial Injury in Rats. J. Pharm. Pharmacol. 2012, 64(8), 1107–1118. DOI: 10.1111/j.2042-7158.2012.01502.x.
  • Khayyal, M. -T.; el-Ghazaly, M. -A.; Abdallah, D. -M.; Nassar, N. -N.; Okpanyi, S. -N.; Kreuter, M. -H. Blood Pressure Lowering Effect of an Olive Leaf Extract (Olea Europaea) in L-Name Induced Hypertension in Rats. Arzneimittel-Forsch. 2002, 52(11), 797–802. DOI: 10.1055/s-0031-1299970.
  • Costantini, L.; Lukšič, L.; Molinari, R.; Kreft, I.; Bonafaccia, G.; Manzi, L.; Merendino, N. Development of Gluten-Free Bread Using Tartary Buckwheat and Chia Flour Rich in Flavonoids and Omega-3 Fatty Acids as Ingredients. Food. Chem. 2014, 165, 232–240. DOI: 10.1016/j.foodchem.2014.05.095.
  • Chen, W.; Qian, H.; Wang, H. Effect of Polysaccharide from Ophiopogonis Tuber on Blood Sugar in Normal and Experimental Diabetle Mice. Chin. J. Mod. Appl. Pharm. 1998, 04, 21–23.
  • Dias, T.; Bronze, M. -R.; Houghton, P. -J.; Mota-Filipe, H.; Paulo, A. The Flavonoid-Rich Fraction of Coreopsis Tinctoria Promotes Glucose Tolerance Regain Through Pancreatic Function Recovery in Streptozotocin-Induced Glucose-Intolerant Rats. J. Ethnopharmacol. 2010, 132(2), 483–490. DOI: 10.1016/j.jep.2010.08.048.
  • Auger, C.; Kim, J. -H.; Chabert, P.; Chaabi, M.; Anselm, E.; Lanciaux, X.; Lobstein, A.; Schini-Kerth, V. -B. The EGCg-Induced Redox-Sensitive Activation of Endothelial Nitric Oxide Synthase and Relaxation are Critically Dependent on Hydroxyl Moieties. Biochem. Biophys. Res. Commun. 2010, 393(1), 162–167. DOI: 10.1016/j.bbrc.2010.01.112.
  • Martin, S.; Andriambeloson, E.; Takeda, K.; Andriantsitohaina, R. Red Wine Polyphenols Increase Calcium in Bovine Aortic Endothelial Cells: A Basis to Elucidate Signalling Pathways Leading to Nitric Oxide Production. Br. J. Pharmacol. 2002, 135(6), 1579–1587. DOI: 10.1038/sj.bjp.0704603.
  • Leonetti, D.; Soleti, R.; Clere, N.; Vergori, L.; Jacques, C.; Duluc, L.; Dourguia, C.; Martinez, M. -C.; Andriantsitohaina, R. Estrogen Receptor Alpha Participates to the Beneficial Effect of Red Wine Polyphenols in a Mouse Model of Obesity-Related Disorders. Front. Pharmacol. 2016, 7, 529. DOI: 10.3389/fphar.2016.00529.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.